Металл с z свойствами

Обновлено: 06.01.2025

Настоящий стандарт разработан в соответствии с Федеральным законом «О техническом регулировании» № 184-ФЗ и предназначен для организаций, разрабатывающих проектную и технологическую документацию по проектированию, изготовлению и монтажу сварных конструкций производственных зданий и сооружений.

Основанием для разработки стандарта явилась проблема слоистого разрушения, часто возникающая при возведении сварных стальных конструкций, особенно при использовании низколегированной стали. Слоистые трещины образуются в элементах из горячекатаного листового проката под воздействием сварочных напряжений и деформаций. В зарубежной научно-технической литературе многочисленные примеры образования слоистых трещин приводятся с конца 60-х годов XX столетия. В период с 1980 г. такие дефекты в значительном количестве были обнаружены также в стальных конструкциях, сооружаемых по отечественным проектам.

Образование слоистых трещин связано с большой анизотропией пластичности рядового листового проката. Анизотропия выражается в понижении характеристик пластичности (относительного сужения y , относительного удлинения d ) при переходе от испытания в продольном направлении к испытанию в поперечном направлении и в резком снижении этих характеристик при испытании в направлении толщины ( z -направлении). Главной причиной анизотропии пластичности является присутствие в стали в большом количестве микроскопических сернистых и кислородных неметаллических включений. Горячая прокатка выстраивает эти включения плоскими группами, параллельными поверхности проката. Уже при малой пластической деформации растяжения в z -направлении вдоль плоских скоплений неметаллических включений, из-за их слабого сцепления с металлом, возникают небольшие трещины, которые, сливаясь, образуют слоистое разрушение.

В жестких сварных соединениях для образования слоистых трещин оказываются достаточными пластические деформации в направлении толщины проката, вызванные усадкой швов, а также сварочными термическими напряжениями. Наиболее часто слоистые трещины образуются в соединениях угловой, тавровой и крестообразной формы из листов толщиной более 25 мм, реже — в стыковых соединениях. В сварном соединении слоистые трещины появляются вблизи границы плавления шва в зоне его термического влияния или недалеко от нее. В поперечном сечении соединений слоистые трещины имеют характерное ступенчатое строение, в котором преобладают плоские участки, параллельные поверхности проката.

Опасность образования слоистых трещин увеличивается присутствующим в сварном соединении диффузионным водородом. Он попадает в металл шва при сварке в основном из окружающей среды, сварочных материалов и находящихся на поверхности деталей ржавчины и загрязнений. Водород способствует замедленному разрушению. Наблюдаемое самопроизвольное образование трещин, продолжающееся в течение нескольких часов и даже суток после окончания сварки, связывают с диффузией водорода.

Слоистые трещины являются дефектами сварных соединений, создающими наибольшие трудности. Располагаясь параллельно плоскости проката, они часто не выходят на его поверхность и, оставаясь необнаруженными, предопределяют опасность последующего хрупкого или циклического разрушения. Особенно опасны слоистые трещины в соединениях и узлах, передающих растяжение и (или) изгиб, действующие в конструкциях, в направлении толщины проката (узлы примыкания ригелей и ферм к колоннам в рамных конструкциях, узлы присоединения консолей подкрановых балок к колоннам, узлы крепления стержней решетки к поясам в конструкциях глубоководных опор морских стационарных платформ и др.).

Ущерб, причиняемый слоистыми трещинами, весьма велик. Во многом он обусловлен большим объемом поражаемого металла. Устранение слоистых трещин — дорогостоящее и часто неосуществимое мероприятие, что приводит к необходимости замены уже изготовленных и даже смонтированных конструкций.

В современной металлургической технологии изготовления стали разработаны способы уменьшения анизотропии пластичности листового проката. Они включают ограничение содержания серы уровнем не более 0,005-0,010% и специальную обработку жидкой стали, изменяющую состав, форму, размеры и распределение неметаллических включений. Пластичность проката в z -направлении при этом резко увеличивается. Разработаны технические условия на поставку и освоено примышленное производство проката строительных сталей с гарантированной величиной относительного сужения y z при испытании на растяжение в направлении толщины.

Снижение вероятности слоистого разрушения сварных соединений и узлов может быть достигнуто также применением специальных приемов их конструирования и направленным изменением технологических процессов сварки. Положительное действие этих мероприятий обусловлено снижением сварочных деформаций и напряжений, действующих в направлении толщины, повышением равномерности их распределения, уменьшением жесткости соединений при изготовлении и монтаже, уменьшением начального содержания водорода в металле швов.

В настоящее время в практике отечественных строительных стальных конструкций отсутствуют нормы регулирования сопротивления слоистому разрушению. Предлагаемый стандарт является первой попыткой устранить этот пробел. Стандарт регламентирует правила выбора материала конструкций, формы соединений, технологии сварки, методов контроля, снижающих или исключающих вероятность образования слоистых трещин.

При разработке стандарта учтены накопленный производственный опыт и результаты многих зарубежных и отечественных исследований (в том числе проведенных в ЦНИИПСК им. Мельникова).

Стандарт может применяться организациями, выполняющими работы в области, установленной стандартом, если эти организации имеют сертификаты соответствия, выданные Органом по сертификации в системе добровольной сертификации, созданной организациями-разработчиками стандарта. Организация-разработчик не несет никакой ответственности за использование данного стандарта организациями, не имеющими сертификатов соответствия.

При разработке настоящего стандарта использованы нормативные документы, регламентирующие требования к стальному прокату и сварным соединениям на настоящий момент в части проектирования, изготовления и монтажа стальных строительных конструкций.

СЛОИСТОЕ РАЗРУШЕНИЕ СВАРНЫХ СОЕДИНЕНИЙ СТРОИТЕЛЬНЫХ СТАЛЬНЫХ КОНСТРУКЦИЙ

Требования при проектировании, изготовлении и монтаже

Утвержден и введен в действие Приказом ЗАО «ЦНИИПСК им. Мельникова» от 27 сентября 2007 г. № 237

1 Область применения

Настоящий стандарт устанавливает требования и рекомендации по выбору качества листового проката, формы соединений и технологии сварки, препятствующих образованию слоистых трещин. Стандарт предназначен для использования при проектировании, изготовлении и монтаже сварных строительных конструкций зданий и сооружений.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие нормативные документы:

ГОСТ 380-94 Сталь углеродистая обыкновенного качества. Марки

ГОСТ 5520-79 Прокат листовой из углеродистой, низколегированной и легированной стали для котлов и сосудов, работающих под давлением. Технические условия

ГОСТ 9467-75* Электроды покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей. Типы

ГОСТ 14637-89 Прокат толстолистовой из углеродистой стали обыкновенного качества. Технические условия

ГОСТ 19281-89 Прокат из стали повышенной прочности. Общие технические условия

ГОСТ 22727-88 Прокат листовой. Методы ультразвукового контроля

ГОСТ 27772-88 Прокат для строительных стальных конструкций. Общие технические условия

ГОСТ 28870-90 Сталь. Методы испытаний на растяжение толстолистового проката в направлении толщины

СНиП II -23-81* Стальные конструкции. Нормы проектирования

СНиП 3.03.01-87 Несущие и ограждающие конструкции

СП 53-101-98 Изготовление и контроль качества стальных строительных конструкций

СП 53-102-2004 Общие правила проектирования стальных конструкций

ТУ 14-1-3602-83 Профили стальные фасонные горячепрессованные

ТУ 14-1-4329-87 Прокат толстолистовой из стали марок 09Г2С и 12ХГДАФ для сварных металлоконструкций морских стационарных платформ

ТУ 14-1-4431-88 Листы толстые и плиты с нормируемыми характеристиками механических свойств по сечению в направлении толщины

ТУ 14-1-5120-92 с Изменением № 6 Прокат толстолистовой высокого качества для мостостроения из низколегированной стали

ТУ 14-104-146-94 Прокат листовой из низколегированной стали марки 09Г2-У

ТУ 14-104-167-97 Прокат листовой из легированной стали марки 12ГН2МФАЮ-У (ВС-1-У)

ТУ 14-1-5507-2005 Прокат толстолистовой из низколегированной стали марок 16Г2АФ-Ш и 16Г2АФД-Ш для сварных конструкций

ТУ 5.961-11679-2005 Прокат толстолистовой свариваемый из стали нормальной, повышенной и высокой прочности

ТУ У 27.1-26416904-150:2005 Прокат листовой свариваемый из качественной стали классов прочности 355-590 для машиностроения

Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных строительных конструкций. ЦБНТИ Минмонтажспецстроя СССР, 1989, 52 с.

3 Основные положения

3.1 Для повышения сопротивления слоистому разрушению стандартом предусмотрены три группы мероприятий, представляющих:

— выбор листового проката строительной стали необходимого качества;

— выбор оптимальной формы соединений и узлов;

— выбор технологических процессов сварки и методов дефектоскопического контроля при изготовлении и монтаже конструкций.

Повышают сопротивление слоистому разрушению мероприятия каждой из этих групп. Однако оптимальные результаты достигаются при их комплексном использовании.

4 Выбор листового проката

4.1 При выборе листового проката для элементов конструкций с жесткими сварными соединениями, особенно передающими растяжение и (или) изгиб в направлении толщины, для которых существует опасность образования слоистых трещин, следует руководствоваться требованиями главы СНиП II -23-81* и СП 53-102-2004 для данной группы конструкций с учетом температур эксплуатации, требованиями ГОСТ 27772, а также дополнительными требованиями настоящего стандарта. Эти дополнительные требования предусматривают гарантию механических свойств в направлении толщины и гарантию ограничения нарушений сплошности.

4.2 Листовой прокат стали с гарантированными механическими свойствами в направлении толщины согласно ГОСТ 28870 по уровню относительного сужения y z при испытании на растяжение в направлении толщины делится на три группы качества, имеющих обозначение Z 15, Z 25 и Z 35. Требования к величине y z для каждой группы качества приведены в таблице 4.1.

Относительное сужение y z , % не менее

среднее значение по результатам испытаний трех образцов

отдельное значение (из трех)

рекомендуемая область применения

Угловые и тавровые соединения с небольшой жесткостью, фланцы болтовых соединений

Умеренно жесткие тавровые и крестообразные соединения

При выборе группы качества проката стали по таблице 4.1 требуемый уровень y z рекомендуется ориентировочно оценивать величиной суммарного «фактора риска» y z н. Он определяется сложением отдельных составляющих, обусловленных влиянием следующих основных условий: формы соединения и расположения в нем сварных швов — y z ф, толщины листа — y z т, габаритных размеров шва — y z ш, степени жесткости соединения — y z ж, технологии сварки — y z с по формуле

Значения отдельных составляющих суммарного фактора риска для разных соединений даны в таблице 4.2. В этой таблице значения составляющих, повышающих сопротивление слоистому разрушению, указаны со знаком «-», значения составляющих противоположного действия даны со знаком «+». Эти знаки следует соблюдать при определении суммарного фактора риска по приведенной формуле.

Группа качества проката выбирается на основании условия y z н £ y z , где y z — среднее значение относительного сужения по таблице 4.1.

4.3 Для листового проката с гарантированным ограничением нарушений сплошности согласно ГОСТ 22727 установлено пять классов сплошности. Показатели сплошности, определяемые методами ультразвукового контроля, для каждого класса приведены в таблице 4.3. В этой таблице символом S 1 обозначена минимальная учитываемая площадь несплошности (дефекта), S 2 — максимальная допустимая площадь несплошности, S 3 — условная площадь максимально допустимой зоны несплошностей, S — относительная условная площадь несплошностей, L — максимально допустимая условная протяженность несплошностей.

Выбор класса сплошности в каждом конкретном случае производится с учетом влияния максимальной величины допускаемых дефектов на прочность проектируемых соединений и узлов. Источниками необходимых данных могут служить опыт эксплуатации, расчеты на прочность с использованием прикладной механики разрушения, эксперименты по моделированию. Для соединения и узлов, подвергающихся циклическому нагружению, максимальную величину допускаемых дефектов следует выбирать с учетом их возможного подрастания до размеров, которые в течение всего ресурса не должны превышать размеры, являющиеся критическими при однократном нагружении.

Низколегированные стали с высокими z -свойствами

Низколегированные стали с высокими z -свойствами

Снижение механических свойств по толщине проката вызвано скоплениями неметаллических включений значительной протяженности.

Необходимость повышения эксплуатационных свойств проката по толщине особенно актуальна при использовании в конструкциях листов толщиной свыше 20 мм.

В работах исследована анизотропия механических свойств в сталях обычной чистоты. Оценка механических свойств образцов, вырезанных поперек проката (стандартное направление), и образцов, вырезанных в направлении толщины листа (z-направление), показала их существенное различие.

Аналогичные результаты получены в многочисленных отечественных и зарубежных работах, выполненных в большом объеме в 70-х гг. и обобщенных, например, в трудах ЦНИИСК им В. А. Кучеренко. Низкие свойства толстых листов в z-направлении могут привести к отказам при изготовлении и эксплуатации сварных конструкций, прежде всего при воздействии нагрузок по толщине проката: во фланцевых соединениях, в узлах примыкания балок к колоннам, монтажных «рыбках» и целом ряде других. Наконец, при сварке толстых листов из-за низких z-свойств могут возникать трещины под влиянием действующих по толщине остаточных растягивающих напряжений, поскольку они соизмеримы с пределом текучести. В результате разрушения металла при растягивающих нагрузках в z-направлении образуется характерный излом, подробно описанный в литературе, в том числе в работах. Морфология такого излома резко отличается от излома «чашечкой», получающегося при испытаниях образца, вырезанного в стандартном направлении.

Аналогичные разрушения сварных соединений классифицируются как ламиллярные трещины или слоистое растрескивание. В некоторых работах отмечается, что слоистое растрескивание является основным дефектом сварных современных конструкций. Слоистое разрушение развивается с малой энергоемкостью по микровязкому «ямочному» механизму.

При электронномикроскопическом анализе на дне неглубоких ямок хорошо видны неметаллические включения, в первую очередь сульфиды марганца.

Причиной снижения свойств в z-направлении и слоистого разрушения на микроструктурном уровне является действие неметаллических включений, в первую очередь строчечных сульфидов, строчечных и точечных оксидов, а также силикатов. Крайним случаем снижения z-свойств толстых листов является расслой, вызванный, главным образом, скоплением крупных хрупких силикатов. Разумеется, неметаллические включения влияют не только на свойства в z-направлении. По мере снижения содержания серы протяженность и количество сульфидов уменьшается.

Проблема повышения чистоты стали на современном этапе решается с использованием ковшовой металлургии или Специальных агрегатов. Такое производство налажено на ряде отечественных металлургических комбинатах, где проводится десульфурация в ковше с помощью синтетических шлаков, продувка синтетическими порошками, вакуумирование стали, продувка аргоном, обеспечивающая удаление газов и перемешивание стали.

Особо эффективным является десульфурация синтетическими шлаками, имеющими обычно следующий состав: около 50—55% СаО; менее 7% MgO; 37-43 % Аl203; менее 7% SiO2, — и температуру плавления 1300-1400° С. Рафинирование стали дает хорошие результаты при комплексном использовании синтетических шлаков, вдувании в ковш порошкообразных соединений кальция, а также обработке металла в ковше силикокальцием, ферросилицием, ферротитаном. Комплексное рафинирование и модифицирование неметаллических включений, проводимое на комбинате «Азовсталь» имеет, высокую эффективность.

Комплексное рафинирование особенно эффективно при обработке металла в ковше редкоземельными элементами, так как в этом случае особенно активно происходит глобулирование неметаллических включений.

Весьма перспективным способом уменьшения расслоения стали является применяемое на металлургическом комбинате «Азовсталь» вакуумирование металла в комплексе с понижением содержания кремния и продувкой аргоном. При этом резко снижается содержание крупных хрупких включений в осевой зоне листа.

При исследовании влияния вышеуказанных факторов на комбинате «Азовсталь» кремнемарганцовистую сталь С345 (ГОСТ 27772-88) подвергали различной обработке. В одной плавке было снижено содержание кремния с 0,60 % до 0,35 %, одну плавку вакуумировали. Все три плавки обрабатывали соединениями кальция и продували аргоном. Как показало исследование сплошности проката методом УЗК, вакуумирование является высокоэффективной операцией по устранению несплошности стали, в то время как снижение содержания кремния не дало ощутимых результатов. Таким образом, в результате применения новых металлургических технологических операций можно значительно улучшить эксплуатационные свойства толстого проката и в особенности повысить z-свойства стали. Кроме того, комплексное рафинирование в значительной степени устраняет появление в прокате расслоя металла в виде несплошностей.

В основе ГОСТ 28870-90, так же как и международного стандарта ISO 7773 «Стальной лист с заданными характеристиками по толщине», лежит нормирование требований по критерию ψz (сужение в z-направлении), оцененному при испытаниях цилиндрических образцов, вырезанных в z-направлении.

Теперь, после введения в действие отечественного стандарта, можно заказывать листовой прокат трех групп качества.

Таким образом, применение процессов десульфации и модифицирования неметаллических включений позволяет получить высокие z-свойства у толстых листов из сталей повышенной и высокой прочности, а вакуумирование металла снижает количество расслоев в прокатке.

Введение

В жестких сварных соединениях для образования слоистых трещин оказываются достаточными пластические деформации в направлении толщины проката, вызванные усадкой швов, а также сварочными термическими напряжениями. Наиболее часто слоистые трещины образуются в соединениях угловой, тавровой и крестообразной формы из листов толщиной более 25 мм, реже - в стыковых соединениях. В сварном соединении слоистые трещины появляются вблизи границы плавления шва в зоне его термического влияния или недалеко от нее. В поперечном сечении соединений слоистые трещины имеют характерное ступенчатое строение, в котором преобладают плоские участки, параллельные поверхности проката.

Ущерб, причиняемый слоистыми трещинами, весьма велик. Во многом он обусловлен большим объемом поражаемого металла. Устранение слоистых трещин - дорогостоящее и часто неосуществимое мероприятие, что приводит к необходимости замены уже изготовленных и даже смонтированных конструкций.

В современной металлургической технологии изготовления стали разработаны способы уменьшения анизотропии пластичности листового проката. Они включают ограничение содержания серы уровнем не более 0,005-0,010% и специальную обработку жидкой стали, изменяющую состав, форму, размеры и распределение неметаллических включений. Пластичность проката в z -направлении при этом резко увеличивается. Разработаны технические условия на поставку и освоено примышленное производство проката строительных сталей с гарантированной величиной относительного сужения y z при испытании на растяжение в направлении толщины.

Дата введения 2007-10-01

1 Область применения

2 Нормативные ссылки

3 Основные положения

- выбор листового проката строительной стали необходимого качества;

- выбор оптимальной формы соединений и узлов;

- выбор технологических процессов сварки и методов дефектоскопического контроля при изготовлении и монтаже конструкций.

4.2 Листовой прокат стали с гарантированными механическими свойствами в направлении толщины согласно ГОСТ 28870 по уровню относительного сужения y z при испытании на растяжение в направлении толщины делится на три группы качества, имеющих обозначение Z 15, Z 25 и Z 35. Требования к величине y z для каждой группы качества приведены в таблице 4.1.

Относительное сужение y z , % не менее

Жесткие сварные узлы

При выборе группы качества проката стали по таблице 4.1 требуемый уровень y z рекомендуется ориентировочно оценивать величиной суммарного «фактора риска» y z н. Он определяется сложением отдельных составляющих, обусловленных влиянием следующих основных условий: формы соединения и расположения в нем сварных швов - y z ф, толщины листа - y z т, габаритных размеров шва - y z ш, степени жесткости соединения - y z ж, технологии сварки - y z с по формуле

y z н = y z ф + y z т + y z ш + y z ж + y z с.

Группа качества проката выбирается на основании условия y z н £ y z , где y z - среднее значение относительного сужения по таблице 4.1.

4.3 Для листового проката с гарантированным ограничением нарушений сплошности согласно ГОСТ 22727 установлено пять классов сплошности. Показатели сплошности, определяемые методами ультразвукового контроля, для каждого класса приведены в таблице 4.3. В этой таблице символом S 1 обозначена минимальная учитываемая площадь несплошности (дефекта), S 2 - максимальная допустимая площадь несплошности, S 3 - условная площадь максимально допустимой зоны несплошностей, S - относительная условная площадь несплошностей, L - максимально допустимая условная протяженность несплошностей.

Составляющие фактора риска y z н

Форма соединения и расположения сварного шва

Без напряжений в направлении Z

Угловое соединение с симметрично расположенным швом

Соединение с промежуточным наплавленным слоем

Обычное тавровое соединение с угловыми швами

Тавровое соединение с угловыми швами с полным или частичным проваром

Соединение с угловыми швами, расположенными вблизи свободного торца листа

Защита цинкованием от ржавчины

Помимо защиты в широком диапазоне от Z100 до Z600, непрерывное горячее цинкование гарантирует прочную связь покрытия со сталью. Эти свойства делают цинковое покрытие стали высокопригодным к формованию и эксплуатации в коррозионно-активной среде.

Цинковое покрытие практически полностью (>99%) состоит из цинка, а из-за полного отсутствия свинца в его составе кристаллы или блестки цинка на поверхности металла — мелкие, что придает изделиям приятный внешний вид. Стойкость цинкового покрытия к коррозии прямо пропорциональна его толщине. Срок службы изделий с покрытием Z600 (толщиной 42 мкм с обеих сторон) достигает 80 лет. Поэтому в отдельных сферах применения цинкование готовой продукции партиями можно заменить применением листовой стали с покрытием Z450 или Z600, что значительно упрощает технологическую цепочку.

Цинковое покрытие обеспечивает защиту стали от коррозии даже на открытых участках, включая, например, режущие кромки или места, где покрытие повреждено (царапинами, ударами и т.п.). Крайне низкий коэффициент трения и прочная связь покрытия со сталью препятствуют его отслаиванию, поэтому полная защита от коррозии распространяется и на участки, подвергающиеся сильному механическому воздействию в процессе формования.

Компания SSAB предлагает сталь с цинковым покрытием различной толщины, качества и способа обработки поверхности для разных сфер применения.

Толщина покрытия

Обозначение покрытия Минимальная общая масса покрытия с обеих сторон (г/м 2 ) * Ориентировочная толщина покрытия на единицу поверхности, обычно в микронах (мкм)
Z100 100 7
Z140 140 10
Z180 180 13
Z200 200 14
Z225 225 16
Z275 275 20
Z350 350 25
Z450 450 32
Z600 600 42

* По капельному анализу в трех точках

Помимо указанных значений толщины цинкового покрытия по стандарту EN10346:2015, предлагаем разнообразные асимметричные покрытия, покрытия с одинаковым минимальным показателем массы в расчете на поверхность изделия, а также нанесение покрытий по техническим условиям заказчика.

Обработка оцинкованной стали

Формование

В общем и целом, цинковое (Z) покрытие выдерживает интенсивную деформацию благодаря своей пластичности и хорошим фрикционным свойствам. Следовательно, сталь без покрытия и оцинкованную сталь можно подвергать формованию одними и теми же способами без существенного изменения технологических условий. Из-за небольших различий в поверхностных свойствах иногда возникает необходимость внести незначительные изменения, например, в смазку, геометрию инструментов или усилие зажима. К достоинствам металлического покрытия относится и его смазывающее действие, которое эффективно проявляет себя при низком и умеренном поверхностном давлении в процессе формования. Гибочные характеристики оцинкованной листовой стали с массой покрытия до 275 г/м2 можно считать такими же, как у аналогичных сортов стали без покрытия.

Результаты формования стали с металлическим покрытием зависят от таких факторов, как геометрия элементов, марка стали, тип металлического покрытия, толщина, качественные характеристики поверхности и ее защита, а также от инструментов формования.

Сварка

Сталь разных марок с металлическим покрытием можно сваривать различными способами, включая многочисленные разновидности контактной, лазерной и дуговой сварки. Когда рекомендации по сварке соблюдаются, механические свойства сварных швов ничем не отличаются от аналогичных показателей стали без покрытия.

Сталь с металлическим покрытием чаще всего обрабатывается такими способами контактной сварки как, например, точечная сварка, обеспечивающая превосходные результаты. Полезные антикоррозийные свойства покрытия на основе цинка, как правило, локализуются в пределах надлежащим образом выполненной точечной сварки. Из-за пониженного контактного сопротивления стали с металлическим покрытием ее точечная сварка требует чуть повышенного тока и усилия на электродах, по сравнению со сталью без покрытия. Аналогичные образом сварочный ток немного повышается с увеличением толщины покрытия. Поэтому не рекомендуется сваривать сталь с излишне толстым покрытием, которое снижает пригодность материала к сварке и сокращает срок службы сварочных электродов. Сталь с цинково-железным (ZF) покрытием рекомендована к применению при контактной сварке со множеством швов.

Сталь с металлическим покрытием идеально пригодна и для лазерной сварки, отличающейся узкими (всего несколько мм) швами и малым тепловложением. Применение любого способа сварки плавлением диктует необходимость ограничить до минимума площадь подверженного нагреву участка стального листа с металлическим покрытием, а следовательно, и тепловложение. Подобно поверхности с царапинами, участок с узким сварным швом защищен от катодной коррозии благодаря защитным свойствам покрытия на основе цинка. Тем не менее, после сварки участки со сварными швами рекомендуется окрашивать или наносить на них иное подходящее защитное покрытие.

Особое внимание необходимо уделять вентиляции на рабочем месте в силу того, что при сварке стали с покрытием на цинковой основе образуются пары, содержащие окись цинка.

Соединение

Все покрытия на основе цинка пригодны для клеевого соединения при условии, что поверхность приспособлена для нанесения связующего вещества (эпоксидного, акрилового или полиуретанового). Одним из преимуществ клеевого соединения является сохранение антикоррозионных свойств покрытия, которое в области соединения остается практически нетронутым. Чтобы обеспечить прочность клеевого соединения, необходимо тщательно очистить поверхность от малейших следов масел и любого загрязнения. Совместимость поверхности со связующим веществом всегда анализируется в индивидуальном порядке.

Окраска

Придавая готовой продукции нужный цвет, окраска одновременно повышает защиту от коррозии. После прокатки в дрессировочной клети поверхность типа B приобретает качественные характеристики, которые требуются для окраски.

Цинковое покрытие служит хорошей основой для окраски, если его подготовить надлежащим образом, подобрав подходящую краску. Чтобы обеспечить прочную адгезию слоя краски, необходимо тщательно очистить поверхность от малейших следов масел и любого загрязнения. Для повышения прочности адгезии слоя краски, сталь с покрытием на основе цинка можно подвергнуть фосфатированию или другой подходящей предварительной обработке.

Читайте также: