Металл с наименьшим удельным сопротивлением
К основным свойствам проводниковых материалов относятся:
- Удельная проводимость или обратная ей величина – удельное сопротивление;
- Температурный коэффициент удельного сопротивления;
- Удельная теплопроводность;
- Контактная разность потенциалов и термоэлектродвижущая сила;
- Предел прочности при растяжении и относительное удлинение при разрыве.
Удельное сопротивление проводников. Величину, обратную удельной проводимости g называют удельным сопротивлением r и для проводника с постоянным поперечным сечением определяют по формуле:
Единицей удельного сопротивления в СИ является Ом×м, однако в практике чаще пользуются внесистемной единицей мкОм×м.
Следует отметить, что в отличие от диэлектриков диапазон удельных сопротивлений металлических проводников достаточно мал – от 0,016мкОм×м. для серебра и примерно до 10 мкОм×м. для железо-хромо-кобальто-алюминиевых сплавов, т.е. занимает всего три порядка.
Температурная зависимость удельного сопротивления металлических проводников. Как было показано ранее в идеально чистых металлах единственной причиной, которая ограничивает длину свободного пробега, являются тепловые колебания узлов кристаллической решетки (фононы). Удельное сопротивление металла, обусловленное этим фактором, обозначим как ρТ.. С ростом температуры возрастают амплитуды фононов и связанные с этим флюктуации периодического поля решетки. Это повышает рассеивание электронов, уменьшает длину свободного пробега и вызывает возрастание удельного сопротивления. Для упрощенной одномерной модели решетки длина свободного пробега электронов определяется как:
где λсв - длина свободного пробега;
Δa - амплитуда фононов;
N - концентрация атомов в металле.
Потенциальная энергия атома, отклоненного на Δa от узла решетки:
где Купр - коэффициент упругости связи.
Согласно классической статистике средняя энергия одномерного гармоничного осциллятора равняется КТ. Тогда:
½ · Kупр (Δa) 2 = КТ (4.6)
где К - постоянная Больцмана.
Тогда из (4.5), (4.6) получим:
Если подставить (4.7) в (4.2) получим:
То есть с ростом температуры удельное сопротивление чистых металлов должно возрастать линейно. В действительности эта зависимость является более сложной (рисунок 4.2)
На участке 3 при комнатных температурах зависимость ρ = ¦(Т) линейна, как это видно из (4.8). То есть с ростом температуры возрастает амплитуда тепловых колебаний узлов кристаллической решетки, что уменьшает длину свободного пробега электронов.
На участке 4 вблизи температуры плавления имеет некоторая нелинейность, что объясняется другими механизмами рассеивания электронов.
При переходе металла из твердого состояния в жидкое (температура плавления Тпл) может иметь место как резкое возрастание удельного сопротивления (а), так и его уменьшение (б). Это связано с изменением структуры кристаллической решетки. Если при плавлении объем металла возрастает, что имеет место для большинства металлов, то расстояние между атомами тоже возрастает, металлическая связь уменьшается, а амплитуда фононов возрастает, что уменьшает длину свободного пробега электронов, следовательно, сопротивление металла возрастает. Для некоторых металлов (висмут, галлий) при плавлении объем металла уменьшается, что усиливает связи между атомами, амплитуда фононов уменьшается и удельное сопротивление тоже уменьшается.
На участке 5 металлы находятся в жидком состоянии и сохраняют кристаллическую решетку, поэтому зависимость удельного сопротивления от температуры поясняется аналогично участку 3.
На участке 2, ниже температуры Дебая (ТД) изменяется частота тепловых колебаний узлов кристаллической решетки, поэтому зависимость ρ = ¦(Т) нелинейна и подчиняется закону:
ρ = A·T n (4.9)
где n - изменяется от 1 до 5.
На участке 1 некоторые металлы имеют конечное сопротивление (rост) даже при температуре Т=0 К. Это объясняется наличием в металле статических дефектов решетки, прежде всего примесей. Это позволяет оценивать чистоту металлов на основании отношения:
где ρ300K , ρ4K - соответственно удельное сопротивление металла при 300 К и 4,2 К (температура кипения жидкого гелия). Чем меньше это отношение, тем чище металл.
У некоторых металлов при температуре ниже Тсв наблюдается резкое уменьшение удельного сопротивления до нуля. Такое явление называют сверхпроводимостью.
Таким образом, согласно (4.9) металлические проводники в обычных условиях имеют линейную зависимость удельного сопротивления от температуры.
Влияние примесей на удельное сопротивление металлических проводников.Как уже говорилось, причинами рассеяния электронов в металлах являются не только тепловые колебания узлов кристаллической решетки, но и наличие статических дефектов, которые, прежде всего связанные с примесями. Рассеивание на статических дефектах не зависит от температуры. Поэтому при абсолютном нуле сопротивление реальных металлов остается конечным. Из этого следует правило Маттиссена об аддитивности удельного сопротивления:
где ρпр - полное сопротивление металла с примесью;
ρт - сопротивление, обусловленное рассеянием электронов на фононах;
ρост - остаточное сопротивление, обусловленное рассеиванием электронов на статических дефектах решетки.
Наибольший вклад в остаточное сопротивление вносит рассеяние на примесных атомах, которые практически всегда имеются в металлах. Поэтому длина свободного пробега электронов в металлах с примесью состоит из:
где lТ, lД - длина свободного пробега электронов, ограниченная фононами и примесями, соответственно.
Длина пробега lД:
где Nd - концентрация атомов примеси;
Sd – эффективная плоскость рассеивания электронов атомами примеси.
Тогда удельное сопротивление проводника с примесью:
То есть наличие примесь увеличивает удельное сопротивление металла, но его зависимости от температуры остается линейной (рис. 4.3)
Dρост = а +b(DZ) 2 (4.14)
где Dρост - изменение остаточного сопротивления при изменении примеси;
DZ - разность валентностей собственного атома и атома примеси;
а, b - константы.
Таким образом, на сопротивление металлов меньшее влияние оказывают примесные атомы металла, а большее – атомы металлоидов.
В технике очень широко используют металлические сплавы, имеющие значительную концентрацию атомов примеси, со структурой неупорядоченного твердого раствора. Статическое распределение атомов разного вида в узлах кристаллической решетки вызывает значительные флюктуации периодического поля кристалла, рассеивающего электроны. Но в неупорядоченных твердых растворах, преимущественно с добавкой примеси, изменяется только период решетки. Поэтому действителен закон Нордгейма:
де С - константа;
xА, xВ - атомные доли компонентов в сплаве.
То есть в бинарных твердых растворах А-В остаточное сопротивление возрастает, как при добавлении атомов металла В к металлу А, так и при добавленные атомов металла А к металлу В (рис. 4.4). Остаточное сопротивление достигает максимума при xА = xВ = 0,5.
Закон Нордгейма описывает изменение остаточного сопротивления для непрерывных неупорядоченных твердых растворов. Если сплав отжечь, то он может стать упорядоченным и, если при этом возникают интерметаллические соединения, которые имеют собственную кристаллическую решетку, то зависимость остаточного сопротивления разделяется на части, соответственно числу интерметаллических соединений. Таким образом, удельное сопротивление металлических сплавов всегда выше сопротивления чистых металлов. Это свойство используется для получения высокоомных проводниковых материалов.
Изменение удельного сопротивления при упругих деформациях объясняется изменением амплитуды колебания узлов кристаллической решетки металла. Увеличение амплитуды колебания узлов решетки металла приводит к уменьшению длины свободного пробега носителей заряда и удельное сопротивление возрастает. Пластическая деформация, как правило, повышает удельное сопротивление металлов вследствие искажения кристаллической решетки. При рекристаллизации путем термической обработки (отжига) удельное сопротивление может вновь снижено до первоначальных значений.
Температурный коэффициент удельного сопротивления.В диапазоне температуры, где зависимость r от t близка к линейной (рис. 4.2, участок 3) допустима линейно-кусочная аппроксимация этой зависимости, и величина удельного сопротивления в конце диапазона температуры t может быть подсчитана по формуле
где r0—удельное сопротивление в начале диапазона.
Величину ar из выражения (4.) называют средним температурным коэффициентом удельного сопротивления в данном диапазоне температуры:
Дифференциальное выражение для ar имеет вид
Значения ar чистых металлов в твердом состоянии близки друг к другу, и поэтому приближенно можно считать ar » 0,004 , К -1 .
Исключение составляют элементы, относящиеся к ферромагнетикам — железо, никель, кобальт, гадолиний, а также натрий, калий, хром и др., однако и для них ar отличается от приведенной величины только в 1,5—2 раза.
Наличие примесей уменьшает значение αρ. У некоторых сплавов αρ. даже может приобретать небольшие отрицательные значения (рис.4.5). Это объясняют тем, что при более сложных составе и структурax по сравнению с чистыми металлами сплавы нельзя рассматривать как классические металлы, т. е. изменение проводимости их обусловливается не только изменением подвижности носителей заряда но в некоторых случаях и частичным возрастанием концентрации носителей при повышении температуры. Сплав, у которого уменьшение подвижности с увеличением температуры компенсируется возрастанием концентрации носителей заряда, имеет нулевой температурный коэффициент удельного сопротивления.
Это явление используется для изготовления термостабильных сплавов, например, константана, манганина ). Константан - сплав с 60% Ni и 40% Сu имеет большое сопротивление (~0,5 мкОм×м) и очень малый температурный коэффициент (меньше 10 -6 К -1 ), отсюда и его название.
Удельная теплопроводность металлов. Высокая теплопроводность металлов легко объясняется посредством передачи тепловой энергии атомов нагретого участка металла атомам холодного участка за счет переноса этой энергии коллективизированными электронами. Так как механизм электропроводности и теплопроводности в металлах обусловлен одними и теми же факторами: движением электронного газа и его плотностью, очевидно, что металлы с высокой электропроводностью являются также хорошими проводниками тепла, а диэлектрики обладают не только низкой электропроводностью, но и низкой теплопроводностью. Так, медь имеет удельную теплопроводность 406 Вт/К×м, серебро 453 Вт/К×м, алюминий 218 Вт/К×м, что значительно выше чем у диэлектриков. Удельная теплопроводность и электропроводность металлов связаны законом Видемана-Франца:
где lТ - удельная теплопроводность.
σ - удельная электропроводность.
L0 - число Лоренца.
Поскольку на участке комнатных температур удельная электропроводность падает пропорционально температуре, то согласно (4.19), удельная теплопроводность металлов не должна зависеть от температуры. Это следствие из закона Видемана-Франца выполняется для большинства металлов. Это свойство применяют в технике, при использовании металлов как радиаторов для охлаждения мощных полупроводниковых приборов.
Для этой цели необходимо использовать металлы с большим значением удельной теплопроводности. Чаще всего, это сплавы на основе алюминия (силумин), которые имеют хорошие тепловые, механические и антикоррозийные свойства. Медь нельзя использовать вследствие её плохой коррозионной стойкости, а серебро - вследствие высокой стоимости.
Контактные явления и термоэлектродвижущая сила (термо-э.д.с.)
При соприкосновении двух разных металлов, между ними возникает контактная разность потенциалов. Согласно квантовой теории причиной этого является различная энергия Ферми соприкасающихся металлов. Пусть в изолированном состоянии электронный газ в металлах А и В имеет энергию Ферми WF A и WF B , отсчитываемую от дна зоны проводимости (рис.4.6).
Термодинамическая работа выхода электронов из металла равняется, соответственно, cА и cВ. Поскольку кинетическая энергия электронов, которые находятся на уровне Ферми в разных металлах различна, то при контакте материалов возникает значительный переход электронов из металла В с большим значением энергии Ферми в металл, где эта энергия меньше. Например, из металла В в металл А. Вследствие этого металл В заряжается положительно, а металл А - отрицательно. Между ними возникает разность потенциалов, которая блокирует дальнейший переход носителей заряда. Равновесие наступит, если:
где UK - контактная разность потенциалов.
контактная разность потенциалов достигает несколько вольт.
Термоэлемент, который построен из двух различных металлических проводников с замкнутой цепью, называют термопарой (рис.4.7).
Вольтметр в такой цепи будет показывать разность потенциалов, которую называют термоэлектродвижущей силой (термо-э.д.с.). Термо-э.д.с. равняется:
где aT — относительная удельная термо-э.д.с.
Значение aT зависит от природы материалов и температуры и включает в себя три составляющих. Первая обусловлена температурной зависимостью контактной разности потенциалов, поскольку с ростом температуры уровень Ферми в металлах незначительно, но смещается.
Вторая составляющая обусловлена диффузией носителей заряда от горячих спаев к холодным. Поскольку существует градиент температуры от контакта к контакту, то возникает диффузия электронов от горячего контакта к холодному, что дает некоторый вклад в возникающую разность потенциалов.
Третья составляющая возникает вследствие захвата электронов квантами тепловой энергии. Их поток тоже передвигается к холодному контакту. Значение aT приблизительно равняется нескольким мкВ/К.
Термопары часто используют для измерения температуры. Если температуру холодного контакта поддерживать 0 О С, то вольтметр будет показывать напряжение пропорциональное температуре горячего контакта. Достоинством термопар является высокая линейность, возможность измерения температуры в широком интервале температур, независимость значения термо-э.д.с. от длины проводников.
Вследствие того, что значение aT зависит от состава материала и незначительно от температуры, термопары градуируют, используя точки плавления металлов: свинца, олова, серебра и других.
Наиболее распространенными термопарами являются:
· Хромель- копель (типа ХК). Она позволяет измерять температуры до 600 О С и имеет при этой температуре термо-э.д.с. приблизительно 50 мВ.
· Хромель-алюмель (типа ХА). Она используется к температурам 1000 О С и имеет при этой температуре термо-э.д.с. приблизительно 40 мВ.
· Медь-константан. Ее используют при низких температурах до 350 О С. При этой температуре термо-э.д.с. достигает 15 мВ.
· Платинородий-платина (типа ПП или ППР). Ее применяют до температуры 71600 О С. Термо-э.д.с. у этой термопары невелика (приблизительно 14 мВ при 1600 О С). Но она позволяет обеспечить наиболее точные и стабильные измерения температуры.
Однако явление термо-э.д.с. имеет и отрицательные стороны. В реальных условиях исключить градиенты температур практически невозможно. Поэтому, если контактируют различные металлы, то возможно возникновение паразитной термо-э.д.с. Для устранения этого в цепях (прежде всего электроизмерительных устройств), надо подбирать контактирующие металлы с малыми значениями термо-э.д.с. Такой парой, например, является медь-манганин.
Удельное сопротивление для распространенных материалов: таблица
Приведенная ниже таблица удельного электрического сопротивления содержит значения удельного сопротивления для многих веществ, широко используемых в электрике и электронике. В частности, она включает в себя удельное сопротивление меди, алюминия, нихрома, стали, никеля и так далее.
Удельное электрическое сопротивление особенно важно, поскольку оно определяет электрические характеристики и, следовательно, пригодность материала для использования во многих электрических компонентах. Например, можно увидеть, что удельное сопротивление меди, удельное сопротивление алюминия, а также нихрома, никеля, серебра, золота и т.д. определяет, где эти металлы используются.
Для того чтобы сравнить способность различных материалов проводить электрический ток, используются показатели удельного сопротивления.
Что означают показатели удельного сопротивления?
Для того чтобы иметь возможность сравнивать удельное сопротивление различных материалов, от таких изделий, как медь и алюминий, до других металлов и веществ, включая висмут, латунь и даже полупроводники, необходимо использовать стандартное измерение.
Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м.
Единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м 2 , изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м 2
[1]
Таблица удельного сопротивления для распространенных проводников
В таблице ниже приведены показатели удельного сопротивления для различных материалов, в частности металлов, используемых для электропроводности.
Показатели удельного сопротивления приведены для таких “популярных” материалов, как медь, алюминий, нихром, сталь, свинец, золото и других.
Материал | Удельное сопротивление, ρ, при 20 °C (Ом·м) | Источник |
---|---|---|
Латунь | ~0.6 – 0.9 x 10 -7 | |
Серебро | 1.59×10 −8 | [3][4] |
Медь | 1.68×10 −8 | [5][6] |
Обожжённая медь | 1.72×10 −8 | [7] |
Золото | 2.44×10 −8 | [3] |
Алюминий | 2.65×10 −8 | [3] |
Кальций | 3.36×10 −8 | |
Вольфрам | 5.60×10 −8 | [3] |
Цинк | 5.90×10 −8 | |
Кобальт | 6.24×10 −8 | |
Никель | 6.99×10 −8 | |
Рутений | 7.10×10 −8 | |
Литий | 9.28×10 −8 | |
Железо | 9.70×10 −8 | [3] |
Платина | 1.06×10 −7 | [3] |
Олово | 1.09×10 −7 | |
Тантал | 1.3×10 −7 | |
Галлий | 1.40×10 −7 | |
Ниобий | 1.40×10 −7 | [8] |
Углеродистая сталь (1010) | 1.43×10 −7 | [9] |
Свинец | 2.20×10 −7 | [2][3] |
Галинстан | 2.89×10 −7 | [10] |
Титан | 4.20×10 −7 | |
Электротехническая сталь | 4.60×10 −7 | [11] |
Манганин (сплав) | 4.82×10 −7 | [2] |
Константан (сплав) | 4.90×10 −7 | [2] |
Нержавеющая сталь | 6.90×10 −7 | |
Ртуть | 9.80×10 −7 | [2] |
Марганец | 1.44×10 −6 | |
Нихром (сплав) | 1.10×10 −6 | [2][3] |
Углерод (аморфный) | 5×10 −4 – 8×10 −4 | [3] |
Углерод (графит) параллельно-базальная плоскость | 2.5×10 −6 – 5.0×10 −6 | |
Углерод (графит) перпендикулярно-базальная плоскость | 3×10 −3 | |
Арсенид галлия | 10 −3 to 10 8 | |
Германий | 4.6×10 −1 | [3][4] |
Морская вода | 2.1×10 −1 | |
Вода в плавательном бассейне | 3.3×10 −1 – 4.0×10 −1 | |
Питьевая вода | 2×10 1 – 2×10 3 | |
Кремний | 2.3×10 3 | [2][3] |
Древесина (влажная) | 10 3 – 10 4 | |
Деионизированная вода | 1.8×10 5 | |
Стекло | 10 11 – 10 15 | [3][4] |
Углерод (алмаз) | 10 12 | |
Твердая резина | 10 13 | [3] |
Воздух | 10 9 – 10 15 | |
Древесина (сухая) | 10 14 – 10 16 | |
Сера | 10 15 | [3] |
Плавленый кварц | 7.5×10 17 | [3] |
ПЭТ | 10 21 | |
Тефлон | 10 23 – 10 25 |
Видно, что удельное сопротивление меди и удельное сопротивление латуни оба низкие, и с учетом их стоимости, относительно серебра и золота, они становятся экономически эффективными материалами для использования для многих проводов. Удельное сопротивление меди и простота ее использования привели к тому, что она также используется крайне часто в качестве материала для проводников на печатных платах.
Изредка алюминий и особенно медь используются из-за их низкого удельного сопротивления. Большинство проводов, используемых в наши дни для межсоединений, изготовлены из меди, поскольку она обеспечивает низкий уровень удельного сопротивления при приемлемой стоимости.
Удельное сопротивление золота также важно, поскольку золото используется в некоторых критических областях, несмотря на его стоимость. Часто золотое покрытие встречается на высококачественных слаботочных разъемах, где оно обеспечивает самое низкое сопротивление контактов. Золотое покрытие очень тонкое, но даже в этом случае оно способно обеспечить требуемые характеристики разъемов.
Серебро имеет очень низкий уровень удельного сопротивления, но оно не так широко используется из-за его стоимости и из-за того, что оно тускнеет, что может привести к более высокому сопротивлению контактов.
Однако оно используется в некоторых катушках для радиопередатчиков, где низкое удельное электрическое сопротивление серебра снижает потери. При использовании в таких целях серебро обычно наносилось только на существующий медный провод. Покрытие провода серебром позволило значительно снизить затраты по сравнению с цельным серебряным проводом без существенного снижения производительности.
Другие материалы в таблице удельного электрического сопротивления могут не иметь такого очевидного применения. Тантал фигурирует в таблице, поскольку используется в конденсаторах – никель и палладий используются в торцевых соединениях многих компонентов поверхностного монтажа, таких как конденсаторы.
Кварц находит свое основное применение в качестве пьезоэлектрического резонансного элемента. Кварцевые кристаллы используются в качестве частотоопределяющих элементов во многих осцилляторах, где высокое значение Q позволяет создавать очень стабильные по частоте схемы. Аналогичным образом они используются в высокоэффективных фильтрах. Кварц имеет очень высокий уровень удельного сопротивления и не является хорошим проводником электричества, то есть его относят к категории диэлектрикам.
Удельное сопротивление металлов. Таблица
Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.
Удельное сопротивление
Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:
где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)
Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.
Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:
σ — проводимость материала, выраженная в сименс на метр (См/м).
Электрическое сопротивление
Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.
Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.
Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.
В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.
В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.
- Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
- Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка
Сопротивление провода
Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:
где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)
В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:
R=1,1*10 -6 *(1,5/0,000000196) = 8,4 Ом
Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.
Поверхностное сопротивление
Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:
Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:
где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.
Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.
Свойства резистивных материалов
Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.
Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.
Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.
Удельная проводимость металлов таблица
Проводимость и сопротивление
У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:
σ=1/ρ, где ρ – это и есть удельное сопротивление вещества.
Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.
В растворах носителями заряда являются ионы.
Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:
Читать также: Фото лесоруба с бензопилой
Проводники и диэлектрики
Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.
Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).
Условной границей понятия «проводник» является ρ
где: R — сопротивление провода (Ом) ρ — удельное сопротивление металла (Ом.m) L — длина провода (м) А — площадь поперечного сечения провода (м2)
R=1,1*10-6*(1,5/0,000000196) = 8,4 Ом
Какое сопротивление меди и алюминия
Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.
Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.
В электротехнике значение имеют 2 термина:
- Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
- Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
Вам это будет интересно Особенности мощности постоянного тока
Алюминиевые кабели востребованы не меньше медных
Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.
Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект. Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.
Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко поддается пайке и имеет более низкий температурный коэффициент.
Удельное сопротивление металлов, электролитов и веществ (Таблица)
Удельное сопротивление металлов и изоляторов
В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.
Таблица удельное сопротивление металлов
Чистые металлы | 104 ρ (ом·см) | Чистые металлы | 104 ρ (ом·см) |
Серебро | 0,016 | Хром | 0,131 |
Медь | 0,017 | Тантал | 0,146 |
Золото | 0,023 | Бронза 1) | 0,18 |
Алюминий | 0,029 | Торий | 0,18 |
Дюралюминий | 0,0335 | Свинец | 0,208 |
Магний | 0,044 | Платинит 2) | 0,45 |
Кальций | 0,046 | Сурьма | 0,405 |
Натрий | 0,047 | Аргентан | 0,42 |
Марганец | 0,05 | Никелин | 0,33 |
Иридий | 0,063 | Манганин | 0,43 |
Вольфрам | 0,053 | Константан | 0,49 |
Молибден | 0,054 | Сплав Вуда 3) | 0,52 (0°) |
Родий | 0,047 | Осмий | 0,602 |
Цинк | 0,061 | Сплав Розе 4) | 0,64 (0°) |
Калий | 0,066 | Хромель | 0,70-1,10 |
Никель | 0,070 | ||
Кадмий | 0,076 | Инвар | 0,81 |
Латунь | 0,08 | Ртуть | 0,958 |
Кобальт | 0,097 | Нихром 5) | 1,10 |
Железо | 0,10 | Висмут | 1,19 |
Палладий | 0,107 | Фехраль 6) | 1,20 |
Платина | 0,110 | Графит | 8,0 |
Олово | 0,113 |
Таблица удельное сопротивление изоляторов
Изоляторы | ρ (ом·см) | Изоляторы | ρ (ом·см) |
Асбест | 108 | Слюда | 1015 |
Шифер | 108 | Миканит | 1015 |
Дерево сухое | 1010 | Фарфор | 2·1015 |
Мрамор | 1010 | Сургуч | 5·1015 |
Целлулоид | 2·1010 | Шеллак | 1016 |
Бакелит | 1011 | Канифоль | 1016 |
Гетинакс | 5·1011 | Кварц _|_ оси | 3·1016 |
Алмаз | 1012 | Сера | 1017 |
Стекло натр | 1012 | Полистирол | 1017 |
Стекло пирекс | 2·1014 | Эбонит | 1018 |
Кварц || оси | 1014 | Парафин | 3·1018 |
Кварц плавленый | 2·1014 | Янтарь | 1019 |
Удельное сопротивление чистых металлов при низких температурах
В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).
Чистые металлы | t (°С) | Удельное сопротивление, 104 ρ (ом·см) |
Висмут | -200 | 0,348 |
Золото | -262,8 | 0,00018 |
Железо | -252,7 | 0,00011 |
Медь | -258,6 | 0,00014 1 |
Платина | -265 | 0,0010 |
Ртуть | -183,5 | 0,0697 |
Свинец | -252,9 | 0,0059 |
Серебро | -258,6 | 0,00009 |
Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.
В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.
Чистые металлы | Т (°К) | RT/R0 |
Алюминий | 77,7 | 1,008 |
20,4 | 0,0075 | |
Висмут | 77,8 | 0,3255 |
20,4 | 0,0810 | |
Вольфрам | 78,2 | 0,1478 |
20,4 | 0,0317 | |
Железо | 78,2 | 0,0741 |
20,4 | 0,0076 | |
Золото | 78,8 | 0,2189 |
20,4 | 0,0060 | |
Медь | 81,6 | 0,1440 |
20,4 | 0,0008 | |
Молибден | 77,8 | 0,1370 |
20,4 | 0,0448 | |
Никель | 78,8 | 0,0919 |
20,4 | 0,0066 | |
Олово | 79,0 | 0,2098 |
20,4 | 0,0116 | |
Платина | 91,4 | 0,2500 |
20,4 | 0,0061 | |
Ртуть | 90,1 | 0,2851 |
20,4 | 0,4900 | |
Свинец | 73,1 | 0,2321 |
20,5 | 0,0301 | |
Серебро | 78,8 | 0,1974 |
20,4 | 0,0100 | |
Сурьма | 77,7 | 0,2041 |
20,4 | 0,0319 | |
Хром | 80,0 | 0,1340 |
20,6 | 0,0533 | |
Цинк | 83,7 | 0,2351 |
20,4 | 0,0087 |
Удельное сопротивление электролитов
В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.
c (%) | NH4Cl | NaCl | ZnSO4 | CuSO4 | КОН | NaOH | H2SO4 |
5 | 10,9 | 14,9 | 52,4 | 52,9 | 5,8 | 5,1 | 4,8 |
10 | 5,6 | 8,3 | 31,2 | 31,3 | 3,2 | 3,2 | 2,6 |
15 | 3,9 | 6,1 | 24,1 | 23,8 | 2,4 | 2,9 | 1,8 |
20 | 3,0 | 5,1 | 21,3 | — | 2,0 | 3,0 | 1,5 |
25 | 2,5 | 4,7 | 20,8 | — | 1,9 | 3,7 | 1,4 |
_______________
Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.
Состав и структура железа
Железо – типичный металл, причем химически активный. Вещество вступает в реакцию при нормальной температуре, а нагрев или повышение влажности значительно увеличивают его реакционноспособность. Железо корродирует на воздухе, горит в атмосфере чистого кислорода, а в виде мелкой пыли способно воспламениться и на воздухе.
Чистому железу присуща ковкость, однако в таком виде металл встречается очень редко. На деле под железом подразумевают сплав с небольшими долями примесей – до 0,8%, которому присущи мягкость и ковкость чистого вещества. Значение для народного хозяйства имеет сплавы с углеродом – сталь, чугун, нержавеющая сталь.
Железу присущ полиморфизм: выделяют целых 4 модификации, отличающиеся структурой и параметрами решетки:
При высоком давлении, а также при легировании металла некоторыми добавками образуется ε- фаза с гексагонической плотноупакованной решеткой.
Температура фазовых переходов заметно изменяется при легировании тем же углеродом. Собственно, сама способность железа образовать столько модификаций служит основой обработки стали в разных температурных режимах. Без таких переходов металл не получил бы столь широкого распространения.
Проводниковые материалы
Основным показателем, характеризующим проводниковые материалы, является электропроводность. В практических условиях удобнее оценивать проводниковые материалы по величине их электрического сопротивления.
На проводимость металла неблагоприятно влияют примеси: чем содержание их больше, тем меньше проводимость металла. Такие примеси, как марганец и алюминий, сильно снижают проводимость меди, а серебро, золото и цинк - в значительной степени. На удельную проводимость оказывает влияние пластическая деформация в холодном состоянии (наклеп). С увеличением степени деформации проводимость металла несколько снижается. При устранении наклепа рекристаллизационным отжигом проводимость восстанавливается.
В связи с этим отличают мягкие (отожженные) проводниковые металлы (в марках материалов обозначаются буквой М) и твердые (неотожженные), обозначаемые буквой Т. Наибольшей проводимостью обладают чистые металлы. Они составляют группу металлов высокой проводимости. Другую группу проводниковых материалов составляют сплавы высокого электрического сопротивления.
Проводниковые металлы с малым удельным сопротивлением. К металлам, имеющим малое удельное сопротивление относятся: медь, алюминий, железо, серебро, вольфрам, никель и некоторые другие.
Медь является основным проводниковым материалом. Она, кроме малого удельного сопротивления, имеет достаточно высокую механическую прочность, которая зависит от степени наклепа, высокую пластичность, позволяющую получать прокаткой тонкие листы и ленту, а протяжкой - тонкую проволоку диаметром до 0,01 мм, удовлетворительную стойкость против коррозии, относительную легкость пайки и сварки.
В качестве проводникового материала используют медь марок M1 и М0, содержащие соответственно примесей до 0,1% и до 0,05%.
Твердую (наклепанную) медь применяют для проводов контактной сети, для шин распределительных устройств, для пластин коллекторов электрических машин и пр.
Мягкую (отожженную) медь в виде проволоки круглого и прямоугольного сечения применяют в качестве токопроводящих жил кабелей и обмоточных проводов.
Сплавы меди (бронзы) имеют более высокие механические свойства, чем медь. Их используют для изготовления контактных проводов, коллекторных пластин и других токопроводящих деталей, например пружин. В качестве проводникового материала других сплавов применяют кадмиевую, кадмиево-оловянистую и бериллиевую бронзы.
Алюминий является основным заменителем меди в качестве проводникового материала, так как обладает достаточно высокой электропроводностью. Электрическое сопротивление алюминия невелико, однако оно в 1,6 раза больше, чем у меди. Поэтому при одинаковой длине и общем сопротивлении сечение алюминиевого провода должно быть в 1,6 раза больше сечения медного провода. Следовательно, если имеется ограничение изделия по габаритам (например, при изготовлении обмоток электрических машин), то применение алюминиевых проводников создаст затруднения.
Алюминий широко применяется по экономическим соображениям в качестве проводникового материала в воздушных линиях электропередач, что вызвано тем, что при одинаковом электрическом сопротивлении, он почти в 2 раза легче меди. Кроме того он устойчив против коррозии, но имеет небольшую прочность.
Железо, точнее сталь как проводниковый материал применяется редко, так как имеет высокое удельное электрическое сопротивление. Стальная проволока используется главным образом в качестве сердечников биметаллических проводов (рис.1). Стальная оцинкованная проволока высокой прочности используется в качестве сердечников сталеалюминиевых проводов для повышения их механической прочности.
Проводники постоянного тока изготовляют из армкожелеза, содержащего не более 0,03 % С.
Серебро среди всех металлов имеет самое низкое удельное электрическое сопротивление, поэтому оно применяется для изготовления электрических контактов в электрических аппаратах и как составная часть прочных припоев.
Рисунок 1 - Поперечное сечение биметаллического провода
Платина весьма устойчива против коррозии и не растворяется в ряде кислот. Введение в платину 3-6% иридия или 5-12% родия повышает сопротивление платины окислению при температуре 1000°С и выше. Термопары из платиновой и платинородиевой проволоки применяют для измерения температур до 1500°С, из платины и ее сплавов изготовляют контакты.
Вольфрам и молибден используют при изготовлении электровакуумных приборов. Они идут на изготовление спиралей накала, поддерживающих крючков, катодов. Тугоплавкость и высокая твердость позволяют применять вольфрам и сплавы вольфрама с молибденом для изготовления размыкающих контактов в электрических аппаратах. В электровакуумной технике применяют и другие тугоплавкие металлы: никель, тантал, ниобий и др.
Ртуть сохраняет свое жидкое состояние до -39°С. Она стойка к окислению. Медь, цинк, свинец, никель, олово, серебро и золото растворяются в ртути. Ртуть применяют в качестве жидких контактов в специальных реле, выключателях и ртутных выпрямителях.
Проводниковые материалы с большим удельным сопротивлением должны обладать стойкостью к окислению при высокой температуре, малым температурным коэффициентом сопротивления. К ним относятся медно-никелевые, никелевые и жаропрочные сплавы. Медно-никелевые электротехнические сплавы - это манганин и константан.
Манганин (МНМц 3-12) содержит около 3% никеля и 12% марганца, остальное - медь. Он обладает высоким электросопротивлением при малом температурном коэффициенте сопротивления. Манганиновую проволоку применяют для обмоток катушек сопротивления различных приборов, работающих до 100°С, а также используют в измерительных приборах.
Константан (МНМц 40-1,5) содержит около 40 % никеля и 1,5% марганца, остальное - медь. Применяется в виде проволоки для термопар и реостатов высокого сопротивления, работающих до 500°С.
Никелевые сплавы с марганцем (НМц 2,5 и НМц 5) применяют для изготовления автомобильных свечей и радиоламп. Жаростойкие сплавы используют в электронагревательных приборах и печах сопротивления с рабочей температурой до 1200 °С. К ним относятся: хромоникелевые сплавы (нихромы) - Х20Н80, сплавы на основе никеля, хрома и железа (ферронихромы) - Х15Н60, Х25Н20; тройные сплавы железа, хрома, алюминия (фехрали, хромали) - Х13Ю4, Х17Ю5. Перечисленные сплавы представляют собой твердые растворы. При нагревании на их поверхности образуется плотная защитная пленка (Сг2О3) и закиси никеля, которая надежно предохраняет сплав от окисления.
Читайте также: