Металл температура плавления 1535

Обновлено: 06.01.2025

Температура плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.

Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Температура плавления металлов таблица

Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см 3 , то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.

Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Температура плавления стали

Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.

Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.

При какой температуре плавится металл

При термическом воздействии на детали в процессе сварки важно учитывать температуру плавления металлов. От этого показателя зависят токовые параметры. Необходимо создать электрической дугу или пламя в газовой горелке такой тепловой мощности, чтобы разрушить молекулярные связи. Параметр, при котором сталь или цветной сплав плавится, учитывают при выборе конструкционных материалов для узлов, испытывающих силу трения или металлоконструкций, испытывающих термическое воздействие.

Температура плавления металлов

Процесс плавления

При термовоздействии на деталь изменение внутренней структуры происходит за счет накопления энергии молекулами. Скорость их движения возрастает. В критической точке нагрева начинается разрушение кристаллической структуры, межмолекулярные связи уже не могут удержать молекулы в узлах решетки. Взамен колебательным движениям в пределах узла происходит хаотическое движение, образуется ванна расплава в месте нагрева. Точку начала расплавления вещества в лабораторных условиях определяют до сотых долей градуса, причем этот показатель не зависит от внешнего давления на заготовку. В вакууме и под давлением металлические заготовки начинают плавиться при одной и той же температуре, это объясняется процессом накопления внутренней энергии, необходимой для разрушения межмолекулярных связей.

Классификация металлов по температуре плавления

В физике переход твердого тела в жидкое состояние характерен только для веществ кристаллической структуры. Температуру плавления металлов чаще обозначают диапазоном значений, для сплавов точно определить нагрев до пограничного фазового состояния сложно. Для чистых элементов каждый градус имеет значение, особенно, если это легкоплавкие элементы,

значения не имеет. Сводная таблица показателей t обычно делится на 3 группы. Помимо легкоплавких элементов, которые максимально нагревают до +600°С, указывают тугоплавкие, выдерживающие нагрев свыше +1600°С, и среднеплавкие. В этой группе сплавы, образующие ванну расплава при температуре от +600 до 1600°С.

Разница между температурой плавления и кипения

Точкой фазового перехода вещества из твердого кристаллического состояния в жидкое нередко называют температуру плавления металла. В расплаве молекулы не имеют определенного расположения, но притяжение удерживает их вместе, в жидком состоянии кристаллическое тело сохраняет объем, но теряет форму.

При кипении теряется объем, молекулы слабо взаимодействуют, хаотично движутся во всех направлениях, отрываются от поверхности. Температура кипения – это когда давление металлических паров достигает давления внешней среды.

Для наглядности разницу между критическими точками нагрева лучше представить в виде таблицы:

СвойстваТемпература плавкиТемпература кипения
Физическое состояниеСплав превращается в расплав, кристаллическая структура разрушается, исчезает зернистостьПереход в газообразное состояние, отдельные молекулы улетают за пределы расплава
Фазовый переходРавновесие между жидкой и твердой фазамиРавновесие между давлением паров металла и внешним давлением воздуха
Влияние внешнего давленияНе меняетсяИзменяется, падает при разряжении

Таблицы температур плавления металлов и сплавов

Для удобства границы фазового перехода указаны по группам в порядке возрастания t фазового перехода из твердого в жидкое состояние. Из всех элементов выбраны часто встречающиеся.

Таблица плавления легкоплавких металлов и сплавов (расплавляются до +600°С).

Таблица плавления среднеплавких металлов и сплавов, диапазон фазового перехода от +600 до 1600°С.

Таблица плавления тугоплавких металлов и сплавов (свыше +1600°С).

Температура плавления нержавейки

Прежде, чем говорить о температуре плавления нержавеющей стали, стоит отметить, что эта физическая характеристика важна для литейщиков, сварщиков, производителей марочной нержавеющей стали.

Температура плавления нержавеющей стали

При металлообработке оперируют другими понятиями, например, точка эвтектики (равновесия жидкой и твердой фазы), точка пластичности (t, при которой сплав обретает мягкость, податливость).

В чем заключается проблема

Конструкторы учитывают точку плавления нержавеющих сплавов, когда проектируют производства, связанные с высокими температурами и воздействием агрессивной среды. Рабочая t эксплуатации металла, разумеется, значительно ниже точки эвтектики (фазового перехода в жидкое состояние). Точка плавления одновременно является точкой кристаллизации, этот показатель важен при стерилизации вторичного металла, выделения отдельных компонентов.

При сварке металлоконструкций также полезно знать, при какой t под воздействием дуги образуется ванна расплава. Нагрев способен повлиять на состояние заготовок, приводят к возникновению внутренних напряжений.

Важный фактор, который влияет на точку эвтектики нержавеющих сплавов, это концентрация углерода. Чем выше % содержания элемента, тем ниже будет температура плавления. При увеличении доли легирования точка фазового перехода зависит от состава и соотношения легирующих компонентов. Железо в чистом виде относится к категории легкоплавких металлов, плавится при t выше, чем легированные нержавеющие стали. Компоненты, улучшающие потребительские свойства нержавейки, относятся к различным группам:

  • легкоплавкие (натрий, калий, висмут, олово и другие);
  • среднеплавкие (основные — алюминий, медь, кремний, кобальт);
  • тугоплавкие (например, вольфрам, титан, ванадий).

Для высокотемпературных технологий конструкторы выбирают нержавеющие сплавы с заданными физическими характеристиками. Самой важной остается t плавления. Иногда металл прогревается до критической отметки. Сложности с определением показателя возникают из-за многокомпонентности нержавейки. В зависимости от содержания легирующих компонентов металл плавится при +1300…1500°C, разлет в 200 градусов слишком велик, чтобы не обращать на него внимание. Углеродистые стали варят при температуре +1600°C, но для отдельных марок нержавейки такой нагрев станет губительным.

Что влияет на температуру плавления нержавейки

В табличных значениях, ГОСТах указывается t плавления чистых металлов, это постоянная величина. Теоретически температуру плавления нержавейки определить сложно, так как система металлов порой ведет себя непредсказуемо. В металловедении различают два понятия: расплава и кристаллизации. Нержавеющие сплавы кристаллизуются и переходят в жидкость не при фиксированной температуре, а в определенном диапазоне. Этот интервал рассчитывается по регламентированным методикам с учетом компонентного состава, свойств двухкомпонентных и трехкомпонентных систем.

В табличных значениях, ГОСТах указывается t плавления чистых металлов, это постоянная величина.

При производстве нержавеющих сплавов образуются сложные вещества, основу которого составляет железо. В чистом виде этот химический элемент плавится при +1539°C, когда присутствуют примеси, t плавления повышается или понижается в зависимости от состава сплава. Необходимо отметить, что основным компонентом нержавейки остается Fe, но температура фазового перехода существенно меняется, когда в нержавеющем сплаве имеются другие металлы.

Как влияют определенные легирующие добавки на физические свойства железа:

  • снижают точку фазового перехода примеси углерода, фосфора, серы, кремния;
  • алюминий снижает только в двухкомпонентных системах, при незначительных концентрациях не влияет;
  • хром снижает, если в нержавеющем сплаве содержится до 23% этого металла, при большей концентрации хрома сталь необходимо нагревать сильнее, ликвидус повышается (хром часто вводится совместно с никелем, присутствует в жаропрочных марочных сталях);
  • молибден легкоплавкий, нержавеющие стали с этим металлом расплавить легче;
  • вольфрам – тугоплавкий, по степени влияния на ликвидус схож с титаном, используется в жаропрочных и термически устойчивых сплавах, оба металла значительно повышают жаропрочность нержавейки (ванадий и титан нередко вводят вместе);
  • никель в концентрациях, используемых для легирования, снижает температуру фазового перехода.

Нержавеющие сплавы с никелем классифицируют по двум группам:

  • железоникелевые с содержанием железа выше 65%, никеля от 26 до 47% (соотношение 1:1,5);
  • никелевые, содержание этого легирующего металла в пределах 50%, доля железа в пределах 20%.

В этих сплавах влияние никеля особенно заметно, температура плавления значительно ниже, чем у железа, приближается к t плавления чистого никеля (+1455°C). В железоникелевых системах снижение ликвидуса пропорционально изменению концентрации никеля. В никелевых сплавах снижение температуры ликвидус наблюдается только до предельной концентрации никеля, 68%, при увеличении доли этого металла t постепенно увеличивается.

Какая температура плавления нержавеющей стали

Нержавейка относится к разряду среднеплавких сталей. Существуют таблицы, в которых указывается интервал ликвидуса (полного расплавления). Дается диапазон, в пределах которого происходит фазовое превращение. Точную температуру плавления нержавеющей стали можно установить только экспериментальным путем. Если говорить об стальных сплавах, обладающих устойчивостью к коррозии, они плавятся при нагреве свыше +1300°С, самые популярные – свыше +1450°С, самые термически устойчивые становятся жидкими при +1520°С.

Точную температуру плавления нержавеющей стали можно установить только экспериментальным путем.

Необходимо учитывать, что по стандарту при плавке допускаются небольшие отклонения химического состава марочных сталей. Изменение концентрации легирующих металлов влияет на показатель. Например, стали для отливок Х28Л и Х34Л плавятся при +1350°С, а жаропрочная высоколегированная 40Х10С2М при +1440°С.

В справочниках можно найти ориентировочные значения ликвидуса, полученные расчетным путем, исходя из химического состава стали. Обычно металлургические предприятия в открытый доступ выкладывают подобную справочную информацию, на сайтах компаний можно найти таблицу с t плавления выпускаемых сталей, чтобы потребители знали пределы использования нержавеющих металлоизделий, температуру фазового перехода из твердого состояния в жидкое при нормальном давлении.

Стальные соединения изготавливаются из железа и углерода. Добиться прочности, твердости и других требуемых качеств позволяет добавление в сплав никеля, хрома, молибдена и других дополнительных компонентов. Одним из таких качеств является температура плавления стали, при которой материал переходит из твердого состояния в жидкое.

температура плавления легированной стали

Общее описание процесса

Чтобы понять, при какой температуре плавится сталь, нужно рассмотреть этот процесс более детально. Расплавление происходит при нагревании. Нагревать материал можно как снаружи, так и изнутри. Внешний нагрев осуществляется в термических печах. Для того чтобы расплавить сплав изнутри, используется резистивный нагрев. Принцип резистивного нагрева заключается в электросопротивлении, которым обладают любые материалы.

Вне зависимости от типа термического воздействия, в материалах происходят одинаковые изменения. За счет нагревания тепловые колебания молекул усиливаются, что приводит к структурным дефектам решетки. Такие изменения способствуют разрыву межатомных связей, в результате чего сплав переходит в жидкое состояние.

Типы сплавов

В зависимости от интенсивности нагрева, требуемого для перехода металла из одного состояния в другое, сплавы разделяют на несколько видов.

Легкоплавкие. Их обработка может производиться даже без специального оборудования. Температура плавления стали в градусах Цельсия составляет 600. К числу легкоплавких металлов относятся свинец, олово и цинк.

Особого внимания заслуживает ртуть, способная переходить в жидкое состояние при -39°С.

Среднеплавкие. Температура плавления сталей находится в пределах 600°С-1600°С. К этой категории относятся алюминий, медь, олово, некоторые виды нержавейки и различные сплавы с небольшим содержанием хрома. Среднеплавкие соединения получили наибольшее распространение в промышленности и в быту.

Тугоплавкие. Соединения, входящие в данную категорию, способны переходить из твердого состояния в жидкое при нагреве свыше 1600°С. Это высоколегированные металлы, в состав которых входят вольфрам, титан и хром. Благодаря этим добавкам металл приобретает повышенную прочность, устойчивость к коррозии и химическим воздействиям. В частности, к тугоплавким сплавам относится нержавейка.

При наиболее низких температурных показателях плавятся щелочные металлы. Соответственно, для перехода в жидкое состояние не щелочных металлов температурный диапазон значительно увеличивается.

Градус кипения

В процессе нагрева материала важно не достичь его кипения, при котором из жидкого состояния он переходит в газообразное. Поэтому градус кипения является не менее важным технологическим показателем.

Градус кипения, как правило, вдвое выше градуса, при котором материалы расплавляются, и определяется при нормальном атмосферном давлении. При увеличении давления увеличивается и интенсивность нагрева. При уменьшении давления показатели уменьшаются.

Особенности углеродистой стали

Углеродистые соединения являются основным видом продукции, производимой на металлургических комбинатах. Кроме железа, в их состав входит углерод. Его концентрация не должна превышать 2,14%. В них присутствует небольшое количество примесей и легирующих компонентов в виде марганца, кремния и магния. Такие добавки позволяют улучшить их физические и химические показатели.

В зависимости от концентрации углерода углеродистые соединения делятся на следующие виды:

  • низкоуглеродистые (содержание углерода не превышает 0,29%);
  • среднеуглеродистые (до 0,6%);
  • высокоуглеродистые (более 0,6%).

Углеродистые соединения используются в различных промышленных отраслях. В зависимости от сферы применения в них добавляются легирующие компоненты, позволяющие достичь специфических свойств, включая жаропрочность, коррозийную стойкость и пр. По этим критериям они подразделяются на следующие категории:

В инструментальные добавляется марганец, позволяющий значительно повысить качество металла. Температура плавления углеродистой стали составляет 1535°С.

Особенности легированной стали

В состав легированных соединений вводят дополнительные компоненты. В определенных количествах они придают им требуемые свойства. В зависимости от концентрации таких элементов они подразделяются на следующие виды:

  • низколегированные (с концентрацией 2,5%);
  • среднелегированные (до 10%);
  • высоколегированные (свыше 10%).

За счет добавления дополнительных компонентов удается повысить прочность, коррозийную стойкость и улучшить другие характеристики. В качестве легирующих компонентов выступают хром, медь, никель, азот, ванадий и пр. Температура плавления легированной стали колеблется в пределах 1400°С-1480°С.

Особенности нержавейки

Нержавейка – это сплав, устойчивый к сухой и влажной коррозии, и невосприимчивый к воздействию агрессивных веществ. Чтобы придать ему необходимые свойства, в металл добавляются различные легирующие компоненты в виде хрома, никеля, магния, титана и пр. Температура плавления нержавеющей стали по Цельсию составляет 1350-1500 градусов.

Ниже представлена таблица, в которой указана температура плавления жаропрочной нержавеющей стали наиболее популярных марок.

Маркаt°С
12Х18Г91410
Х20Н351410
12Х18Н9Т1425
Х25С3Н1480
15Х25Т1500
Особенности инструментальной стали

Этот материал предназначен исключительно для изготовления инструментов. От конструкционного он отличается увеличенным содержанием углерода в количестве более 0,7%. Такие соединения в основном используются в машиностроении для обработки чермета и цветмета. Температура плавления нержавеющей стали, предназначенной для изготовления инструмента, составляет 1500°С.

Заключение

Температура плавления стали находится в промежутке 1350°С-1600°С. Но существуют и особо тугоплавкие металлы (молибден, вольфрам и пр.), способные переходить из одного состояния в другое только при нагреве свыше 2000°С. Данный показатель определяется наличием легирующих элементов и примесей, определяющих их способность к расплавлению.

Таблица температур плавления металлов


Плавление алюминия, как и других веществ, происходит при подводе к нему тепловой энергии, снаружи или непосредственно в его объём, как это происходит, например, при индукционном нагреве.

Температура плавления алюминия зависит от его чистоты:

  • Температура плавления сверхчистого алюминия 99,996 %: 660,37 °С.
  • При содержании алюминия 99,5 % плавление начинается при 657 °С.
  • При содержании алюминия 99,0 % плавление начинается при 643 °С.

Температура плавления стали — таблица

  1. Волков А. И., Жарский И. М. Большой химический справочник. — М: Советская школа, 2005. — 608 с.
  2. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  3. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.

Температура плавления металлов

Металлы и неметаллы

Любой кусок металла, например, алюминия, содержит миллионы отдельных кристаллов, которые называются зернами. Каждое зерно имеет свою уникальную ориентацию атомной решетки, но все вместе зерна ориентированы внутри этого куска случайным образом. Такая структура называется поликристаллической.

Аморфные материалы, например, стекло, отличаются от кристаллических материалов, например, алюминия, по двум важным отличиям, которые связаны друг с другом:

  • отсутствие дальнего порядка молекулярной структуры
  • различия в характере плавления и термического расширения.

Различие молекулярной структуры можно видеть на рисунке 1. Слева показана плотно упакованная и упорядоченная кристаллическая структура. Аморфный материал показан справа: менее плотная структура со случайным расположением атомов.


Рисунок 1 – Структура кристаллических (а) и аморфных (б) материалов. Кристаллическая структура: упорядоченная, повторяющаяся и плотная, аморфная структура – более свободно упакованная с беспорядочным расположением атомов.

Плавление металлов

Это различие в структуре проявляется при плавлении металлов, в том числе, плавлении алюминия различной чистоты и его сплавов. Менее плотно упакованные атомы дают увеличение объема (снижение плотности) по сравнению с тем же металлом в твердом кристаллическом состоянии.

Металлы при плавлении испытывают увеличение объема. У чистых металлов это объемное изменение происходит весьма резко и при постоянной температуре – температуре плавления, как это показано на рисунке 2. Это изменение представляет собой разрыв между наклонными линиями по обе стороны от точки плавления. Обе эти наклонные линии характеризуют температурное расширение металла, которое обычно является различным в жидком и твердом состоянии.


Рисунок 2 – Характерное изменение объема чистого металла по сравнению с изменением объема аморфного материала [4]: Tg – температура стеклования (перехода жидкого состояния в твердое); Tm – температура плавления

Теплота плавления

С этим резким увеличением объема при переходе металла из твердого состояния в жидкое связано определенное количество тепла, которое называется скрытой теплотой плавления. Это тепло заставляет атомы терять плотную и упорядоченное кристаллическую структуру. Этот процесс является обратимым, он работает в обоих направлениях – и при нагреве, и при охлаждении.

Равновесная температура плавления

Как было показано выше, чистые кристаллические вещества, например, чистые металлы, имеют характерную температуру плавления, которую часто называют «точкой плавления». При этой температуре это чистое твердое кристаллическое вещество плавится и становится жидкостью. Переход между твердым и жидким состоянием для малых образцов чистых металлов настолько мал, что может измеряться с точностью 0,1 ºС.

Жидкости имеют характерную температуру, при которой они превращаются в твердое вещество. Эту температуру называют температурой затвердевания или точкой затвердевания. Теоретически – в равновесных условиях – равновесная температура плавления твердого вещества является той же самой, что и равновесная температура его затвердевания. На практике можно наблюдать небольшие различия между этими величинами (рисунок 3).



Рисунок 3 – Кривые охлаждения и нагрева чистого металла. Видны явления переохлаждения при охлаждении и перегрева при нагреве. В начале затвердевания наблюдается впадина на кривой охлаждения, что объясняется замедленным началом кристаллизации [4]

Температуры ликвидус и солидус

  • Температура начала плавления называется температурой солидус (или точкой солидус)
  • Температура окончания плавления – температурой ликвидус (или точкой ликвидус).

«Солидус» означает, понятно, твердый, а «ликвидус» – жидкий: при температуре солидуса весь сплав еще твердый, а при температуре ликвидуса – весь уже жидкий.

При затвердевании этого сплава из жидкого состояния температура начала кристаллизации (затвердевания) будет та же температурой ликвидус, а окончания кристаллизации – та же температура солидус. При температуре сплава между его температурами солидуса и ликвидуса он находится в полужидком-полутвердом, кашеобразном состоянии.

Температура кипения и плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.
Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.


Плавление алюминия

Влияние легирующих элементов и примесей

Добавление в алюминий других элементов, в том числе легирующих, снижает температуру его плавления, точнее – начала его плавления. Так, у некоторых литейных алюминиевых сплавов с большим содержанием кремния и магния температура начала плавления снижается почти до 500 °С. Вообще, понятие «температура плавления» распространяется только на чистые металлы и другие кристаллические вещества. У сплавов же нет определённой температуры плавления: процесс их плавления (и затвердевания) происходит в некотором интервале температур.


Рисунок 4- Изменение удельного объема чистого металла (алюминия) и сплава этого металла (алюминиевого сплава) [4]

Интервалы температуры плавления

В таблице ниже представлены температуры ликвидуса и солидуса некоторых промышленных деформируемых сплавов. Необходимо иметь в виду, что понятия температур солидус и ликвидус определены для равновесных превращений жидкой фазы в твердую и обратно, то есть при бесконечной длительности процессов. На практике надо делать поправки с учетом скорости нагрева или охлаждения.

Плавление силумина

Не все сплавы имеют интервал между температурами солидус и ликвидус. Такие сплавы называют эвтектическим. Например, у алюминиевого сплава с содержанием 12,5 % кремния точки ликвидуса и солидуса сводятся в точку: этот сплав как и чистые металлы имеет не интервал, а точку плавления. Эта точка и температура называются эвтектическими. Этот сплав относится к знаменитым литейным алюминиево-кремниевым сплавам – силуминам с узким интервалом солидус-ликвидус, что и дает их лучшие литейные свойства.

В двойном сплаве Al-Si температура солидус постоянна и составляет 577 °С. При увеличении содержания кремния температура ликвидус снижается от максимального значения для чистого алюминия 660 °С и до совпадения с температурой солидуса 577 °С при содержании кремния 12,6 %.

Среди других легирующих элементов алюминия сильнее всего понижает температуру плавления магний: эвтектическая температура 450 °С достигается при содержании магния 18,9 %. Медь дает эвтектическую температуру 548 °С, а марганец – всего лишь 658 °С! Большинство сплавов являются не двойными, а тройными и даже четверными. Поэтому при совместном влиянии нескольких легирующих элементов температура солидуса – начала плавления или конца затвердевания может быть еще ниже.

Затвердевание алюминия

Чистый алюминий

Чистые металлы, в том числе, чистый алюминий, имеют четкую температуру плавления – точку плавления. Затвердевание или «замерзание» чистого алюминия происходит также при постоянной температуре. Когда чистый жидкий алюминий охлаждается, его температура падает до температуры затвердевания и остается при этой температуре, пока весь он (жидкий алюминий) не затвердеет. На рисунках 5 и 6 показаны типичные кривые охлаждения чистого металла с переходом его из жидкого состояния в твердое.



Рисунок 5 – Кривая охлаждения чистого металла (например, алюминия) [3]



Рисунок 6 – Затвердевание чистого алюминия [5]

Алюминиевый сплав

При затвердевании алюминиевого сплава, который состоит из алюминия и растворенного в нем легирующего элемента, например, кремния или меди, то кривая охлаждение этого сплава показывает, что начало затвердевания происходит при одной температуре, а окончание – при другой температуре (рисунок 7).



Рисунок 7 – Кривая охлаждения сплава (например, алюминиевого сплава) [3]

Расплавление алюминиевых сплавов для литья

Для нагрева алюминиевого сплава до температуры жидкого состояния, при которой возможно выполнение операций литья, применяют плавильные печи различных видов. Тепловая энергия, которая требуется для того, чтобы нагреть металл до температуры жидкого состояния, при которой его можно разливать в литейные формы, состоит из суммы следующих компонентов:

  • Теплота, чтобы поднять температуру металла до температуры плавления
  • Теплота плавления, чтобы перевести металл из твердого состояния в жидкое состояние
  • Теплота для нагрева расплавленного металла до заданной температуры разливки

Температура разливки – это температура расплавленного металла, при которой он заливается в литейную форму. Важным фактором здесь является разность между температурой разливки и температурой, при которой начинается затвердевание. Этой температурой является температура (точка) плавления для чистого алюминия или температура ликвидус для алюминиевого сплава. Эту разность температур иногда называют перегревом. Этот термин также может применяться для количества теплоты, которое надо отобрать от жидкого металла между разливкой и моментом начала затвердевания.

Классификация металлов

Человеку давно известны температуры плавления металлов и сплавов. Благодаря этим данным их можно разделить на три больших группы:

  1. Легкоплавкие металлы — плавятся до 600 градусов по Цельсию. К ним относятся олово, цинк, свинец.
  2. Среднеплавкие — плавятся в диапазоне 600–1600 градусов по Цельсию. Наиболее обширная группа, в которую входят все возможные сплавы, однородные материалы.
  3. Тугоплавкие — расплавляются при 1600 градусов по Цельсию. К ним относится титан, хром, молибден, вольфрам.

Чтобы узнать более точную информацию, можно изучить таблицу температур плавления металлов. Найти ее можно в интернете или специальных справочниках для литейщиков. Теплота плавления сплавов зависит от количества примесей, содержащихся в составе.

Температура плавления различных металлов

Температура плавления некоторых других чистых металлов составляет (градусы Цельсия) [1]:

  • ртуть: минус 39
  • литий: 181
  • олово: 232
  • свинец: 328
  • цинк: 420
  • магний: 650
  • медь: 1085
  • никель: 1455
  • железо: 1538
  • титан: 1670

Источники: 1. Aluminum and Aluminum Alloys, ASM International, 1993 2. Handbook of Aluminum: Vol. 1, ed. G. E. Totten, D. S. MacKenzie, 2003 3. Groover, Mikell P. Fundamentals of modern manufacturing: materials, processes and systems, 4th ed. – JOHN WILEY & SONS, 2010 4. Introduction to Alloy Phase Diagrams – ASM International, 1992 5. TALAT 1205

Читайте также: