Металлами высокой проводимости являются

Обновлено: 07.01.2025

Проводниковые материалы: медь, алюминий, бронза, латунь.

К проводниковым материалам в электротехнике относятся металлы, их сплавы, контактные металлокерамические композиции и электротехнический уголь. Металлические вещества являются проводниками первого рода и характеризуются электронной проводимостью; основной параметр для них — удельное электрическое сопротивление в функции температуры.

Диапазон удельных сопротивлений металлических проводников весьма узок и составляет от 0,016 мкОм×м для серебра до 1,6 мкОм×м для жаростойких железохромоалюминиевых сплавов.

Электрическое сопротивление графита с увеличением температуры проходит через минимум с последующим постепенным повышением.

По роду применения проводниковые материалы подразделяются на группы:

· проводники с высокой проводимостью — металлы для проводов линий электропередачи и для изготовления кабелей, обмоточных и монтажных проводов для обмоток трансформаторов, электрических машин, аппаратуры, катушек индуктивности и пр.;

· конструкционные материалы — бронзы, латуни, алюминиевые сплавы и т.д., применяемые для изготовления различных токоведущих частей;

· сплавы высокого сопротивления — предназначаемые для изготовления дополнительных сопротивлений к измерительным приборам, образцовых сопротивлений и магазинов сопротивлений, реостатов и элементов нагревательных приборов, а также сплавы для термопар, компенсационных проводов и т.п.;

· контактные материалы — применяемые для пар неразъемных, разрывных и скользящих контактов;

· материалы для пайки всех видов проводниковых материалов.

Кроме чисто электротехнических свойств, для проведения необходимой технологической обработки и обеспечения заданных сроков службы в эксплуатации, проводниковые материалы должны обладать достаточной нагревостойкостью, механической прочностью и пластичностью.

2. Медь

Чистая медь по электрической проводимости занимает следующее место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводов.

На воздухе медные провода окисляются медленно, покрываясь тонким слоем окиси CuO, препятствующим дальнейшему окислению меди. Коррозию меди вызывают сернистый газ SO2, сероводород H2S, аммиак NH3, окись азота NO, пары азотной кислоты и некоторые другие реактивы.

Проводниковую медь получают из слитков путем гальванической очистки ее в электролитических ваннах. Примеси даже в ничтожных количествах, резко снижают электропроводность меди, делая ее малопригодной для проводников тока, поэтому в качестве электротехнической меди применяют лишь две ее марки М0 и М1.

Почти все изделия из проводниковой меди изготавливаются путем проката, прессования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.

Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).

При температурах термообработки выше 900 °C вследствие интенсивного роста зерна механические свойства меди резко ухудшаются.

В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07—0,15%, а также магнием, кадмием, цирконием и другими элементами.

Медь с присадкой серебра применяется для обмоток быстроходных и нагревостойких машин большой мощности, а медь, легированная различными элементами, используется в коллекторах и контактных кольцах сильно нагруженных машин.

3. Латуни

Сплавы меди с цинком, называемые латунями, широко используются в электротехнике. Цинк растворяется в меди в пределах до 39%.

В различных марках латуни содержание цинка может доходить до 43%. Латуни, содержащие до 39% цинка, имеют однофазную структуру твердого раствора и называются a-латунями. Эти латуни обладают наибольшей пластичностью, поэтому из них изготавливают детали горячей или холодной прокаткой и волочением: листы, ленты, проволоку. Без нагрева из листовой латуни методом глубокой вытяжки и штамповкой можно изготовить детали сложной конфигурации.

Латуни с содержанием цинка свыше 39% называют a+b-латунями или двухфазными и применяют главным образом для фасонных отливок.

Двухфазные латуни являются более твердыми и хрупкими и обрабатываются давлением только в горячем состоянии.

Присадка к латуням олова, никеля и марганца повышает механические свойства и антикоррозионную устойчивость, а добавки алюминия в композиции с железом, никелем и марганцем сообщают латуням кроме улучшения механических свойств и коррозионной стойкости высокую твердость. Однако присутствие в латунях алюминия затрудняет пайку, а проведение пайки мягкими припоями становится практически невозможным.

· латуни марок Л68 и Л63 вследствие высокой пластичности хорошо штампуются и допускают гибку, легко паяются всеми видами припоев. В электромашиностроении широко применяются для различных токоведущих частей;

· латунь ЛА67-2,5 применяется для литых токоведущих деталей повышенной механической прочности и твердости, не требующих пайки мягкими припоями;

· латуни ЛК80-3Л и ЛС59-1Л широко применяются для литых токоведущих деталей электрической аппаратуры, для щеткодержателей и для заливки роторов асинхронных двигателей. Хорошо воспринимают пайку различными припоями.

4. Проводниковые бронзы

Проводниковые бронзы относятся к медным сплавам, необходимость применения которых в основном вызвана недостаточной в ряде случаев механической прочностью и термической устойчивостью чистой меди.

Общая номенклатура бронз весьма обширна, но высокой электропроводностью обладают лишь немногие марки бронз.

· кадмиевая бронза относится к наиболее распространенным проводниковым бронзам. Из числа всех марок кадмиевая бронза обладает наивысшей электрической проводимостью. Вследствие повышенного сопротивления истиранию и более высокой нагревостойкости эта бронза широко применяется для изготовления троллейных проводов и коллекторных пластин;

· бериллиевая бронза относится к сплавам, приобретающим прочность в результате старения. Она обладает высокими упругими свойствами, устойчивыми при нагревании до 250 °C, и электрической проводимостью в 2—2,5 раза большей, чем проводимость других марок бронз общего назначения. Эта бронза нашла широкое применение для изготовления различных пружинных деталей, выполняющих одновременно и роль проводника тока, например: токоведущие пружины, отдельные виды щеткодержателей, скользящие контакты в различных приборах, штепсельные разъемы и т.п.;

· фосфористая бронза обладает высокой прочностью и хорошими пружинными свойствами, из-за малой электропроводности применяется для изготовления пружинных деталей с низкими плотностями тока.

Литые токоведущие детали изготовляются из различных марок машиностроительных литьевых бронз с проводимостью в пределах 8—15% проводимости чистой меди. Характерной особенностью бронз является малая усадка по сравнению с чугуном и сталью и высокие литейные свойства, поэтому они применяются для отливки различных токоведущих деталей сложной конфигурации, предназначенных для электрических машин и аппаратов.

Все марки литьевых бронз можно подразделить на оловянные и безоловянные, где основными легирующими элементами являются Al, Mn, Fe, Pb, Ni.

5. Алюминий

Характерными свойствами чистого алюминия является его малый удельный вес, низкая температура плавления, высокая тепловая и электрическая проводимость, высокая пластичность, очень большая скрытая теплота плавления и прочная, хотя и очень тонкая пленка окиси, покрывающая поверхность металла и защищающая его от проникновения кислорода внутрь.

Малая плотность делает алюминий основой легких конструкционных материалов; большая пластичность позволяет применять к алюминию все виды обработки давлением и получать из него листы, прутки, проволоку, трубы, тончайшую фольгу, штампованные детали с глубокой вытяжкой и др.

Хорошая электрическая проводимость обеспечивает широкое применение алюминия в электротехнике. Так как плотность алюминия в 3,3 раза ниже, чем у меди, а удельное сопротивление лишь в 1,7 раза выше, чем у меди, то алюминий, на единицу массы имеет вдвое более высокую проводимость, чем медь.

Прочная пленка окиси быстро покрывает свежий срез металла уже при комнатной температуре, обеспечивая алюминию высокую устойчивость против коррозии в атмосферных условиях.

Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия. Действие водяного пара на алюминий также незначительно. В контакте с большинством металлов и сплавов, являющихся благородными по электрохимическому ряду потенциалов, алюминий служит анодом и, следовательно, коррозия его в электролитах будет прогрессировать.

Чтобы избежать образования гальванопар во влажной атмосфере, место соединения алюминия с другими металлами герметизируется лакировкой или другим путем.

Длительные испытания проводов из алюминия показали, что они в отношении устойчивости против коррозии не уступают медным.

Таблица 1. Основные характеристики проводниковых материалов

Плотность, кг/м 3 ·10 3

Удельное электрическое сопротивление при 20 °C, Ом×м·10 –6

Средний температурный коэффициент сопротивления от 0 до 100 °C, 1/град

Провода, кабели, шины, проводники короткозамкнутых роторов, корпуса и подшипниковые щиты малых электромашин

2.3.1. Металлы и сплавы высокой проводимости

К металлам и сплавам высокой проводимости предъявляют следую­щие требования:

· минимальное значение ρv;

· достаточно высокие механиче­ские свойства, главным образом предел прочности при растяжении (σр) и относительное удлинение при разрыве (Δl/l);

· хорошая технологичность (способность к пластическим деформациям, пайке, сварке);

· достаточно высокая стойкость к действию агрессивных сред.

Материалы высокой про­водимости применяют для изготовления обмоточных и монтажных прово­дов, различного вида токоведущих частей. Наиболее распространенными материалами высокой проводимости в электротехнике являются: медь, алюминий, серебро и сплавы на их основе, а также железо и сплавы на его основе; в электронной технике также ис­пользуют золото, платину, палладий.

Проводниковая медь является лучшим после серебра проводниковым материалом высокой проводимости. Широкое применение меди в качестве проводникового материала обусловлено рядом ценных свойств этого мета­ла:

1. малым удельным электрическим сопротивлением (ρv = 0,017241 мкОм·м при 20 °С, что является электротехническим стандартом, по отношению к которому выражают ρv других проводниковых материалов);

2. высокой механической прочностью;

3. удовлетворительной коррозионной стойкостью;

4. хорошей технологичностью.

Примеси других металлов (включая и серебро) резко снижают прово­димость меди. Поэтому для основных марок проводниковой меди допуска­ется содержание примесей не более 0,1 % для марки М1 и 0,05 % для марки МО.

Кроме того, содержание кислорода, существенно ухудшающего меха­нические свойства меди, допускается не более 0,08 % и 0,02 % для соответ­ствующих марок.

В электровакуумной технике применяют более чистую медь, не со­держащую кислорода и летучих примесей (Zп, Рb, Вi); бескислородную медь марки МО. Она содержит не более 0,03 % примесей. Еще более чистой является вакуумная медь марки МВ с содержанием примесей не более 0,01 %.

Как проводниковый материал используют твердую медь марки МТ и мягкую медь марки ММ. При холодной прокатке (волочении) у твердой (твердотянутой) меди повышаются твердость, упругость, предел прочности при растяжении, сопротивление ρv,. По­сле отжига при температуре в несколько сотен градусов получают мягкую (отожженную) медь, которая пластична, имеет проводимость на 3…5 % вы­ше, чем у твердой меди, характеризуется большим удлинением при разры­ве. К недостаткам отожженной меди следует отнести небольшую прочность и пониженную твердость.

Применение твердой и мягкой меди различно. Твердую медь приме­няют там, где требуется обеспечить высокую механическую прочность, твердость и сопротивляемость к истиранию: для изготовления коллектор­ных узлов электрических машин, кон

тактных проводов, шин распредели­тельных устройств и т.д. Мягкую медь используют для изготовления обмоточных и монтажных проводов, токоведущих жил кабелей, где важны гибкость и пластичность, а прочность не имеет существенного значения.

Из специальных электровакуумных сортов меди изготавливают аноды мощных генераторных ламп, детали СВЧ-устройств. Медь достаточно до­рогой и дефицитный материал.

В отдельных случаях помимо чистой меди в качестве проводниковых материалов используют ее сплавы: бронзы и латуни.

Бронзы – это медь с небольшим (до 10 %) содержанием легирующих примесей: Sп, Si, Р, Ве, Сr, Мg, Са и др. Она имеет более высокие механи­ческие свойства. Бронзы применяют при изготовлении токопроводящих пружинящих контактов и пружин точных приборов.

Латуни – это сплавы меди с цинком. Они обладают достаточно высоким относительным удлинением при повышенном пределе прочности на рас­тяжение по сравнению с чистой медью. Латунь применяют для изготовле­ния различных токоведущих частей.

Проводниковый алюминий имеет удельное электрическое сопротивле­ние 0,026мкОм·м, т.е. оно в 1,63 раза выше ρv меди. Но алюминий при­мерно в 3,5 раза легче меди. Следовательно, если сравнить по массе два отрезка алюминиевого и медного проводников одной и той же электропроводности, то окажется, что алюминиевый провод окажется легче медного примерно в два раза.


Кроме того, преимущество алюминиевых проводов состоит в том, что они дешевые. Для электротехнических целей использу­ют алюминий марки АЕ содержащий не более 0,5 % примесей. Еще более чистый алюминий марки АВОО (содержит не более 0,03 % примесей) приме­няют для изготовления алюминиевой фольги, электродов и корпусов элек­тролитических конденсаторов. Алюминий наивысшей чистоты АВООО, ис­пользуемый в полупроводниковом производстве содержит не более 0,001% примесей. Из алюминия прокатывается тонкая фольга (до 6…7 мкм), приме­няемая в качестве обкладок конденсаторов. Алюминий на воздухе активно окисляется и покрывается тонкой, плотной оксидной пленкой А12Оз с большим электрическим сопротивлением. Эта пленка предохраняет алю­миний от дальнейшей коррозии, но создает большое переходное сопротив­ление в местах контакта.

Из сплавов алюминия следует отметить сплавы, содержащие маг­ний (до 0,5 %), кремний (до 0,7 %) и железо (до 0,3 %).

Серебро в нормальных условиях имеет самое малое удельное элек­трическое сопротивление (ρv = 0,016 мкОм·м) устойчиво к окислению. Вы­сокие механические свойства серебра позволяют промышленно изготовить из него проводники различного диаметра вплоть до 15 мкм. Как проводник серебро используется в виде гальванических покрытий в проводниковых элементах ВЧ- и СВЧ-устройств. Особенностью серебра является его спо­собность образовывать при выжигании или напылении прочные покрытия на диэлектрических материалах. Это свойство серебра широко использует­ся при производстве малогабаритных конденсаторов. Однако необходимо учитывать, что при повышенных температурах и влажности атомы серебра способны мигрировать по поверхности и в объем диэлектрика, что может вызвать нарушение работы устройств. В чистом виде и в сплавах серебро широко используется как материал для изготовления кон­тактов различного рода.

Железо (сталь) – наиболее дешевый и доступный материал, обла­дающий высокой механической прочностью, в ряде случаев используется в качестве проводникового материала. Даже чистое железо имеет более вы­сокое по сравнению с медью и алюминием удельное электрическое сопро­тивление (ρv = 0,098 мкОм·м). Значение ρv стали за счет наличия примесей еще выше. В переменных электрических полях в железе, как магнитном материале, сильно проявляется поверхностный эффект. Железо имеет вы­

сокий температурный коэффициент сопротивления (ТKρv = 6·10 -3 К -1 ). В свя­зи с этим тонкая железная проволока, помещенная для защиты от окисле­ния в баллон, заполненный водородом, применяется в барретерах (стабилизаторах тока).

Для изготовления проводников используют и благородные металлы. Материалы этой группы (золо­то, платина, палладий) относятся к числу материалов с наибольшей хими­ческой стойкостью к агрессивным средам.

Золото обладает достаточно высокой электрической проводимостью (ρv = 0,024 мкОм·м) и исключительно высокой пластичностью, что позволя­ет получить фольгу толщиной 0,08 мкм. Это в 250 раз тоньше человеческо­го волоса. В электротехнике и электронной технике золото используют для изготовления электро­дов фотоэлементов, для вакуумного напыления пленочных микросхем, как контактный, коррозионно-устойчивый материал,

Платина – светло-серый металл практически не взаимодействующий с кислородом и весьма стойкий к возникновению химически активных реа­гентов. Высокая пластичность платины позволяет получать из нее микропровод диаметром до 1 мкм и весьма тонкую фольгу. Сочетание ряда цен­ных свойств платины с ее сравнительно низким удельным электрическим сопротивлением (ρv = 0,105 мкОм·м) определяет ее широкое применение в электронной технике и приборостроении.

Платину в виде тонких нитей применяют для изготовления подвесок подвижных систем особо чувствительных приборов. Платину и особенно ее сплавы повышенной твердости используют как контактный материал. Платиносодержащие вещества применяют для вжигания контактных пло­щадок, электродов, на керамических изделиях различного назначения. Платина дает вакуумно-плотные слои в точных измерительных и электро­вакуумных приборах.

Палладий по многим свойствам близок к платине и в ряде случаев служит ее заменителем. Его электрическое сопротивление ρv = 0,11 мкОм·м.

Металлами высокой проводимости являются


  • Введение
  • 1 Общие сведения об электроматериалах
    • 1.2 Особенности строения твердых тел
    • 1.3 Элементы зонной теории твердого тела
    • 2.1 Виды электропроводности проводниковых материалов
    • 2.2 Основные свойства металлических проводников
    • 2.3 Металлы высокой проводимости
    • 2.4 Тугоплавкие металлы
    • 2.5 Благородные металлы
    • 2.6 Коррозионно-стойкие металлы
    • 2.7 Некоторые другие металлы
    • 2.8 Сплавы высокого сопротивления
    • 2.9 Сплавы для термопар
    • 2.10 Тензометрические сплавы
    • 2.11 Контактные материалы
    • 2.12 Припои и флюсы
    • 2.13 Неметаллические проводящие материалы
    • 3.1 Электропроводность полупроводников
    • 3.2 Влияние внешних факторов на электропроводность полупроводников
    • 3.3 Термоэлектрические и электротермические эффекты в полупроводниках
    • 3.4 Гальваномагнитные эффекты в полупроводниках
    • 3.5 Оптические и фотоэлектрические эффекты в полупроводниках
    • 3.6 Электрические переходы
    • 3.7 Основные полупроводниковые материалы
    • 4.1 Поляризация диэлектриков
      • 4.1.1 Полярные и неполярные диэлектрики
      • 4.1.2 Механизмы поляризации
      • 4.1.3 Влияние различных факторов на относительную диэлектрическую проницаемость
      • 4.2.1 Электропроводность твердых диэлектриков
      • 4.2.2 Электропроводность жидких диэлектриков
      • 4.2.3 Электропроводность газов
      • 4.3.1 Потери на электропроводность
      • 4.3.2 Релаксационные потери
      • 4.3.3 Резонансные потери
      • 4.3.4 Миграционные и ионизационные потери (потери от неоднородности структуры)
      • 4.4.1 Пробой газов
      • 4.4.2 Пробой жидкостей
      • 4.4.3 Пробой твердых диэлектриков
      • 4.5.1 Газообразные диэлектрики
      • 4.5.2 Жидкие диэлектрики
      • 4.5.3 Твердые диэлектрики
      • 4.6.1 Сегнетоэлектрики
      • 4.6.2 Пьезоэлектрики
      • 4.6.3 Пироэлектрики
      • 4.6.4 Электреты
      • 4.6.5 Жидкие кристаллы
      • 5.1 Общие сведения о магнитных свойствах вещества
      • 5.2 Классификация веществ по магнитным свойствам
      • 5.3 Физическая сущность ферромагнетизма
        • 5.3.1 Доменное строение как основа ферромагнетизма
        • 5.3.2 Намагничивание ферромагнетиков
        • 5.5.1 Магнитострикция и магнитоупругость
        • 5.5.2 Влияние температуры на магнитные свойства
        • 5.5.3 Магнитные потери
        • 5.6.1 Постоянные магниты
        • 5.6.2 Пермаллои
        • 6.1 Общие сведения о компонентах радиоэлектроаппаратуры
        • 6.2 Резисторы: классификация, основные параметры
          • 6.2.1 Классификация резисторов
          • 6.2.2 Основные параметры и свойства резисторов
          • 6.2.3 Основные виды проводящих элементов резисторов
          • 6.2.4 Магниторезисторы
          • 6.2.5 Фоторезисторы
          • 6.3.1 Классификация конденсаторов
          • 6.3.2 Основные характеристики конденсаторов
          • 6.3.3 Нелинейные конденсаторы
          • 6.4.1 Общие сведения и основные параметры
          • 6.4.2 Классификация диодов
          • 6.4.3 Условное графическое обозначение диодов в схемах
          • 6.4.4 Надежность и причины отказов полупроводниковых диодов
          • 7.1 Краткие сведения о датчиках
          • 7.2 Термоэлектрический эффект Зеебека
          • 7.3 Электротермический эффект Пельтье
          • 7.4 Эффект Холла
          • 7.5 Магниторезистивный эффект (эффект Гаусса)
          • 7.6 Магнитоупругий эффект
          • 7.7 Фотоэффект
          • 7.8 Терморезистивный эффект
          • 7.9 Тензорезистивный эффект
          • 7.10 Пьезоэлектрический эффект
          • 7.11 Пироэлектрический эффект

          2.3 Металлы высокой проводимости

          В эту группу входят материалы с удельным электрическим сопротивлением до 0,1 мкОм*м – медь, алюминий, железо и некоторые сплавы.

          ► Медь


          Медь занимает III место в мире по производству и потреблению. Как ЭТМ, она обладает целым рядом ценных свойств:

          1. малое удельное сопротивление (из всех металлов только серебро обладает несколько меньшим ρ);
          2. достаточно высокая механическая прочность;
          3. удовлетворительная коррозионная стойкость – на воздухе даже в условиях повышенной влажности медь окисляется значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах;
          4. хорошая обрабатываемость – медь прокатывается в листы и ленты толщиной до 0,005 мм и протягивается в проволоку;
          5. легкость пайки и сварки.

          Медь встречается в природе в самородном состоянии, а также в виде медных руд. Ее содержание в земной коре составляет 3*10 -3 %, поэтому медь относится к сравнительно дорогим и дефицитным материалам. Медь выпускается в виде слитков, прутков, труб и трубок катанки, листов и лент, проволоки и проводов различных видов, катодов, профилей для коллекторных пластин и других фасонных изделий. Производство меди основано на переработке сульфидных и оксидных соединений. После обогащения медной руды флотационным способом и получения медного концентрата он плавится, после чего медь, предназначенная для электротехнических целей, обязательно подвергается электролитической очистке – так называемому рафинированию. Полученные в результате электролиза катодные пластины меди переплавляют в болванки массой 80 – 90 кг, которые прокатывают и протягивают, создавая изделия требуемого поперечного сечения (рисунок 2.12).


          Рисунок 2.13 – Технологические стадии производства электротехнической меди

          В качестве проводникового материала используется медь марок М1 и М0, отличающихся степенью чистоты, т.е. содержания Cu. Медь марки М1 содержит 99,9% Cu, а в общем количестве примесей (0,1%) регламентируется доля кислорода – она не должна превышать 0,08% (кислород ухудшает механические свойства меди). Лучшими механическими свойствами обладает медь марки М0, в которой содержание Cu составляет 99,95%, а кислорода – не более 0,02%. Из меди марки М0 может быть изготовлена особо тонкая проволока (диаметром 0,01 мм).

          При холодной протяжке получают твердую (твердотянутую) медь (МТ), которая благодаря наклепу имеет высокий предел прочности при растяжении и малое относительное удлинения перед разрывом, а также твердость и упругость; при изгибе проволока из твердой меди несколько пружинит.

          Если же медь подвергнуть отжигу, т.е. нагреву до нескольких сотен градусов без доступа воздуха с последующим медленным охлаждением, то получается мягкая (отожженная) медь (ММ), которая сравнительно пластична, имеет пониженную твердость и небольшую прочность, но весьма большое удлинение при разрыве и более высокую удельную проводимость (на 3 – 5% больше, чем у марки МТ).

          Твердую медь марки МТ используют там, где надо обеспечить особо высокую механическую прочность, твердость и сопротивляемость истиранию: для контактных проводов, шин распределительных устройств, коллекторных пластин электрических машин. Мягкую медь применяют главным образом в качестве токопроводящих элементов (жил кабелей, проводов и т.п.), т.е. там, где важны хорошая электропроводность, гибкость и пластичность, а прочность не имеет существенного значения. Ленточная мягкая медь используется для экранирования радиочастотных кабелей и т.п. изделий.

          Кроме того, несмотря на большой коэффициент линейного расширения по сравнению с коэффициентом расширения стекол, медь применяется в спаях с ними благодаря следующим своим свойствам: низкому пределу текучести, мягкости и высокому коэффициенту теплопроводности. Для впаивания в стекло медному электроду придается специальная форма в виде тонкого рантика (т.н. рантовые спаи).

          Удельное сопротивление меди существенно зависит от примесей, причем не только от их содержания, но и от вида примеси: например, примесь цинка, кадмия, серебра в количестве 0,5% изменяет удельное сопротивление на 5% (по сравнению с чистой медью), а аналогичное количество бериллия или фосфора – больше чем на 55%.

          В тех случаях, когда проводник должен обладать повышенными механическими характеристиками и не предъявляются высокие требования к его электропроводности, используются сплавы меди с другими металлами.

          Сплавы меди с цинком называются латуни. Они маркируются буквой Л и числами, характеризующими среднее значение основного и легирующих элементов, – например, латунь Л80 содержит 80% меди и 20% цинка. Если латунь легирована, помимо цинка, другими элементами, после буквы Л указывается условное обозначение этих элементов: С – свинец; О – олово; Ж – железо; А – алюминий; К – кремний; Мц – марганец; Н – никель. Цифры после букв указывают среднее содержание каждого легирующего элемента в латуни, кроме цинка, – его содержание определяется по разности от 100%. Например, в латуни ЛАН-59-3-2 содержится 59% Cu, 3% Al, 2% Ni и 36% Zn. Латуни обладают большим коэффициентом линейного удлинения при разрыве и большим значением σр, что обеспечивает технологические преимущества при производстве деталей штамповкой.

          Медно-никелевыми называются сплавы на основе меди, в которых основным легирующим элементом является никель, образующий с медью непрерывный ряд твёрдых растворов. При добавлении никеля к меди возрастают её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, сильно повышается стойкость против коррозии. Медно-никелевые сплавы хорошо обрабатываются давлением в горячем и холодном состоянии – из них получают листы, ленты, проволоку, прутки, трубы, штампуют различные изделия. Медно-никелевые сплавы подразделяются на конструкционные и электротехнические. Конструкционные медно-никелевые сплавы отличаются высокой коррозионной стойкостью и красивым серебристым цветом, к ним относятся мельхиор и нейзильбер. Электротехнические медно-никелевые сплавы имеют высокое электросопротивление и значительную термоЭДС в паре с другими металлами. Их применяют для изготовления резисторов, реостатов, термопар. К электротехническим медно-никелевым сплавам относятся константан, копель и другие сплавы.

          Сплавы меди со всеми остальными элементами (оловом, алюминием, кремнием, бериллием и т.д.) называются бронзами. При правильно подобранном составе бронзы имеют значительно более высокие механические свойства по сравнению с чистой медью; σр бронз может доходить до 800 – 1350 МПа (бериллиевая бронза). Электропроводимость бронз составляет 10 – 30% от значения для чистой меди (за исключением кадмиевой бронзы, у которой удельная электропроводимость снижается сравнительно мало). Бронзы маркируются Бр, а затем, также как у латуней, указываются основные легирующие элементы и их среднее содержание в сплаве. При этом цинк обозначается Ц, фосфор – Ф, бериллий – Б, хром – Х. Например, бронза БрО10 – сплав 90% Cu и 10% Sn.

          Подпись: Немного истории Медь входит в семерку металлов, известных людям с древнейших времен (к ним относятся также золото, серебро, железо, олово, свинец и ртуть) и используется приблизительно 10 тысячелетий. Она стала первым металлом, оказавшимся в руках человека. Это связано с тем, что из перечисленных «доисторических» металлов только три – медь, золото и серебро - встречаются в самородном состоянии. Медь достаточно распространена в природе, обладает хорошей ковкостью, сравнительно легко обрабатывается и поэтому быстро приобрела популярность. Добыча меди из руды началась на медных рудниках острова Кипр, от которого она и получила свое латинское название «купрум». Русское название металла «медь», по всей видимости, произошло от слова «смида», которое на языке древних славян означало вообще «металл». Позднее был получен первый сплав меди с оловом, и на смену медному веку пришел бронзовый, - целая эпоха в развитии мировой культуры. Долгое время из бронзы изготовляли только предметы роскоши и украшения (бронзовое зеркало было лучшим подарком женщине!), скульптуры, орудия различного калибра. Само слово «бронза» произошло от названия небольшого итальянского городка Бриндизи на берегу Адриатического моря, который славился своими бронзовыми изделиями. Латинское словосочетание «Эс Брундуси» («медь из Бриндизи») легло в основу названия целой группы сплавов.

          ► Алюминий


          Алюминий – важнейший представитель так называемых легких металлов, к которым относятся металлы с плотностью до 5000 кг/м 3 ; его плотность составляет 2600 – 2700 кг/м 3 , т.е. он примерно в 3,5 раза легче меди. Алюминий является вторым по значению (после меди) проводниковым материалом с высокой электро- и теплопроводностью. По значению удельного сопротивления алюминий занимает третье место. Поэтому замена меди алюминием не всегда возможна, особенно в радиоэлектронике. Что же касается проводов, то, если сравнить отрезки алюминиевого и медного провода одинаковой длины и сопротивления, то окажется, что алюминиевый провод, хоть и толще медного примерно в 1,3 раза, будет, тем не менее, легче в 2 раза.

          Алюминий дешевле и доступнее меди, т.к. он является самым распространенным в природе металлом. Его содержание в земной коре – не менее 8%. Технология получения алюминия схожа с технологией производства меди: его получают путем электролиза глинозема и электролитического рафинирования, с помощью которого можно довести его чистоту до 99,99%. Из слитков алюминия изготавливают алюминиевую проволоку и катанку диаметром 9 – 23 мм. При этом, хотя температура плавления алюминия почти в 2 раза меньше, чем у меди, для его расплавления требуется большая затрата тепла. Это связано с тем, что алюминий имеет более высокие значения температурного коэффициента расширения, удельной теплоемкости и теплоты плавления. В результате холодной прокатки получают твердый алюминий (АТ), который имеет повышенную механическую прочность, твердость и удельное сопротивление; относительное удлинение перед разрывом составляет для него 12 – 14%. После отжига получают мягкий (отожженный) алюминий (АМ), для которого относительное удлинение составляет 30 – 33%.

          Маркировка алюминия состоит из буквы А и цифры, обозначающей сотые или тысячные доли процента (после 99%) содержания алюминия. Например, особо чистый алюминий А999 содержит не менее 99,999% алюминия, остальное – примеси. Для электротехнических целей используются также марки А1 (содержание примесей менее 0,5%), АВ00 (≤ 0,03%) – для изготовления тонкой фольги (до 6 – 7 мкм), применяемой в качестве обкладок в бумажных и пленочных конденсаторах, и АВ0000
          (≤ 0,004%) – специального назначения.

          Алюминий весьма активно окисляется на воздухе и покрывается тонкой (порядка 0,0001 мм) оксидной пленкой Al2O3 с большим электрическим сопротивлением (порядка 10 14 Ом*м), предохраняющей алюминий от дальнейшей коррозии. С одной стороны, эта пленка создает большое переходное сопротивление в местах контакта алюминиевых проводов и делает невозможной пайку алюминия обычными методами (используются ультразвуковые паяльники и специальные пасты – припои); с другой стороны, она служит естественной межвитковой изоляцией (при небольших напряжениях) и используется в этом качестве в производстве электролитических конденсаторов и микросхем.

          В местах контакта алюминия и меди, особенно на открытом воздухе в присутствии влаги, возникает довольно значительная гальваническая ЭДС, вызывающая коррозию металла. На поверхности контакта ток идет от алюминия к меди, и алюминий сильно разрушается коррозией. Поэтому в местах соединения алюминиевых и медных проводников устанавливаются стальные шайбы.

          Алюминиевые сплавы, также как и медные, обладают повышенной механической прочностью и твердостью, и тоже делятся на электротехнические и конструкционные. Из электротехнических сплавов наиболее известен альдрей, в который, кроме алюминия, входят 0,3 – 0,5% Mg, 0,4 – 0,7% Si и 0,2 – 0,3% Fe. Выпускается в виде проволоки, которая сохраняет легкость алюминия при небольшом увеличении удельной проводимости. А по механической прочности этот сплав близок к твердотянутой меди.

          Еще одним изделием из алюминия, получившим широкое применение в качестве ЭТМ, является сталеалюминиевый провод. Он представляет собой сердечник, свитый из стальных оцинкованных жил и обвитый снаружи алюминиевой проволокой. Прочность этого провода определяется стальным сердечником, а электрическая проводимость – алюминием.


          ► Железо


          Железо (в виде стали) является наиболее дешевым и доступным металлом (содержание в земной коре около 5%), поэтому оно часто используется в качестве проводникового и конструкционного материала. Основные рудные минералы железа – магнетит, гематит, бурый железняк. Чистое железо имеет значительно более высокое по сравнению с медью и алюминием удельное сопротивление; значение ρ стали, т.е. сплава железа с углеродом и другими элементами, еще выше, но зато эти сплавы обладают высокой механической прочностью.

          Поскольку сталь является хорошим ферромагнетиком, то на переменном токе в ней сильно проявляется поверхностный эффект, из-за чего активное сопротивление стальных проводников переменному току больше, чем постоянному. Кроме того, на переменном токе возникают дополнительные потери на гистерезис.

          В качестве проводникового материала обычно используется мягкая сталь с содержанием углерода 0,1 – 0,15%.

          Недостатком стали является малая коррозионная стойкость.

          В промышленности широко используется так называемый проводниковый биметалл – стальной провод, покрытый снаружи слоем меди или алюминия. Для его производства используется два способа – горячий и холодный. При горячем способе стальную болванку помещают в форму, промежуток заливают расплавленной медью, затем прокатывают и протягивают до нужного диаметра. Холодный способ – электролитический: стальная проволока пропускается через ванну с медным купоросом. В этом случае получается более равномерное покрытие, но менее прочное сцепление; этот способ более дорогой.

          Наиболее широко железо используется в сплавах высокого сопротивления.


          © ФГБОУ ВПО «Уфимский государственный нефтяной технический университет»
          Редакционно-издательский центр
          Отдел допечатной подготовки и программно-методического обеспечения
          Уфа 2014

          Электропроводность металлов

          Электропроводность металлов

          Электропроводность металлов и сплавов – физическое свойство, которое учитывается при производстве разных видов изделий. Например, для изготовления электрических кабелей, микросхем используют металлы с высокими показателями электропроводности.

          Данный параметр зависит от факторов окружающей среды: температуры, давления, агрегатного состояния, наличия магнитных полей и т. д. Если говорить о чистых металлах и влиянии температуры на их электропроводность, то с ростом она падает. Подробнее о том, что собой представляет электропроводность металлов, вы узнаете из нашего материала.

          Природа электропроводности металлов

          Электропроводностью называют способность тела, вещества проводить ток. Кроме того, этим термином обозначается физическая величина, которая численно характеризует данную способность. Электропроводность металла определяется числом свободных ионов в проводнике – их движение и является электрическим током. Данный показатель исчисляется в сименсах, а в международной системе единиц для его обозначения используется буква «S».

          В зависимости от того, какой электропроводностью обладают металлы и иные вещества, среди них выделяют проводники, диэлектрики и полупроводники. Правда, между данными группами практически не существует четкого разграничения.

          Чем обусловлена высокая электропроводность металлов-проводников? Они имеют большое количество свободных ионов. Среди веществ этой группы выделяют два рода, исходя из физической природы протекания тока. К первому относятся металлы с электронной проводимостью, по которым ток проходит благодаря движению свободных электронов.

          Ко второму причисляют растворы кислот, щелочей, солей или электролиты, имеющие ионную проводимость. Иными словами, здесь интересующий нас процесс связан с движением положительных и отрицательных ионов. Уровень электропроводности проводников превышает 106(Ом·м)-1.

          VT-metall предлагает услуги:

          Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

          Диэлектрики обладают малым числом свободных ионов, поэтому отличаются низкой электропроводностью, практически не проводят ток. Такими материалами являются дерево, смолы, пластмассы, стекло, пр. Для них данный показатель составляет менее 106(Ом·м)-1.

          По своим проводящим свойствам полупроводники занимают промежуточное положение между материалами описанных выше групп. К ним относятся германий, кремний, селен, прочие соединения, получаемые искусственно.

          Природа электропроводности металлов

          Существует зависимость электропроводности металлов и иных веществ от температуры, но она является индивидуальной для каждого материала. Повышение степени нагрева металлов приводит к сокращению времени свободного пробега электронов. Увеличение температуры влечет за собой возрастание тепловых колебаний кристаллической решетки, на которой рассеиваются электроны, что вызывает уменьшение электропроводности.

          Полупроводникам свойственна другая зависимость электропроводности металлов от температуры: ее повышение провоцирует рост электропроводности, поскольку увеличивается число электронов проводимости и положительных носителей заряда. У диэлектриков электропроводность тоже может возрастать, однако для этого требуется очень высокое электрическое напряжение.

          Металлы способны проводить ток, поскольку воздействие электромагнитного поля вызывает потерю связи между электроном и атомом из-за высокой степени ускорения.

          Электрическое сопротивление металлов

          Электрическое сопротивление является частью закона Ома и исчисляется в омах (Ом). Нужно понимать, что электрическое и удельное сопротивление являются разными явлениями. Если первое представляет собой свойство объекта, то второе характеризует материал.

          Так, электрическое сопротивление резистора зависит от формы и удельного сопротивления материала, использованного для изготовления данного элемента электрической цепи.

          Электрическое сопротивление металлов

          Допустим, проволочный резистор состоит из длинной тонкой проволоки и обладает более высоким сопротивлением, чем аналогичный элемент, но выполненный из короткой и толстой проволоки. При этом оба они сделаны из одного металла.

          Если сравнить два резистора из проволоки одинаковой длины и диаметра, то большим электрическим сопротивлением будет обладать тот, который состоит из материала с высоким удельным сопротивлением. А его аналогу из материала с низким удельным сопротивлением будет свойственно меньшее электрическое сопротивление.

          В этом случае работает тот же принцип, что и в гидравлической системе, прокачивающей воду по трубам:

          • Чем больше длина трубы и меньше ее толщина, тем с более высоким сопротивлением сталкивается жидкость.
          • Вода будет испытывать на себе меньшее сопротивление в пустой трубе, чем в заполненной песком.

          Под удельным сопротивлением понимают способность материала препятствовать прохождению электрического тока. В физике существует и обратная величина, известная как проводимость. Она выглядит таким образом:

          Σ = 1/ρ, где ρ – удельное сопротивление вещества.

          Электропроводность металлов и других веществ зависит от свойств носителей зарядов. В металлах присутствуют свободные электроны – на внешней оболочке их число доходит до трех. Во время химических реакций с элементами из правой части таблицы Менделеева атом металла отдает их. С электропроводностью чистых металлов все несколько иначе. В их кристаллической структуре эти наружные электроны общие и переносят заряд под действием электрического поля.

          В случае с растворами в качестве носителей заряда выступают ионы.

          Степень электропроводности разных металлов и сплавов

          Развитием электронной теории электропроводности металлов занимался немецкий физик Пауль Друде. Именно благодаря его исследованиям стало известно о сопротивлении, наблюдаемом при прохождении электрического тока через проводник. В результате удалось разделить вещества на группы, исходя из степени их проводимости.

          Степень электропроводности разных металлов и сплавов

          Данная информация необходима, например, чтобы выбрать наиболее подходящий металл для производства кабеля, обладающего определенным набором свойств. Ошибка в этом случае чревата перегревом под действием тока избыточного напряжения и последующим возгоранием.

          Серебро – это металл, обладающий самой высокой электропроводностью. При +20 °C этот показатель равен 63,3×104 см-1. Тем не менее, производство серебряной проводки является нерентабельным, поскольку речь идет о достаточно редком металле. В большинстве случаев он идет на изготовление ювелирных изделий, украшений, монет.

          Среди неблагородных цветных металлов самая высокая электропроводность характеризует медь – она составляет 57×104 см-1 при +20 °C. Помимо этого, медь хорошо справляется с постоянными электрическими нагрузками, долговечна, надежна, имеет высокую температуру плавления, поэтому может долго работать в нагретом состоянии. Все названные свойства позволяют активно применять данный металл для бытовых целей и на производстве.

          Не реже меди используется алюминий, ведь по электропроводности он уступает только серебру, меди и золоту. Его температура плавления практически в два раза ниже, чем у меди, из-за чего алюминий не может выдерживать предельные нагрузки. По этой причине его применяют в сетях с невысоким напряжением. Узнать электропроводность остальных металлов можно в соответствующей таблице.

          По проводимости любой сплав значительно уступает чистому металлу, что объясняется слиянием структурной сетки, вызывающим нарушение нормального функционирования электронов. Так, медные провода изготавливают только из металла с максимальной долей примесей 0,1 % или даже 0,05 %, если речь идет об отдельных разновидностях кабеля.

          Приведенные показатели – это удельная электропроводность металлов, которая представляет собой отношение плотности тока к величине электрического поля в проводнике.

          Опасность металлов с высокой электропроводностью

          Щелочные металлы имеют крайне высокую электропроводность, объясняют этот факт тем, что в них электроны практические не привязаны к ядру и могут быть без труда выстроены в требуемой последовательности. Еще одна особенность этих металлов состоит в низкой температуре плавления в сочетании со значительной химической активностью, что обычно не позволяет использовать их в качестве материалов для кабелей.

          Находясь в незащищенном виде, металлы с высокой электропроводностью несут в себе большую опасность. Прикосновение к оголенным проводам вызывает электрический ожог, разряд воздействует на внутренние органы, что нередко становится причиной мгновенной смерти человека.

          Поэтому металл закрывают специальными изоляционными материалами, которые могут быть жидкими, твердыми, газообразными – конкретный тип подбирается в соответствии со сферой использования изделия. Вне зависимости от агрегатного состояния защиты она призвана изолировать электрический ток в цепи, чтобы не допустить его воздействия на окружающую среду.

          Зависимость электропроводности металлов от факторов внешней среды

          Проводимость не является постоянной величиной. В таблицах приведены сведения, характерные для нормальных условий или при температуре +20 °С. В реальной жизни сложно обеспечить идеальные условия для работы цепи. Удельное сопротивление, а значит, и проводимость, определяется такими характеристиками:

          • температурой;
          • давлением;
          • наличием магнитных полей;
          • светом;
          • агрегатным состоянием вещества.

          Изменения интересующего нас параметра зависят от условий среды и свойств конкретного материала. Электропроводность ферромагнетиков, в число которых входят железо и никель, увеличивается при совпадении направления тока с направлением силовых линий магнитного поля. Зависимость электропроводности от теплопроводности металлов и окружающей температуры практически линейная, даже есть понятие температурного коэффициента сопротивления – данную величину можно уточнить в таблицах.

          Правда, направление зависимости определяется конкретным веществом: у металлов оно при увеличении температуры повышается, у редкоземельных элементов и растворов электролитов увеличивается в пределах одного агрегатного состояния.

          Полупроводники характеризуются гиперболической и обратной зависимостью электропроводности от температуры: рост степени нагрева приводит к повышению электропроводности металлов. Данная особенность качественно отличает проводники от полупроводников. Зависимость ρ проводников от температуры выглядит следующим образом:

          Зависимость электропроводности металлов от факторов внешней среды

          На графике отображено удельное сопротивление меди, платины, железа. Некоторые металлы характеризуются иначе: ртуть при понижении температуры до 4°K становится сверхпроводимой, почти полностью теряя удельное сопротивление.

          У полупроводников зависимость будет представлена так:

          Зависимость полупроводников

          Когда металл переходит в жидкое агрегатное состояние, его ρ повышается, а дальнейшее изменение свойств может быть разным. Так, висмут в расплавленном виде имеет более низкое удельное сопротивление, чем при комнатной температуре, а у жидкой меди оно повышается в десять раз. Никелю свойственно выходить из линейного графика уже при достижении температуры +400 °C, но далее ρ падает.

          Температурная зависимость вольфрама так высока, что приводит к перегоранию ламп накаливания: ток нагревает спираль, из-за чего ее сопротивление многократно возрастает.

          Удельное сопротивление сплавов зависит от задействованной при производстве технологии. Данное свойство простой механической смеси определяется как средний показатель ее компонентов. Тогда как для сплава замещения оно окажется иным и обычно отличается в большую сторону.

          Рекомендуем статьи

          Стоит пояснить, что под сплавом замещения понимают такой, в котором несколько элементов формируют одну кристаллическую решетку. Данная особенность прослеживается у нихрома, используемого для изготовления спиралей электроплит. Удельное сопротивление, а значит, и электропроводность этого металла совпадает с показателем проводников, а при подключении к сети он нагревается до красноты.

          Выше были представлены только основные теории, касающиеся физических свойств металлов, а именно электропроводности, сопротивления. Например, не была затронута квантовая теория проводимости Зоммерфельда. Этого краткого знакомства вполне достаточно, чтобы понять, что сопротивление является сложным и комплексным понятием, которое невозможно полностью разобрать на основе простейшего закона Ома.

          Почему следует обращаться именно к нам

          Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

          Наши производственные мощности позволяют обрабатывать различные материалы:

          • цветные металлы;
          • чугун;
          • нержавеющую сталь.

          При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

          Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

          Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

          Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

          Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

          Самый электропроводный металл в мире


          Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), - серебро.

          самый электропроводный металл

          Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.

          Физический смысл проводимости

          Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

          самый электропроводный металл в мире

          Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

          Удельная проводимость

          Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

          Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.

          Проводимость металлов

          Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

          самый электропроводный металл это

          Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство - высокая теплопроводность.

          Топ лучших проводников - металлов

          4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

          1. Серебро - 62 500 000.
          2. Медь – 59 500 000.
          3. Золото – 45 500 000.
          4. Алюминий - 38 000 000.

          Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.

          Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

          Факторы, влияющие на проводимость металлов

          Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

          Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

          самый электропроводный металл серебро

          Самый электропроводный металл - это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

          Читайте также: