Металлический натрий с водой
Демонстрация химии натрия в воде иллюстрирует реакционную способность щелочного металла с водой. Это запоминающаяся демонстрация, которая вызывает эффектную реакцию у студентов. Тем не менее, это может быть выполнено безопасно.
Миллиарды лет натрий вымывается из горных пород и почвы, попадая в океаны. Морская вода содержит примерно 11 000 частей на миллион натрия. Реки содержат только около 9 частей на миллион.
Питьевая вода обычно содержит около 50 мг/л натрия. Это значение явно выше для минеральной воды. В растворимой форме натрий всегда находится в виде ионов Na +.
Как и в какой форме реагирует натрий с водой?
Элементарный натрий сильно реагирует с водой по следующему механизму реакции:
Образуется бесцветный раствор, состоящий из сильнощелочного гидроксида натрия (едкого натра) и газообразного водорода. Это экзотермическая реакция. Металлический натрий нагревается и может загореться и гореть характерным оранжевым пламенем. Газообразный водород, выделяющийся в процессе горения, сильно реагирует с кислородом воздуха.
Ряд соединений натрия не так сильно реагируют с водой, но хорошо растворимы в воде.
© shutterstock
Растворимость натрия и соединений натрия
Имеется ряд примеров растворимости натрия в воде. Наиболее известным соединением натрия является хлорид натрия (NaCl), также известный как поваренная соль. При 20 C растворимость составляет 359 г/л, т.е. хорошо растворяется в воде. Растворимость почти не зависит от температуры. Карбонат натрия (Na2CO3) также достаточно растворим в воде. Растворимость 220 г/л при 20 C.
Как провести эксперимент
Материалы
- Металлический натрий хранится под минеральным маслом.
- Стакан на 250 мл, наполовину наполненный водой.
- Фенолфталеин (по желанию).
Процедура
- Добавьте несколько капель индикатора фенолфталеина в воду в стакане. (По желанию)
- Вы можете поместить стакан на проектор или видеоэкран, что даст вам возможность показать реакцию студентов на расстоянии.
- Надев перчатки, используйте сухой шпатель, чтобы удалить очень маленький кусочек (0,1 см3) металлического натрия из куска, хранящегося в масле. Верните неиспользованный натрий в масло и закройте контейнер. Вы можете использовать щипцы или пинцет, чтобы высушить небольшой кусочек металла на бумажном полотенце.
- Опустите кусочек натрия в воду. Немедленно отойдите. При диссоциации воды на Н + и ОН- будет выделяться газообразный водород. Увеличение концентрации ионов ОН- в растворе повысит его рН и заставит жидкость стать розовой.
- После того, как натрий полностью прореагирует, вы можете смыть его водой и смыть в канализацию. Продолжайте носить защитные очки при утилизации реакции на случай, если останется немного непрореагировавшего натрия.
Каково воздействие натрия в воде на окружающую среду?
Натрий относится ко 2 классу опасности для воды, то есть представляет опасность при наличии в воде. Однако хлорид натрия не представляет опасности и относится к классу опасности для воды 1.
Натрий является диетическим минералом для животных. Однако растения почти не содержат натрия. Значение LC 50 для золотых рыбок составляет 157 мг/л. Гипохлорит натрия из гигиенических моющих средств может способствовать образованию хлорированных углеводородов и, следовательно, может сильно загрязнять сточные воды.
В природе встречается только один изотоп натрия, а именно стабильный 23 Na. Существует 13 нестабильных изотопов натрия, которые слаборадиоактивны.
Спросите Итана: каковы квантовые причины реакции натрия с водой?
Если поместить кусочек натрия в воду, можно вызвать бурную, часто взрывную реакцию
Иногда мы узнаём что-то в начале жизни и просто принимаем, как данность, что мир работает именно так. К примеру, если бросить кусочек чистого натрия в воду, можно получить легендарную взрывную реакцию. Как только кусочек намокнет, реакция заставляет его шипеть и разогреваться, он прыгает по поверхности воды и даже выдаёт язычки пламени. Это, конечно, просто химия. Но не происходит ли чего-то ещё на фундаментальном уровне? Именно это и хочет узнать наш читатель Семён Стопкин из России:
Какие силы управляют химическими реакциями, и что происходит на квантовом уровне? В частности, что происходит, когда вода взаимодействует с натрием?
Реакция натрия с водой — это классика, и у неё есть глубокое объяснение. Начнём с изучения прохождения реакции.
Первое, что нужно знать о натрии — на атомном уровне у него всего на один протон и один электрон больше, чем у инертного, или благородного газа, неона. Инертные газы не реагируют ни с чем, и всё из-за того, что все их атомные орбитали полностью заполнены электронами. Эта сверхстабильная конфигурация рушится, когда вы переходите на один элемент далее в периодической таблице Менделеева, и это происходит со всеми элементами, демонстрирующими похожее поведение. Гелий сверхстабилен, а литий чрезвычайно активен химически. Неон стабилен, а натрий активен. Аргон, криптон и ксенон — стабильны, но калий, рубидий и цезий — активны.
Причина заключается в дополнительном электроне.
Таблица Менделеева рассортирована по периодам и группам согласно количеству свободных и занятых валентных электронов — а это первейший фактор в определении химических свойств элемента
Когда мы изучаем атомы, мы привыкаем считать ядро твёрдым, мелким, положительно заряженным центром, а электроны — отрицательно заряженными точками на орбите вокруг него. Но в квантовой физике этим дело не заканчивается. Электроны могут вести себя, как точки, в особенности если выстрелить в них другой высокоэнергетической частицей или фотоном, но если их оставить в покое, они расплываются и ведут себя, как волны. Эти волны способны самонастраиваться определённым образом: сферически (для s-орбиталей, содержащих по 2 электрона), перпендикулярно (для p-орбиталей, содержащих по 6 электронов), и далее, до d-орбиталей (по 10 электронов), f-орбиталей (по 14) и т.д.
Орбитали атомов в состоянии с наименьшей энергией находятся вверху слева, и при продвижении вправо и вниз энергии растут. Эти фундаментальные конфигурации управляют поведением атомов и внутриатомными взаимодействиями.
Заполняются эти оболочки из-за принципа запрета Паули, запрещающего двум одинаковым фермионам (например, электронам) занимать одно и то же квантовое состояние. Если в атоме электронная орбиталь заполнилась, то единственное место, где можно разместить электрон — это следующая, более высокая орбиталь. Атом хлора с удовольствием примет дополнительный электрон, поскольку ему не хватает всего одного для заполнения электронной оболочки. И наоборот, атом натрия с удовольствием отдаст свой последний электрон, поскольку он у него лишний, а все остальные заполнили оболочки. Поэтому натрий хлор так хорошо и получается: натрий отдаёт электрон хлору, и оба атома находятся в энергетически предпочтительной конфигурации.
Элементы первой группы периодической таблицы, особенно литий, натрий, калий, рубидий и т.д. теряют свой первый электрон гораздо легче всех остальных
На самом деле количество энергии, необходимое для того, чтобы атом отдал свой внешний электрон, или энергия ионизации, оказывается особенно низкой у металлов с одним валентным электроном. Из чисел видно, что гораздо легче забрать электрон у лития, натрия, калия, рубидия, цезия и т.п., чем у любого другого элемента
Кадр из анимации, демонстрирующей динамическое взаимодействие молекул воды. Отдельные молекулы H2O имеют V-образную форму и состоят из двух атомов водорода (белые), соединённых с атомом кислорода (красные). Соседние молекулы H2O кратковременно реагируют друг с другом через водородные связи (бело-голубые овалы)
Так что же происходит в присутствии воды? Вы можете представлять себе молекулы воды как крайне стабильные — H2O, два водорода, связанные с одним кислородом. Но молекула воды чрезвычайно полярная — то есть, с одной стороны молекулы H2O (со стороны, противоположной двум водородам) заряд получается отрицательным, а с противоположной — положительным. Этого эффекта достаточно для того, чтобы некоторые молекулы воды — порядка одной на несколько миллионов — распадались на два иона — один протон (H + ) и ион гидроксила (OH - ).
В присутствии большого количества чрезвычайно полярных молекул воды одна из нескольких миллионов молекул распадётся на ионы гидроксила и свободные протоны — этот процесс называется автопротолиз
Последствия этого довольно важны для таких вещей, как кислоты и основания, для процессов растворения солей и активизации химических реакций, и т.п. Но нас интересует, что происходит при добавлении натрия. Натрий — этот нейтральный атом с одним плохо держащимся внешним электроном — попадает в воду. А это не просто нейтральные молекулы H2O, это ионы гидроксила и отдельные протоны. Важны нам прежде всего протоны — они и подводят нас к ключевому вопросу:
Что энергетически предпочтительнее? Иметь нейтральный атом натрия Na вместе с отдельным протоном H+, или ион натрия, потерявший электрон Na + вместе с нейтральным атомом водорода H?
Ответ прост: в любом случае электрон перепрыгнет с атома натрия на первый же встречный отдельный протон, который попадётся ему на пути.
Потеряв электрон, ион натрия с удовольствием растворится в воде, как делает ион хлора, приобретя электрон. Гораздо более выгодно энергетически — в случае натрия — чтобы электрон спарился с ионом водорода
Именно поэтому реакция происходит так быстро и с таким выходом энергии. Но это ещё не всё. У нас получились нейтральные атомы водорода, и, в отличие от натрия, они не выстраиваются в блок отдельных атомов, связанных вместе. Водород — это газ, и он переходит в ещё более энергетически предпочтительное состояние: формирует нейтральную молекулу водорода H2. И в результате образуется много свободной энергии, уходящей в разогрев окружающих молекул, нейтральный водород в виде газа, который выходит из жидкого раствора в атмосферу, содержащую нейтральный кислород O2.
Удалённая камера снимает вблизи главный двигатель Шатла во время тестового прогона в космическом центре имени Джона Стенниса. Водород — предпочтительное топливо для ракет благодаря его низкому молекулярному весу и избытку кислорода в атмосфере, с которым он может реагировать
Если накопить достаточное количество энергии, водород и кислород тоже вступят в реакцию! Это яростное горение выдаёт водяной пар и огромное количество энергии. Поэтому при попадании кусочка натрия (или любого элемента их первой группы периодической таблицы) в воду случается взрывной выход энергии. Всё это происходит из-за переноса электронов, управляемого квантовыми законами Вселенной, и электромагнитных свойств заряженных частиц, составляющих атомы и ионы.
Энергетические уровни и волновые функции электронов, соответствующие различным состояниям атома водорода — хотя почти такие же конфигурации присущи всем атомам. Уровни энергии квантуются кратно постоянной Планка, но даже минимальная энергия, основное состояние, имеет две возможные конфигурации в зависимости от соотношения спинов электрона и протона
Итак, повторим, что происходит, когда кусочек натрия падает в воду:
- натрий немедля отдаёт внешний электрон в воду,
- где он поглощается ионом водорода и формирует нейтральный водород,
- эта реакция высвобождает большое количество энергии, и разогревает окружающие молекулы,
- нейтральный водород превращается в молекулярный водородный газ и поднимается из жидкости,
- и, наконец, при достаточном количестве энергии атмосферный кислород вступает с водородным газом в реакцию горения.
Всё это можно просто и элегантно объяснить при помощи правил химии, и именно так это часто и делают. Однако правила, управляющие поведением всех химических реакций, происходит из ещё более фундаментальных законов: законов квантовой физики (таких, как принцип запрета Паули, управляющий поведением электронов в атомах) и электромагнетизм (управляющий взаимодействием заряженных частиц). Без этих законов и сил не будет никакой химии! И благодаря им каждый раз, уронив натрий в воду, вы знаете, чего следует ожидать. Если вы ещё не поняли — нужно надевать защиту, не брать натрий руками и отходить подальше, когда начинается реакция!
Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].
Основания. Химические свойства и способы получения
Перед изучением этого раздела рекомендую прочитать следующую статью:
Основания – сложные вещества, которые состоят из катиона металла Ме + (или металлоподобного катиона, например, иона аммония NH4 + ) и гидроксид-аниона ОН — .
По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания . Также есть неустойчивые основания, которые самопроизвольно разлагаются.
Получение оснований
1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:
основный оксид + вода = основание
Например , оксид натрия в воде образует гидроксид натрия (едкий натр):
Na2O + H2O → 2NaOH
При этом оксид меди (II) с водой не реагирует:
CuO + H2O ≠
2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий) , кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.
металл + вода = щёлочь + водород
Например , калий реагирует с водой очень бурно:
2K 0 + 2 H2 + O → 2 K + OH + H2 0
3. Электролиз растворов некоторых солей щелочных металлов . Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье Электролиз.
Например , электролиз хлорида натрия:
2NaCl + 2H2O → 2NaOH + H2↑ + Cl2↑
4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:
щелочь + соль1 = соль2↓ + щелочь
щелочь + соль1 = соль2↓ + щелочь
Например: карбонат калия реагирует в растворе с гидроксидом кальция:
Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):
CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl
Химические свойства нерастворимых оснований
1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами (и некоторыми средними кислотами). При этом образуются соль и вода.
нерастворимое основание + кислота = соль + вода
нерастворимое основание + кислотный оксид = соль + вода
Например , гидроксид меди (II) взаимодействует с сильной соляной кислотой:
При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:
2. Нерастворимые основания разлагаются при нагревании на оксид и воду.
Например , гидроксид железа (III) разлагается на оксид железа (III) и воду при прокаливании:
3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.
нерастворимое оснвоание + амфотерный оксид ≠
нерастворимое основание + амфотерный гидроксид ≠
4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).
Например , гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):
4 Fe +2 (OH)2 + O2 0 + 2H2O → 4 Fe +3 ( O -2 H)3
Химические свойства щелочей
1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:
щёлочь(избыток)+ кислота = средняя соль + вода
щёлочь + многоосновная кислота(избыток) = кислая соль + вода
Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.
При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.
При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:
В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.
2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли , а в растворе – комплексные соли .
щёлочь (расплав) + амфотерный оксид = средняя соль + вода
щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода
щёлочь (раствор) + амфотерный оксид = комплексная соль
щёлочь (раствор) + амфотерный гидроксид = комплексная соль
Например , при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:
А в растворе образуется комплексная соль:
Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (как правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.
3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:
щёлочь(избыток) + кислотный оксид = средняя соль + вода
щёлочь + кислотный оксид(избыток) = кислая соль
Например , при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:
А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:
2NaOH + CO2 = NaHCO3
4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе , при условии, что в продуктах образуется газ или осадок . Такие реакции протекают по механизму ионного обмена.
щёлочь + растворимая соль = соль + соответствующий гидроксид
Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.
Cu 2+ SO4 2- + 2Na + OH — = Cu 2+ (OH)2 — ↓ + Na2 + SO4 2-
Также щёлочи взаимодействуют с растворами солей аммония.
Например , гидроксид калия взаимодействует с раствором нитрата аммония:
! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль !
Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид , взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла .
Например , избыток сульфата цинка реагирует в растворе с гидроксидом калия:
Однако, в данной реакции образуется не основание, а амфотерный гидроксид. А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей . Т аким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:
Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:
соль амф.металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль
соль амф.металла + щёлочь(избыток) = комплексная соль + соль
5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.
кислая соль + щёлочь = средняя соль + вода
Например , гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:
Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.
6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.
! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!
Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:
2Al + 2NaOH + 6 H2 + O = 2Na[ Al +3 (OH)4] + 3 H2 0
7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):
NaOH +О2 ≠
NaOH +N2 ≠
NaOH +C ≠
Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).
Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:
2NaOH +Cl2 0 = NaCl — + NaOCl + + H2O
Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:
6NaOH +Cl2 0 = 5NaCl — + NaCl +5 O3 + 3H2O
Кремний окисляется щелочами до степени окисления +4.
Например , в растворе:
2NaOH + Si 0 + H2 + O= Na2Si +4 O3 + 2H2 0
Фтор окисляет щёлочи:
2F2 0 + 4NaO -2 H = O2 0 + 4NaF — + 2H2O
Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.
Щелочные металлы. Химия щелочных металлов и их соединений
Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.
Электронное строение щелочных металлов и основные свойства
Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns 1 , на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.
Рассмотрим некоторые закономерности изменения свойств щелочных металлов.
В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус , усиливаются металлические свойства , ослабевают неметаллические свойства , уменьшается электроотрица-тельность .
Физические свойства
Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.
Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.
Нахождение в природе
Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы , в которых присутствуют щелочные металлы:
Поваренная соль, каменная соль, галит — NaCl — хлорид натрия
Сильвин KCl — хлорид калия
Сильвинит NaCl · KCl
Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия
Едкое кали KOH — гидроксид калия
Поташ K2CO3 – карбонат калия
Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:
Способы получения
Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):
2LiCl = 2Li + Cl2
Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:
2NaCl (расплав) → 2Na + Cl2
Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).
Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:
KCl + Na = K↑ + NaCl
KOH + Na = K↑ + NaOH
Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:
Са + 2CsCl → 2Cs + CaCl2
В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.
Качественные реакции
Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов .
Цвет пламени:
Li — карминно-красный
Na — жѐлтый
K — фиолетовый
Rb — буро-красный
Cs — фиолетово-красный
Химические свойства
1. Щелочные металлы — сильные восстановители . Поэтому они реагируют почти со всеми неметаллами .
1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:
2K + I2 = 2KI
1.2. Щелочные металлы реагируют с серой с образованием сульфидов:
2Na + S = Na2S
1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:
3K + P = K3P
2Na + H2 = 2NaH
1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:
Остальные щелочные металлы реагируют с азотом при нагревании.
1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:
1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.
Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.
2. Щелочные металлы активно взаимодействуют со сложными веществами:
2.1. Щелочные металлы бурно (со взрывом) реагируют с водой . Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.
Например , калий реагирует с водой очень бурно:
2K 0 + H2 + O = 2 K + OH + H2 0
Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.
2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.
Например , натрий бурно реагирует с соляной кислотой :
2Na + 2HCl = 2NaCl + H2↑
2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.
Например , при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:
2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I):
С разбавленной азотной кислотой образуется молекулярный азот:
При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:
2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства . Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами , фенолом и органическими кислотами .
Например , при взаимодействии лития с аммиаком образуются амиды и водород:
Ацетилен с натрием образует ацетиленид натрия и также водород:
Н ─ C ≡ С ─ Н + 2Na → Na ─ C≡C ─ Na + H2
Фенол с натрием реагирует с образованием фенолята натрия и водорода:
Метанол с натрием образуют метилат натрия и водород:
Уксусная кислота с литием образует ацетат лития и водород:
2СH3COOH + 2Li → 2CH3COOLi + H2↑
Щелочные металлы реагируют с галогеналканами (реакция Вюрца).
Например , хлорметан с натрием образует этан и хлорид натрия:
2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями . Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.
Например , натрий взаимодействует в расплаве с хлоридом алюминия :
3Na + AlCl3 → 3NaCl + Al
Оксиды щелочных металлов
Способы получения
Оксиды щелочных металлов (кроме лития) можно получить только к освенными методами : взаимодействием натрия с окислителями в расплаве:
1. О ксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:
2. Взаимодействием натрия с пероксидом натрия :
3. Взаимодействием натрия с расплавом щелочи :
2Na + 2NaOН → 2Na2O + Н2↑
4. Оксид лития можно получить разложением гидроксида лития :
2LiOН → Li2O + Н2O
Химические свойства
Оксиды щелочных металлов — типичные основные оксиды . Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.
1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами :
Например , оксид натрия взаимодействует с оксидом фосфора (V):
Оксид натрия взаимодействует с амфотерным оксидом алюминия:
2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).
Например , оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:
K2O + 2HCl → 2KCl + H2O
3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей.
Например , оксид лития взаимодействует с водой с образованием гидроксида лития:
Li2O + H2O → 2LiOH
4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.
Пероксиды щелочных металлов
Химические свойства
Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные , так и восстановительные свойства.
1. Пероксиды щелочных металлов взаимодействуют с водой . При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:
При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:
2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами .
Например , пероксид натрия реагирует с углекислым газом с образованием карбоната натрия и кислорода:
3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:
При нагревании пероксиды, опять-таки, диспропорционируют:
4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:
5. При взаимодействии с восстановителями пероксиды проявляют окислительные свойства.
Например , пероксид натрия с угарным газом реагирует с образованием карбоната натрия:
Пероксид натрия с сернистым газом также вступает в ОВР с образованием сульфата натрия:
6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.
Например , при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород:
Гидроксиды щелочных металлов (щелочи)
Способы получения
1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов:
2NaCl + 2H2O → 2NaOH + H2 + Cl2
2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гидридов и некоторых других бинарных соединений с водой также образуются щелочи.
Например , натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:
2Na + 2H2O → 2NaOH + H2
Na2O + H2O → 2NaOH
2NaH + 2H2O → 2NaOH + H2
3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.
Например , карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:
Химические свойства
1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.
Например , гидроксид калия с фосфорной кислотой реагирует с образованием фосфатов, гидрофосфатов или дигидрофосфатов:
2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.
Например , гидроксид натрия с углекислым газом реагирует с образованием карбонатов или гидрокарбонатов:
Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:
А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:
3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли.
Например , гидроксид натрия с оксидом алюминия реагирует в расплаве с образованием алюминатов:
в растворе образуется комплексная соль — тетрагидроксоалюминат:
Еще пример : гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль:
4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.
Например : гидроксид калия реагирует с гидрокарбонатом калия с образованием карбоната калия:
5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).
При этом кремний окисляется щелочами до силиката и водорода:
Фтор окисляет щелочи. При этом выделяется молекулярный кислород:
Другие галогены, сера и фосфор — диспропорционируют в щелочах:
Сера взаимодействует с щелочами только при нагревании:
6. Щелочи взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород:
В растворе образуются комплексная соль и водород:
2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2
7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями .
С щелочами взаимодействуют соли тяжелых металлов.
Например , хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):
2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl
Также с щелочами взаимодействуют соли аммония.
Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:
NH4Cl + NaOH = NH3 + H2O + NaCl
8. Гидроксиды всех щелочных металлов плавятся без разложения , гидроксид лития разлагается при нагревании до температуры 600°С:
2LiOH → Li2O + H2O
9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований . В воде практически нацело диссоциируют , образуя щелочную среду и меняя окраску индикаторов.
NaOH ↔ Na + + OH —
10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу . При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород:
4NaOH → 4Na + O2 + 2H2O
Соли щелочных металлов
Нитраты и нитриты щелочных металлов
Нитраты щелочных металлов при нагревании разлагаются на нитриты и кислород. Исключение — нитрат лития. Он разлагается на оксид лития, оксид азота (IV) и кислород.
Например , нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:
Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.
Нитриты щелочных металлов могут быть окислителями или восстановителями.
В щелочной среде нитраты и нитриты — очень мощные окислители.
Например , нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:
Сильные окислители окисляют нитриты до нитратов.
Например , перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:
Секреты реакции металлического натрия с водой
Демонстрация химии натрия в воде иллюстрирует реакционную способность щелочного металла с водой. Это запоминающаяся демонстрация, которая вызывает эффектную реакцию у студентов. Тем не менее, это может быть выполнено безопасно.
Миллиарды лет натрий вымывается из горных пород и почвы, попадая в океаны. Морская вода содержит примерно 11 000 частей на миллион натрия. Реки содержат только около 9 частей на миллион.
Питьевая вода обычно содержит около 50 мг/л натрия. Это значение явно выше для минеральной воды. В растворимой форме натрий всегда находится в виде ионов Na +.
Как и в какой форме реагирует натрий с водой?
Элементарный натрий сильно реагирует с водой по следующему механизму реакции:
Образуется бесцветный раствор, состоящий из сильнощелочного гидроксида натрия (едкого натра) и газообразного водорода. Это экзотермическая реакция. Металлический натрий нагревается и может загореться и гореть характерным оранжевым пламенем. Газообразный водород, выделяющийся в процессе горения, сильно реагирует с кислородом воздуха.
Ряд соединений натрия не так сильно реагируют с водой, но хорошо растворимы в воде.
© shutterstock
Растворимость натрия и соединений натрия
Имеется ряд примеров растворимости натрия в воде. Наиболее известным соединением натрия является хлорид натрия (NaCl), также известный как поваренная соль. При 20 C растворимость составляет 359 г/л, т.е. хорошо растворяется в воде. Растворимость почти не зависит от температуры. Карбонат натрия (Na2CO3) также достаточно растворим в воде. Растворимость 220 г/л при 20 C.
Как провести эксперимент
Материалы
- Металлический натрий хранится под минеральным маслом.
- Стакан на 250 мл, наполовину наполненный водой.
- Фенолфталеин (по желанию).
Процедура
- Добавьте несколько капель индикатора фенолфталеина в воду в стакане. (По желанию)
- Вы можете поместить стакан на проектор или видеоэкран, что даст вам возможность показать реакцию студентов на расстоянии.
- Надев перчатки, используйте сухой шпатель, чтобы удалить очень маленький кусочек (0,1 см3) металлического натрия из куска, хранящегося в масле. Верните неиспользованный натрий в масло и закройте контейнер. Вы можете использовать щипцы или пинцет, чтобы высушить небольшой кусочек металла на бумажном полотенце.
- Опустите кусочек натрия в воду. Немедленно отойдите. При диссоциации воды на Н + и ОН- будет выделяться газообразный водород. Увеличение концентрации ионов ОН- в растворе повысит его рН и заставит жидкость стать розовой.
- После того, как натрий полностью прореагирует, вы можете смыть его водой и смыть в канализацию. Продолжайте носить защитные очки при утилизации реакции на случай, если останется немного непрореагировавшего натрия.
Каково воздействие натрия в воде на окружающую среду?
Натрий относится ко 2 классу опасности для воды, то есть представляет опасность при наличии в воде. Однако хлорид натрия не представляет опасности и относится к классу опасности для воды 1.
Натрий является диетическим минералом для животных. Однако растения почти не содержат натрия. Значение LC 50 для золотых рыбок составляет 157 мг/л. Гипохлорит натрия из гигиенических моющих средств может способствовать образованию хлорированных углеводородов и, следовательно, может сильно загрязнять сточные воды.
В природе встречается только один изотоп натрия, а именно стабильный 23 Na. Существует 13 нестабильных изотопов натрия, которые слаборадиоактивны.
Читайте также: