Металл основа черных сплавов
МЕТАЛЛОВ ЛИТЬЕ, получение металлических изделий (отливок) путем заливки расплавленного металла в литейную форму. Рабочая часть литейной формы представляет собой полость, в которой материал, затвердевая при охлаждении, приобретает конфигурацию и размеры нужного изделия.
МЕТАЛЛЫ ДЛЯ ЛИТЬЯ
Литью поддаются все металлы. Но не все металлы обладают одинаковыми литейными свойствами, в частности жидкотекучестью – способностью заполнять литейную форму любой конфигурации. Литейные свойства зависят главным образом от химического состава и структуры металла. Важное значение имеет температура плавления. Металлы с низкой температурой плавления легко поддаются промышленному литью. Из обычных металлов наивысшая температура плавления у стали. Металлы делятся на черные и цветные. Черные металлы – это сталь, ковкий чугун и литейный чугун. К цветным относятся все другие металлы, не содержащие в значительных количествах железа. Для литья применяются, в частности, сплавы на основе меди, никеля, алюминия, магния, свинца и цинка.
См. также МЕТАЛЛЫ ЧЕРНЫЕ; СПЛАВЫ.
Черные металлы.
Стали.
Различают пять классов сталей для промышленного литья: 1) малоуглеродистые (с содержанием углерода менее 0,2%); 2) среднеуглеродистые (0,2–0,5% углерода); 3) высокоуглеродистые (более 0,5% углерода); 4) низколегированные (менее 8% легирующих элементов) и 5) высоколегированные (более 8% легирующих элементов). На среднеуглеродистые стали приходится основная масса отливок из черных металлов; такие отливки представляют собой, как правило, промышленную продукцию стандартизованной сортности. Различные виды легированных сталей разработаны для достижения высокой прочности, пластичности, ударной вязкости, коррозионной стойкости, теплостойкости и усталостной прочности. Литые стали по своим свойствам близки к кованой стали. Предел прочности такой стали при растяжении составляет от 400 до 1500 МПа. Масса отливок может изменяться в широком диапазоне – от 100 г до 200 т и более, толщина в сечении – от 5 мм до 1,5 м. Длина отливки может превышать 30 м. Сталь – универсальный материал для литья. Благодаря своей высокой прочности и пластичности она представляет собой превосходный материал для машиностроения.
Ковкий чугун.
Существуют два основных класса ковкого чугуна: обычного качества и перлитный. Делают отливки также из некоторых легированных ковких чугунов. Предел прочности при растяжении ковкого чугуна составляет 250–550 МПа. Благодаря своей усталостной прочности, высокой жесткости и хорошей обрабатываемости он идеален для станкостроения и многих других массовых производств. Масса отливок составляет от 100 г до нескольких сот килограммов, толщина в сечении обычно не более 5 см.
Литейный чугун.
К литейным чугунам относят широкий диапазон сплавов железа с углеродом и кремнием, содержащих 2–4% углерода. Для литья применяются четыре основных вида литейного чугуна: серый, белый, отбеленный и половинчатый. Предел прочности при растяжении литейного чугуна составляет 140–420 МПа, а некоторых легированных литейных чугунов – до 550 МПа. Для литейного чугуна характерны низкая пластичность и низкая ударная прочность; у конструкторов он считается хрупким материалом. Масса отливок – от 100 г до нескольких тонн. Отливки из литейного чугуна применяются практически во всех отраслях промышленности. Их себестоимость невелика, и они легко обрабатываются резанием.
Чугун с шаровидным графитом.
Шаровидные включения графита придают чугуну пластичность и другие свойства, выгодно отличающие его от серого чугуна. Шаровидность включений графита достигается путем обработки чугуна магнием или церием непосредственно перед литьем. Предел прочности при растяжении чугуна с шаровидным графитом составляет 400–850 МПа, пластичность – от 20 до 1%. Правда, для чугуна с шаровидным графитом характерна низкая ударная прочность образца с надрезом. Отливки могут иметь как большую, так и малую толщину в сечении, масса – от 0,5 кг до нескольких тонн.
Цветные металлы.
Медь, латунь и бронза.
Существует много различных сплавов на основе меди, пригодных для литья. Медь применяется в тех случаях, когда необходима высокая тепло- и электропроводность. Латунь (сплав меди с цинком) используется, когда желателен недорогостоящий, умеренно коррозионностойкий материал для изготовления разнообразных изделий общего назначения. Предел прочности при растяжении литой латуни составляет 180–300 МПа. Бронза (сплав меди с оловом, к которому могут добавляться цинк и никель) применяется в тех случаях, когда требуется повышенная прочность. Предел прочности при растяжении литых бронз составляет 250–850 МПа.
Никель.
Медно-никелевые сплавы (типа монель-металла) обладают высокой коррозионной стойкостью. Для сплавов никеля с хромом (типа инконеля и нихрома) характерно высокое тепловое сопротивление. Молибдено-никелевые сплавы отличаются высокой стойкостью к соляной кислоте и окисляющим кислотам при повышенных температурах.
Алюминий.
Литые изделия из алюминиевых сплавов в последнее время применяются все шире благодаря их легкости и прочности. Такие сплавы обладают довольно высокой коррозионной стойкостью, хорошей тепло- и электропроводностью. Прочность на растяжение литых алюминиевых сплавов находится в пределах от 150 до 350 МПа.
Магний.
Магниевые сплавы применяются там, где на первом месте стоит требование легкости. Предел прочности при растяжении литых магниевых сплавов составляет 170–260 МПа.
Титан.
Титан – прочный и легкий материал – плавится в вакууме и отливается в графитовые формы. Дело том, что в процессе охлаждения поверхность титана может загрязняться вследствие реакции с материалом формы. Поэтому титан, отлитый в какие-либо другие формы, кроме форм из механически обработанного и прессованного порошкового графита, оказывается сильно загрязненным с поверхности, что проявляется в повышенной твердости и низкой пластичности при изгибе. Титановое литье применяется главным образом в авиакосмической промышленности. Прочность на растяжение литого титана – свыше 1000 МПа при относительном удлинении 5%.
Редкие и драгоценные металлы.
Отливки из золота, серебра, платины и редких металлов применяются в ювелирном деле, зубоврачебной технике (коронки, пломбы), литьем изготавливаются также некоторые детали электронных компонентов.
СПОСОБЫ ЛИТЬЯ
Основные способы литья таковы: статическая заливка, литье под давлением, центробежное литье и вакуумная заливка.
Статическая заливка.
Чаще всего применяется статическая заливка, т.е. заливка в неподвижную форму. При таком способе расплавленный металл (или неметалл – пластмасса, стекло, керамическая суспензия) просто заливается в полость неподвижной формы до ее заполнения и выдерживается до затвердевания.
Литье под давлением.
Литейная машина заполняет металлическую (стальную) литейную форму (которая обычно называется пресс-формой и может быть многогнездной) расплавленным металлом под давлением от 7 до 700 МПа. Преимущества такого метода – высокая производительность, высокое качество поверхности, точные размеры литого изделия и минимальная потребность в его механической обработке. Типичные металлы для литья под давлением – сплавы на основе цинка, алюминия, меди и олова-свинца. Благодаря низкой температуре плавления такие сплавы весьма технологичны и позволяют обеспечить малые допуски на размеры и превосходные характеристики отливок.
Сложность конфигурации отливок в случае литья под давлением ограничивается тем, что при отделении от пресс-формы отливка может быть повреждена. Кроме того, несколько ограничена толщина изделий; более предпочтительны изделия тонкого сечения, в котором расплав быстро и равномерно затвердевает.
Литейные машины для литья под давлением бывают двух типов – с холодной и горячей камерой прессования. Машины с горячей камерой прессования применяются в основном для сплавов на основе цинка. Горячая камера прессования погружена в расплавленный металл; под небольшим давлением сжатого воздуха или под действием поршня жидкий металл вытесняется из горячей камеры прессования в пресс-форму. В литейных машинах с холодной камерой прессования расплавленный алюминиевый, магниевый или медный сплав заполняет пресс-форму под давлением от 35 до 700 МПа.
Отливки, полученные литьем под давлением, применяются во многих бытовых приборах (пылесосах, стиральных машинах, телефонных аппаратах, светильниках, пишущих машинках) и очень широко – в автомобильной промышленности и в производстве компьютеров. Отливки могут быть массой от нескольких десятков граммов до 50 кг и более.
Центробежное литье.
При центробежном литье расплавленный металл заливается в песочную или металлическую литейную форму, вращающуюся вокруг горизонтальной или вертикальной оси. Под действием центробежных сил металл отбрасывается от центрального литника к периферии формы, заполняя ее полости, и затвердевает, образуя отливку. Центробежное литье экономично и для некоторых видов изделий (осесимметричных типа труб, колец, обечаек и т.д.) более подходит, нежели статическая заливка.
Вакуумная заливка.
Такие металлы, как титан, легированные стали и жаропрочные сплавы, плавятся в вакууме и заливаются в многократные формы, например графитовые, помещенные в вакуум. При этом методе значительно снижается содержание газов в металле. Слитки и отливки, получаемые вакуумной заливкой, весят не более нескольких сот килограммов. В редких случаях большие количества стали (100 т и более), выплавленной по обычной технологии, разливают в вакуумной камере в установленные в ней изложницы или литейные ковши для дальнейшего литья на воздухе. Металлургические вакуумные камеры больших размеров откачиваются многонасосными системами. Получаемая таким методом сталь используется для изготовления специальных изделий ковкой или литьем; этот процесс называется вакуумной дегазацией.
ЛИТЕЙНЫЕ ФОРМЫ
Литейные формы делятся на многократные и разовые (песочные). Многократные формы бывают металлические (изложницы и кокили), либо графитовые или керамические огнеупорные.
Многократные формы.
Металлические формы (изложницы и кокили) для стали делают обычно из чугуна, иногда – из жаростойкой стали. Для литья цветных металлов, таких, как латунь, цинк и алюминий, пользуются чугунными, медными и латунными формами.
Изложницы.
Это наиболее распространенный вид многократных литейных форм. Чаще всего изложницы делают из чугуна и применяют для получения стальных слитков на начальном этапе производства кованой или катаной стали. Изложницы относятся к открытым литейным формам, поскольку металл заполняет их сверху самотеком. Применяются также «сквозные» изложницы, открытые и сверху, и снизу. Высота изложниц может составлять 1–4,5 м, диаметр – от 0,3 до 3 м. Толщина стенки отливки зависит от размеров изложницы. Конфигурация может быть разной – от круглой до прямоугольной. Полость изложницы несколько расширяется кверху, что необходимо для извлечения слитка.
Готовая к заливке изложница располагается на толстой чугунной плите. Как правило, изложницы заполняются сверху. Стенки полости изложницы должны быть гладкими и чистыми; при заливке нужно следить за тем, чтобы металл не расплескивался и не разбрызгивался на стенки. Залитый металл затвердевает в изложнице, после чего слиток вынимают («раздевают слиток»). После остывания изложницы ее чистят изнутри, опрыскивают формовочной краской и используют снова. Одна изложница позволяет получить 70–100 слитков. Для дальнейшей обработки ковкой или прокаткой слиток нагревают до высокой температуры.
Кокили.
Это закрытые металлические литейные формы с внутренней полостью, соответствующей конфигурации изделия, и литниковой (заливочной) системой, которые выполняются путем механической обработки в чугунном, бронзовом, алюминиевом или стальном блоке. Кокиль состоит из двух или большего числа деталей, после соединения которых остается лишь небольшое отверстие сверху для заливки расплавленного металла. Для формования внутренних полостей в кокиль закладываются гипсовые, песочные, стеклянные, металлические или керамические «стержни». Литьем в кокиль получают отливки из сплавов на основе алюминия, меди, цинка, магния, олова и свинца.
Литье в кокиль применяется лишь в тех случаях, когда требуется получить не менее 1000 отливок. Ресурс кокиля достигает нескольких сотен тысяч отливок. Кокиль идет в скрап, когда (из-за постепенного выгорания от расплавленного металла) начинает недопустимо снижаться качество поверхности отливок и перестают выдерживаться расчетные допуски на их размеры.
Графитовые и огнеупорные формы.
Такие формы состоят из двух или большего числа деталей, при соединении которых образуется требуемая полость. Форма может иметь вертикальную, горизонтальную или наклонную поверхность разъема либо разбираться на отдельные блоки; это облегчает извлечение отливки. После извлечения форму можно собрать и использовать снова. Графитовые формы допускают сотни отливок, керамические – лишь несколько.
Графитовые многократные формы можно изготовить путем механической обработки графита, а керамические легко формуются, так что они значительно дешевле металлических форм. Графитовые и огнеупорные формы могут использоваться для повторного литья в случае неудовлетворительных отливок, полученных литьем в кокиль.
Огнеупорные формы делают из фарфоровой глины (каолина) и других высокоогнеупорных материалов. При этом используются модели из легкообрабатываемых металлов или из пластмассы. Порошкообразный или гранулированный огнеупор замешивают с глиной на воде, полученную смесь формуют и заготовку литейной формы обжигают так же, как кирпичи или посуду.
Разовые формы.
На песочные литейные формы налагается гораздо меньше всяческих ограничений, нежели на любые другие. Они пригодны для получения отливок любых размеров, любой конфигурации, из любого сплава; они наименее требовательны к конструкции изделия. Песочные формы изготавливают из пластичного огнеупорного материала (обычно кремнистого песка), придавая ему нужную конфигурацию, чтобы залитый металл по затвердевании сохранил эту конфигурацию и мог быть отделен от формы.
Формовочную смесь получают, замешивая на воде в специальной машине песок с глиной и органическими связующими.
При изготовлении песчаной формы в ней предусматривают верхнее литниковое отверстие с «чашей» для заливки металла и внутреннюю литниковую систему каналов для питания отливки расплавленным металлом в процессе затвердевания, так как иначе из-за усадки при затвердевании (свойственной большинству металлов) в отливке могут образовываться пустоты (усадочные раковины).
Оболочковые формы.
Такие формы бывают двух типов: из материала с низкой температурой плавления (гипс) и из материала с высокой температурой плавления (на основе тонкого порошка диоксида кремния). Гипсовую оболочковую форму изготавливают, замешивая на воде гипсовый материал с крепителем (быстроотверждающимся полимером) до тонкой консистенции и облицовывая такой смесью модель отливки. После того как материал формы затвердеет, ее разрезают, обрабатывают и сушат, а затем «спаривают» две полуформы и заливают. Такой способ литья пригоден только для цветных металлов.
Литье по восковым выплавляемым моделям.
Такой метод литья применяется для драгоценных металлов, стали и других сплавов с высокой температурой плавления. Сначала изготавливают пресс-форму, соответствующую отливаемой детали. Ее обычно выполняют из легкоплавкого металла или (механической обработкой) из латуни. Затем, заполняя пресс-форму парафином, пластмассой или ртутью (после этого замораживаемой), получают модель для одной отливки. Модель облицовывают огнеупорным материалом. Материал оболочковой формы получают из тонкого порошка огнеупора (например, пудры диоксида кремния) и жидкого связующего. Слой огнеупорной облицовки уплотняют вибрацией. После того как он затвердеет, форму нагревают, парафиновая или пластмассовая модель расплавляется и жидкость вытекает из формы. Затем форму обжигают для удаления газов и в нагретом состоянии заливают жидким металлом, который поступает самотеком, под давлением сжатого воздуха или под действием центробежных сил (в машине для центробежного литья).
Керамические формы.
Керамические формы изготавливаются из фарфоровой глины, силлиманита, муллита (алюмосиликаты) или других высокоогнеупорных материалов. При изготовлении таких форм обычно пользуются моделями из легкообрабатываемых металлов или из пластмассы. Порошкообразные или гранулированные огнеупорные материалы смешивают с жидким связующим (этилсиликатом) до студнеподобной консистенции. Только что изготовленная форма пластична, так что модель можно извлечь из нее, не повредив полость формы. Затем форму обжигают при высокой температуре и заливают расплавом нужного металла – стали, твердого хрупкого сплава, сплава на основе редких металлов и пр. Такой метод позволяет изготавливать формы любых типов и пригоден как для мелкосерийного, так и для крупносерийного производства.
См. также КЕРАМИКА ПРОМЫШЛЕННАЯ.
Юдкин В.С. Производство и литье сплавов цветных металлов. М., 1967–1971
Бауман Б.В. и др. Литейное производство. М., 1971
Степанов Ю.А. и др. Технология литейного производства. М., 1983
Черные металлы и их сплавы.
Химический состав сырья и материалов, используемых для производства непродовольственных товаров, имеет свои особенности.
Непродовольственные товары изготавливаются из минеральных материалов: стекло, керамика, металлы, минеральные вяжущие вещества; и органических материалов: пластмассы, древесина, резина, волокнистые вещества.
В промышленном материаловедении материалы делятся на металлически и неметаллические. Металлические материалы делятся н металлы черной металлургии (стали, чугуны, ферросплавы и сплавы на основе железа, легированные цветными металлами) и материалы цветной металлургии (алюминий, цинк, свинец, олово, никель и сплавы на их основе и благородные металлы).
Неметаллические материалы: стекло, керамика, древесина, волокнистые материалы и т.д. Часть материалов имеет природное происхождение: древесина, растительные и животные волокна, шкуры, песок, камень, глины. Часть искусственное: стекло, керамика. Часть синтетическое: пластмассы.
Металлические материалы
Используются для изготовления металлохозяйственных товаров, а это посуда, ножевые изделия, столовые приборы и принадлежности, приборы, облегчающие домашний труд, инструменты, садово-огородный инвентарь, и ювелирных товаров, строительных материалов (приборы для окон и дверей, крепежные изделия, конструкционные элементы), при производтве транспортных средств (велосипедов, мопедов, мотоциклов, автомобилей, лодок катеров).
Металлы – химические элементы, характеризующиеся в твердом состоянии внутренним кристаллическим строением. Они имеют характерный блеск, непрозрачны, при деформации пластичны, характеризуются теплопроводностью и электропроводностью.
Черные металлы и их сплавы.
Железо – один из наиболее распространенных в природе металлов. Технически чистое железо это серебристо-белый тугоплавкий пластичный металл с высокой прочностью. Процесс обработки железа от примесей достаточно дорогой, поэтому и производство товаров из железа не велико. Более распространены железоуглеродистые сплавы – стали и чугуны.
Стали – содержат углерода не более 2.14%, а чугуны – свыше.
Стали по химическому составу подразделяются на углеродистые и лигированные.
Углеродистые стали кроме углерода содержат в небольших количествах только неизбежные примеси – кремний, марганец, серу, фосфор.
В легированные стали входят, кроме этого, добавки цветных металлов: хрома, никеля, молибдена, ванадия, вольфрама и т.д. Химический состав существенно влияет на свойства стали и ее применение в производстве.
С увеличением концентрации углерода возрастают твердость и хрупкость стали. Поэтому практическое применение находят стали с содержанием углерода около 1.3%.
Кремний – повышает твердость и повышает упругие свойства металла. Включают в состав стали до 2%. Изготовляют рессоры, пружины для транспортных средств.
Марганец – увеличивает твердость и прочность стали, ее износостойкость. Изготавливают металлоинструмент – пилы.
Сера и фосфор – вредные примеси. Сера вызывает красноломкость (растрескивание металла при механической обработке в горячем состоянии), ухудшает пластичность и снижает коррозионную стойкость стали. Фосфор вызывает хладноломкость стали, т.е. растрескивание при механическом воздействии на сталь в холодном состоянии.
Хром – увеличивает твердость и износостойкость стали. При содержании хрома более 13% сталь приобретает стойкость к коррозии. Из такой сравнительно недорогой стали изготовляют ножи и столовые приборы.
Никель – упрочняет сталь, повышает ее ударную вязкость и снижает хладноломкость. При совместном введении в сталь хрома и никеля сплав приобретает жаропрочность и высокую коррозионную стойкость в кислой среде. Отсюда, хромоникелевые сплавы применяют для производства посуды и столовых приборов.
Молибден, ванадий и вольфрам – придают стали высокую твердость и красностойкость, даже при нагреве «докрасна». Используют для изготовления металлорежущих инструментов и резцов.
Углеродистые стали в зависимости от наличия углерода подразделяют на конструкционные (углерода не более 0,75%) и инструментальные (до 1.3%).
Конструкционные стали используют при изготовлении посуды, приборов для окон и дверей, крепежных изделий, нагревательных и осветительных приборов. Инструментальные стали применяются при изготовлении инструментов, ножей, ножниц и т.д. В зависимости от содержания вредных примесей (серы и фосфора) различают углеродистые стали обыкновенного качества, качественные и высококачественные.
Стали обыкновенного качества: содержание вредных примесей не ограничивается (группа А); или содержание каждого до 0,07% (группы Б и В).
Качественные - содержание каждого – не более 0,04%.
Высококачественные – содержание серы не более 0,02% и фосфора не более 0,03%.
Отрицательно влияет на свойства стали кислород. Он вызывает красноломкость, снижает пластичность и вязкость металла. Поэтому в процессе получения сталь раскисляют («отбирают» у железа кислород) добавками марганца, алюминия и кремния.
По степени раскисления сталь делят на: спокойную (сп) – она раскислена полностью; полуспокойную (пс) – раскислена меньше; кипящую (кп) – раскислена не полностью, при разливке она кипит (выделяет кислород).
Спокойная сталь – однородная, плотная, отличается высокими механическими свойствами. Полуспокойная сталь – занимает промежуточное положение между спокойной и кипящей. В кипящей стали много мелких раковин, которые снижают ее прочностные показатели, но выход металла больше, и он дешевле, а при прокатке мелкие раковины запаивают.
Кипящая сталь отличается пластичностью, содержит минимальное количество кремния и марганца, ее раскисляют только алюминием.
Изготовляют из кипящей стали методом штамповки: стальную посуду, корпуса бытовой газовой аппаратуры, холодильников и т.д.
А вот спокойную и полуспокойную сталь применяют там, где сплав при эксплуатации подвергается большим нагрузкам: инструменты, ножи, детали бытовых машин и т.д.
Легированные стали подразделяются по назначению на конструкционные, инструментальные и с особыми свойствами.
Конструкционные используются в производстве ответных деталей машин (совместимые друг с другом), когда требуется сочетание прочности, твердости, износостойкости и пластичности, вязкости.
Из легированных инструментальных сталей изготовляют такие металлообрабатывающие инструменты: сверла, ножовочные полотна, напильники, метчики, плашки (для нарезания резьбы).
К сталям с особыми свойствами относятся коррозионностойкие или нержавеющие, жаропрочные, износостойкие и т.д. Для товаров народного потребления из этой категории используют нержавеющие стали: посуда, ножи, столовые приборы, лезвия и т.д.
Чугун – вырабатывают выплавкой из железных руд в доменных печах.
По назначению чугуны подразделяются на передельные (из которых «переделывают» в сталь), литейные, высокопрочные, ковкие, легированные. Для производства товаров народного потребления: посуда, замки, мясорубки, печные приборы, радиаторы отопления – используют серый литейный чугун. Изделия из чугуна дешевле аналогичных из стали или цветных металлов, но очень хрупок. Этот недостаток необходимо учитывать при хранении, транспортировке и эксплуатации изделий из чугуна. СЧ 12-28 – серый чугун, первые две цифры предел прочности при растяжении, вторые – при изгибе.
Цветные металлы и сплавы – наиболее часто применяются в производстве непродовольственных товаров: алюминий, медь, цинк, никель, хром, олово, серебро, золото, платина и их сплавы.
Алюминий – белый серебристый металл с малой плотностью, высокой коррозионной стойкостью к атмосферным воздействиям и пресной воде, нетоксичен, пластичный, с высокой тепло- и электропроводностью. Но уступает в прочности и жесткости черным металлам, нестоек к кислой и щелочной среде (посуда из алюминия не используется для солений и маринадов, а также для хранения кисломолочных продуктов).
Из алюминия изготовляют упаковочный материал фольгу, электрические провода, детали бытовых холодильников, посуду. Но технически чистый алюминий не употребляют, а используют его сплавы. Все сплавы алюминия делятся по способу переработки их в изделия: деформируемые и литейные.
Деформируемые, перерабатываемые методом давления. Они, в свою очередь, бывают не упрочняемые и упрочняемые термической обработкой. Не упрочняемые сплавы почти такие же, как технически чистый алюминий, но они имеют высокую пластичность и коррозионную стойкость. Их используют для баков стиральных машин (вместо нержавеющей стали) и посуды 9бидонов, кастрюль, чайников, кофейников), методом глубокой вытяжки. Эти сплавы могут быть получены сплавлением алюминия с марганцем АМц и с магнием АМг. Наиболее распространенный упрочняемый сплав – дюралюмин – медь, магний, марганец. По механическим свойствам он близок к углеродистой конструкционной стали, но меньшую коррозионную стойкость. Для защиты от коррозии его покрывают чистым алюминием – плакируют. Этот сплав используют как конструкционный материал - для изготовления мебели с металлическим каркасом, спортивного инвентаря.
Литейные сплавы алюминияполучают на основании системы алюминий + кремний. Их называют силуминами, и используют для отливки деталей сложной конструкции, для которых не обязательны высокие механические свойства (художественно-декоративные изделия, дверные ручки, чайники). Для изделий с более высокими прочностными показателями используют сплавы с медью, марганцем и магнием: замки, мясорубки, посуда, столовые приборы, детали инструментов).
Сплав, изготовленный из металлолома и отходов, называется вторичным литейным сплавом алюминия.
Сплав, содержащий не более 0,15% свинца 0,015% мышьяка и 0,3% цинка называется пищевым и применяется для изготовления изделий, соприкасающихся в процессе эксплуатации с пищей: посуда, кухонные принадлежности, столовые приборы, мясорубки, соковыжималки, шинковки).
Медь – розово-красный металл, тяжелый, эластичный, с высокой тепло- и электропроводностью. Она хорошо противостоит коррозии на воздухе, но во влажной среде и в атмосфере, загрязненной промышленными выбросами, быстро тускнеет, покрывается зеленым налетом, при этом образуются очень токсичные соединения. Широко используется ля изготовления электрических проводов, шнуров, контактов. На ее основе получают многочисленные сплавы, объединенные в две группы – латунь и бронзу.
Латуни - это сплавы меди с цинком.
К никелевым латуням относят мельхиор и нейзильбер. Обычные латуни могут содержать до 50% цинка, с возрастанием концентрации цинка возрастает прочность сплава при сохранении достаточной пластичности. Из латуни методом глубокой вытяжки изготовляют чайники, кофейники, самовары, охотничьи гильзы.
Бронзы – сплав меди с другими элементами. Наиболее распространены оловянные бронзы (олова до11%). Они обладают хорошими литейными свойствами и малой усадкой при затвердевании и охлаждении. Методом литья из нее изготовляют: подсвечники, статуэтки, барельефы, дверные ручки, краны, вентили. Вводят также 5-10% цинка – для удешевления, 3-5% свинца – для уменьшения хрупкости, и до 1% фосфора – для облегчения обрабатываемости резцом.
Цинк – светло-серый с синеватым оттенком металл, легкоплавкий, хрупкий. Используют для нанесения защитных покрытий на стальную посуду получаются сплавы с хорошими дверей. Цинковые покрытия образуют плотную защитную пленку при повышенной влажности. Но при воздействии на оцинкованное покрытие щелочей, кислоты или горячей воды образуются токсичные вещества. При легировании цинка алюминием получают сплавы с хорошими литейными свойствами, но не очень прочные. Для придания им прочности вводят 3,5% меди. Эти сплавы используют для отлива замков, ручек, ножей, вилок.
Никель – серебристый с желтоватым оттенком металл, очень пластичный, тяжелый, с высокими механическими свойствами. Хорошо поддается полировки и имеет высокую степень блеска. Никель противостоит коррозии на воздухе, в воде и растворах кислот. Поэтому активно используют в защитно-декоративных покрытиях столовых приборов, приборов для окон и дверей, инструментов, посуды, велосипедов, металлической мебели и т.д. Сплавы никеля с хромом – нихромы – используют при изготовлении электротоваров. Они отличаются высоким электрическим сопротивлением и окалиностойкостью, используют для изготовления электронагревательных элементов электроплиток, утюгов, чайников.
Хром – твердый, тугоплавкий, серебристо-синеватый металл с очень высокой коррозионной стойкостью. Применяют для получения защитно-декоративных покрытий, обеспечивающих повышенную износостойкость деталей инструментов, приборов для окон и дверей, автомашин, велосипедов, мотоциклов, часов.
Олово – серебристый легкоплавкий металл мягкий и пластичный. Имеет высокую коррозионную стойкость и безвредность, используется как покрытие для латунной и стальной посуды, чугунных мясорубок, консервных банок, крышек для консервирования. Но это покрытие легко царапается, а при минусовых температурах осыпается и это необходимо учитывать при транспортировании, хранении и эксплуатации изделий покрытых оловом. Олово легкоплавкий металл - его применяют для паяния или в составе припоя олово-свинец.
Благородные (драгоценные) металлы и сплавы используют для производства ювелирных, художественно0декоративных и электронных товаров. К этой группе относятся серебро, золото, платина и металлы платиновой группы – палладий, рутений, родий, иридий, осмий. Для бытовых ювелирных изделий используют в основном серебро, золото, платину.
Серебро обладает высокой теплопроводностью и электропроводностью, пластичностью, хорошей отражающей способностью. Оно устойчиво к действию воды, соляных и органических кислот, но растворяется в азотной кислоте. Серебро используют для защитно-декоративного покрытия, изготовления ювелирных изделий, припоев, светочувствительных материалов, контактов приборов и т.д.
Золото металл ярко-желтого цвета с сильным блеском, тяжелый, но мягкий и пластичный. Золото имеет высокую химическую прочность к действию атмосферы, воды при высоких и низких температурах, к кислотам, щелочам, но растворяется в «царской водке» (смесь соляной и азотной кислоты), бромной и хлорной воде. Ювелирные изделия изготавливают не из чистого золота, так как оно очень мягкое, а из сплавов золота с медью, серебром, палладием (белое золото).
Платина - белый металл с сероватым оттенком, имеет высокую плотность и температуру плавления. Обладает высокой твердостью, но меньшей пластичностью. Для повышения прочности ее сплавляют с металлами платиновой группы: родием, иридием, палладием, а также золотом, серебром и медью. В ювелирном деле платина применяется 950 пробы при изготовлении украшений, а также в качестве оправы для бриллиантов, так как у платины одинаковый коэффициент расширения с алмазом и бриллиант в оправе из платины дает лучший блеск.
Черные металлы и сплавы
К черным металлам относятся железо и сплавы на его основе (сталь и чугун). Железо в чистом виде в машиностроении не применяется. Сталь многокомпонентный сплав с содержанием углерода до 2,14 %. Чугун – сплав железа с углеродом при содержании углерода более 2,14 %.
Сталь. В зависимости от химического состава различают стали углеродистые (ГОСТ 380-94, ГОСТ 1050-88) и легированные (ГОСТ 4543-71, ГОСТ 5632-72, ГОСТ 14959-79).
В свою очередь углеродистые стали могут быть:
- малоуглеродистыми, содержащими углерода менее 0,25%;
- среднеуглеродистыми, содержание углерода составляет 0,25…0,60%
- высокоуглеродистыми, в которых концентрация углерода
превышает 0,60% - низколегированные содержание легирующих элементов до 2,5%
- среднелегированные, в их состав входят от 2,5 до 10% легирующих элементов;
- высоколегированные, которые содержат свыше 10% легирующих элементов.
- спокойные стали, т. е., полностью раскисленные; такие стали обозначаются буквами "сп" в конце марки (иногда буквы опускаются);
- кипящие стали – слабо раскисленные; маркируются буквами "кп";
- полуспокойные стали, занимающие промежуточное положение между двумя предыдущими; обозначаются буквами "пс".
- сталь группы А поставляется потребителям по механическим свойствам (такая сталь может иметь повышенное содержание серы или фосфора);
- сталь группы Б – по химическому составу;
- сталь группы В – с гарантированными механическими свойствами и химическим составом.
- по состоянию углерода – свободный или связанный;
- по форме включений графита – пластинчатый, вермикулярный, шаровидный, хлопьевидный;
- по типу структуры металлической основы (матрицы) – ферритный, перлитный; имеются также чугуны со смешанной структурой: например, феррито-перлитные;
- по химическому составу – не легированные чугуны (общего назначения) и легированные чугуны (специального назначения).
- ферритные и ферритно-перлитные чугуны (марки СЧ10, СЧ15), применяют для изготовления малоответственных ненагруженных деталей машин;
- перлитные чугуны (марки СЧ20, СЧ25, СЧ30), используют для изготовления износостойких деталей, эксплуатируемых при больших нагрузках: поршней, цилиндров, блоков двигателей;
- модифицированные чугуны (марки СЧ35, СЧ40, СЧ45), получают добавлением перед разливкой в жидкий серый чугун присадок ферросилиция. Такие чугуны имеют перлитную металлическую матрицу с небольшим количеством изолированных пластинок графита.
Легированные стали подразделяют на:
Конструкционные стали предназначены для изготовления строительных и машиностроительных изделий.
Инструментальные сталипредназначены для изготовления режущего, измерительного, штампового и прочего инструмента. Эти стали содержат более 0,65% углерода.
Стали с особыми физическими свойствами: с определенными магнитными характеристиками (электротехническая сталь) или с малым коэффициентом линейного расширения (суперинвар).
Стали с особыми химическими свойствами: нержавеющие, жаростойкие и жаропрочные стали.
Качество стали зависит от содержания вредных примесей: серы и фосфора. Стали обыкновенного качества, содержат до 0.06% серы и до 0,07% фосфора; качественные – до 0,035% серы и фосфора каждого отдельно; высококачественные – до 0,025% серы и фосфора; особо высококачественные – до 0,025% фосфора и до 0,015% серы.
По степени удаления кислорода из стали, т. е. по степени её раскисления, существуют:
Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы:
Конструкционные стали.Нелегированные конструкционные стали обыкновенного качества обозначают по ГОСТ 380-94 буквами "Ст" и условным номером марки (от 0 до 6) в зависимости от химического состава и механических свойств. Чем выше содержание углерода и прочностные свойства стали, тем больше её номер. Буква "Г" после номера марки указывает на повышенное содержание марганца в стали. Например:
Ст1кп2 – углеродистая сталь обыкновенного качества, номер марки 1, кипящая второй категории, поставляется потребителям по механическим свойствам (группа А);
ВСт5Г – углеродистая сталь с повышенным содержанием марганца, спокойная, номер марки 5, первой категории с гарантированными механическими свойствами и химическим составом (группа В);
Бст0 – углеродистая сталь обыкновенного качества, номер марки 0, группы Б, первой категории.
Содержание углерода в стали:
Марка стали | Содержание углерода | Марка стали | Содержание углерода |
Ст0 Ст1 Ст2 Ст3 | < 0.23% 0.06…0.12% 0.09…0.15% 0.14…0.22% | Ст4 Ст5 Ст6 | 0.18…0.27% 0.28…0.37% 0.38…0.49% |
Нелегированные конструкционные качественные стали. в соответствии с ГОСТ 1050-88 эти стали маркируются двухзначными числами, показывающими среднее содержание углерода в сотых долях процента: 05; 08; 10; 25; 40 и т.д. Так сталь с содержанием углерода 0,07…0,14% обозначается 10, сталь с содержанием углерода 0,42…0,50% – 45 и т.д..
При этом для сталей с содержанием углерода меньше 0,2%, не подвергнутых полному раскислению, в обозначение добавляются буквы кп (для кипящей стали) и пс (для полуспокойной). Для спокойных сталей буквы в конце их наименований не добавляются.
Например, 08кп, 10пс, 15, 18кп, 20 и т.д. Буква Г в марке стали указывает на повышенное содержание марганца.
Например: 14Г, 18Г и т.д.
Качественные стали с повышенными свойствами, используемые для производства котлов и сосудов высокого давления, обозначают по ГОСТ 5520-79 добавлением буквы К в конце наименования стали: 15К, 18К, 22К.
Конструкционные легированные стали. В соответствии с ГОСТ 4543-71 наименования таких сталей состоят из цифр и букв. Первые цифры марки обозначают среднее содержание углерода в стали в сотых долях процента. Буквы указывают на основные легирующие элементы, включенные в сталь. Буквенные обозначения легирующих элементов приведены в таблице 3.1.
Таблица.3.1 . Буквенные обозначения легирующих элементов в сталях
Цифры после каждой буквы обозначают примерное процентное содержание соответствующего элемента, округленное до целого числа, при содержании легирующего элемента до 1,5% цифра за соответствующей буквой не указывается.
Например, сталь состава: углерода C 0,09…0,15%, хрома Cr 0,4…0,7%, никеля Ni 0,5. 0,8% обозначается 12ХН, а обыкновенного качества с повышенным содержанием легирующих элементов: сталь содержащая углерода C 0,27. 0,34%, хрома Cr 2,3. 2,7%, молибдена Mo 0,2. 0,3%, ванадия V 0,06. 0,12%.обозначается 30Х3МФ. Для того, чтобы показать, что в стали ограничено содержание серы и фосфора (S
Особовысококачественные стали, подвергнутые электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов, обозначают добавлением через тире в конце наименования стали буквы Ш.
Например: 12Х2Н4А, 15Х2МА, 18ХГ-Ш, 20ХГНТР-Ш и др.
Литейные конструкционные стали. В соответствии с ГОСТ 977-88 обозначаются по тем же правилам, что и качественные и легированные стали. Отличие заключается лишь в том, что в конце наименований литейных сталей приводится буква Л.
Например, 15Л, 20Г1ФЛ, 35ХГЛ и др.
Шарикоподшипниковые стали по ГОСТ 801-78 маркируют буквами "ШХ", после которых указывают содержание хрома в десятых долях процента. Для сталей, подвергнутых электрошлаковому переплаву, буква Ш добавляется также и в конце их наименований через тире.
Например: ШХ15, ШХ20СГ, ШХ4-Ш.
Автоматные стали ГОСТ 1414-75 начинаются с буквы А (автоматная). Если сталь при этом легирована свинцом, то ее наименование начинается с букв АС. Для отражения содержания в сталях остальных элементов используются те же правила, что и для легированных конструкционных сталей.
Например: А20, А40Г, АС14, АС38ХГМ.
Инструментальные стали.Данные стали в соответствии с
ГОСТ 1435-90 делятся на качественные и высококачественные. Качественные стали обозначаются буквой У (углеродистая) и цифрой, указывающей среднее содержание углерода в стали в десятых долях процента.
Например, сталь У7 содержит 0,65. 0,74% углерода, сталь У10. 0,95. 1,04%, а сталь У13 – 1,2%.в обозначения высококачественных сталей добавляется буква А (У8А, У12А и т.д.). Кроме того, в обозначениях как качественных, так и высококачественных углеродистых инструментальных сталей может присутствовать буква Г, указывающая на повышенное содержание в стали марганца.
Например: У8Г, У8ГА.
Инструментальные легированные стали. Правила обозначения инструментальных легированных сталей по ГОСТ 5950-73 в основном те же, что и для конструкционных легированных. Различие заключается лишь в цифрах, указывающих на массовую долю углерода в стали. Процентное содержание углерода также указывается в начале наименования стали, в десятых долях процента, а не в сотых, как для конструкционных легированных сталей. Если же в инструментальной легированной стали содержание углерода составляет около 1.0%, то соответствующую цифру в начале ее наименования не указывают. Например: сталь 4Х2В5МФ имеет содержание C 0,3. 0,4%, Cr 2,2. 3,0%, W 4,5. 5,5%, Mo 0,6. 0,9%,
V 0,6. 0,9%, а сталь ХВГ. C 0,9. 1,05%, Cr 0,9. 1,2%, W 1,2. 1,6%,
Mn 0,8. 1,1%.
Быстрорежущие стали. Обозначают буквой "Р", следующая за ней цифра указывает на процентное содержание в ней вольфрама. В отличие от легированных сталей в наименованиях быстрорежущих сталей не указывается процентное содержание хрома, т.к. оно составляет около 4% во всех сталях, и углерода (оно пропорционально содержанию ванадия). Буква Ф, показывающая наличие ванадия, указывается только в том случае, если содержание ванадия составляет более 2,5%. В соответствии с вышесказанным сталь Р6М5 имеет состав С 0,82. 0,9%, Cr 3,8. 4,4%,
Mo 4,8. 5,3%, V 1,7. 2,1%, W 5,5. 6,5%, а сталь состава С 0,95. 1,05%,
Cr 3,8. 4,3%, Mo 4,8. 5,3%, V 2,3. 2,7%, N 0,05. 0,1%, W 5,7. 6,7% называется Р6АМ5Ф3.
Нержавеющие стали. Обозначения стандартных нержавеющих сталей согласно ГОСТ 5632-72 состоят из букв и цифр и строятся по тем же принципам, что и обозначения конструкционных легированных сталей. В обозначения литейных нержавеющих сталей добавляется буква Л.
Чугун
Чугуном называют сплав железа с углеродом и другими элементами, содержащими углерода более 2,14 %.
Классификация чугунов. Характерной особенностью чугунов является то, что углерод в сплаве может находиться не только в растворенном и связанном состоянии (в виде химического соединения – цементита Fe3C), но также в свободном состоянии – в виде графита. При этом форма выделений графита и структура металлической основы (матрицы) определяют основные типы чугунов и их свойства.
Классификация чугуна с различной формой графита производится по ГОСТ 3443–77. по следующим признакам:
В зависимости от формы выделения углерода в чугуне различают:
− белый чугун, в котором весь углерод находится в связанном состоянии в виде цементита ;
− половинчатый чугун, в котором основное количество углерода (более 0,8 %) находится в виде цементита;
− серый чугун, в котором весь углерод или его большая часть находится в свободном состоянии в виде пластинчатого графита;
− отбеленный чугун, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой – белого;
− высокопрочный чугун, в котором графит имеет шаровидную форму;
− ковкий чугун, получающийся из белого путем отжига, при котором углерод переходит в свободное состояние в виде хлопьевидного графита.
Серый чугун – это сплав системы Fe-C-Si, содержащий в качестве примесей марганец, фосфор, серу. Углерод в серых чугунах преимущественно находится в виде графита пластинчатой формы.
Структура отливок определяется химическим составом чугуна и технологическими особенностями его термообработки. Механические свойства серого чугуна зависят от свойств металлической матрицы, формы и размеров графитовых включений. Свойства металлической матрицы чугунов близки к свойствам стали. Графит, имеющий невысокую прочность, снижает прочность чугуна.
Чем меньше графитовых включений и выше их дисперсность, тем больше прочность чугуна.
Графитовые включения вызывают уменьшение предела прочности чугуна при растяжении. На прочность при сжатии и твердость чугуна частицы графита практически не оказывают влияния. Свойство графита образовывать смазочные пленки обусловливает снижение коэффициента трения и увеличение износостойкости изделий из серого чугуна. Графит улучшает обрабатываемость резанием.
Согласно ГОСТ 1412-85 серый чугун маркируют буквами «С» – серый и «Ч» – чугун. Число после буквенного обозначения показывает среднее значение предела прочности чугуна при растяжении.
Например, СЧ 20 – чугун серый, предел прочности при растяжении 200 МПа.
По свойствам серые чугуны можно условно распределить на следующие группы:
Чугун с вермикулярным графитом отличается от серого чугуна более высокой прочностью, повышенной теплопроводностью. Этот материал перспективен для изготовления ответственных отливок, работающих в условиях повышенных температур (блоки двигателей, поршневые кольца).
Вермикулярный графит получают путем обработки расплава серого чугуна лигатурами, содержащими редкоземельные металлы и силикобарий.
Модифицирование серого чугуна магнием, а затем ферросилицием позволяет получать магниевый чугун (СМЧ), обладающий прочностью литой стали и высокими литейными свойствами серого чугуна. Из него изготовляют детали, подвергаемые ударам, воздействию переменных напряжений и интенсивному износу, например, коленчатые валы легковых автомобилей.
Высокопрочный чугун. Отличительной особенностью высокопрочного чугуна являются его высокие механические свойства, обусловленные наличием в структуре шаровидного графита. Чугун с шаровидным графитом обладает не только высокой прочностью, но и пластичностью.
Получение шаровидного графита в чугуне достигается модифицированием расплава присадками, содержащими Mg, Ca, Се и другие редкоземельные металлы.
Химический состав и свойства высокопрочных чугунов регламентируются ГОСТ 7293-85 и маркируются буквами «В» – высокопрочный, «Ч» – чугун и числом, обозначающим среднее значение предела прочности чугуна при растяжении.
Например, ВЧ100 – высокопрочный чугун, предел прочности при растяжении 1000 МПа.
Высокопрочный чугун с шаровидным графитом является наиболее перспективным литейным сплавом, с помощью которого можно успешно решать проблему снижения массы конструкции при сохранении их высокой надежности и долговечности. Высокопрочный чугун используют для изготовления ответственных деталей в автомобилестроении (коленчатые валы, зубчатые колеса, цилиндры и др.).
Белый и ковкий чугун. Белые чугуны характеризуются тем, что у них весь углерод находится в химически связанном состоянии – в виде цементита. Излом такого чугуна имеет матово-белый цвет. Наличие большого количества цементита придает белому чугуну высокие твердость, хрупкость и очень плохую обрабатываемость режущим инструментом. Высокая твердость белого чугуна обеспечивает его высокую износостойкость, в том числе и при воздействии абразивных сред. Это свойство белых чугунов учитывается при изготовлении поршневых колец. Однако белый чугун применяют главным образом для отливки деталей с последующим отжигом на ковкий чугун. Ковкий чугун получают путем отжига белого чугуна определенного химического состава, отличающегося пониженным содержанием графитизируюших элементов (2,4…2,9 % С и 1,0…1,6 % Si), так как в литом состоянии необходимо получить полностью отбеленный чугун по всему сечению отливки, что обеспечивает формирование хлопьевидного графита в процессе отжига.
Механические свойства и рекомендуемый химический состав ковкого чугуна регламентирует ГОСТ 1215-79. Ковкие чугуны, маркируют буквами «К» – ковкий, «Ч» – чугун и цифрами. Первая группа цифр показывает предел прочности чугуна при растяжении, вторая – относительное его удлинение при разрыве. Например, КЧ33-8 означает: ковкий чугун с пределом прочности при растяжении 330 МПа и относительным удлинением при разрыве 8 %.
Ковкий чугун используют для изготовления мелких и средних тонкостенных отливок ответственного назначения, работающих в условиях динамических знакопеременных нагрузок (детали приводных механизмов, коробок передач, тормозных колодок, шестерен, ступиц и т. п.). Однако ковкий чугун – малоперспективный материал из-за сложной технологии получения и длительности производственного цикла изготовления деталей из него.
Легированные чугуны. В зависимости от назначения различают износостойкие, антифрикционные, жаростойкие и коррозионно-стойкие легированные чугуны.
Химический состав, механические свойства при нормальных температурах и рекомендуемые виды термической обработки легированных чугунов регламентируются ГОСТ 7769-82. В обозначении марок легированных чугунов буквы и цифры, соответствующие содержанию легирующих элементов, те же, что и в марках стали.
Износоcтойкие чугуны, легированные никелем (до 5 %) и хромом
(0,8 %), применяют для изготовления деталей, работающих в абразивных средах. Чугуны (до 0,6 % Сr и 2,5 % Ni) с добавлением титана, меди, ванадия, молибдена обладают повышенной износостойкостью в условиях трения без смазочного материала. Их используют для изготовления тормозных барабанов автомобилей, дисков сцепления, гильз цилиндров и др.
Жаростойкие легированные чугуны ЧХ2, ЧХЗ применяют для изготовления деталей контактных аппаратов химического оборудования, турбокомпрессоров, эксплуатируемых при температуре 600°С (ЧХ2) и 700 °С (ЧХ3).
Жаропрочные легированные чугуны ЧНМШ, ЧНИГ7Х2Ш с шаровидным графитом работоспособны при температурах 500…600°С и применяются для изготовления деталей дизелей, компрессоров и др.
Коррозионно-стойкие легированные чугуны марок ЧХ1, ЧНХТ, ЧНХМД ЧН2Х (низколегированные) обладают повышенной коррозионной стойкостью в газовой, воздушной и щелочной средах. Их применяют для изготовления деталей узлов трения, работающих при повышенных температурах (поршневых колец, блоков и головок цилиндров двигателей внутреннего сгорания, деталей дизелей, компрессоров и т. д.).
Антифрикционные чугуны используются в качестве подшипниковых сплавов, способных работать в условиях трения как подшипники скольжения.
Для легирования антифрикционных чугунов используют хром, медь, никель, титан.
Основное промышленное значение имеют стали и чугуны, которые являются сплавами железа с углеродом с различным содержанием последнего.
Чугуны
Чугуны - сплав железа с углеродом с содержанием углерода от 2,14% до 6%.
Чугуны выплавляют в доменных печах. Они подразделяются на передельные и литейные. Первые предназначены для передела в сталь. Вторые (литейные) применяют для изготовления различных изделий.
В производстве черных металлов и сплавов есть такое понятие, как передел:
- первый передел: из руды выплавляют чугун;
- второй передел: из чугуна выплавляют сталь;
- третий передел: из стали получают прокат (листы, проволоку,
сортовые профили: уголок, тавр, двутавр, швеллер, трубы);
- четвертый передел: из проката получают готовое изделие.
В этой схеме отдельные этапы могут быть исключены.
Литейные чугуны подразделяются на белые и серые. Дело
в том, что при охлаждении чугуна после выплавки большое значение имеет скорость охлаждения. При медленном охлаждении получается серый чугун, при быстром охлаждении - белый. Передельные чугуны - белые.
В белом чугуне практически весь углерод находится в форме химического соединения с железом - цементита (карбида железа). Свежий излом имеет светло-серый цвет и характерный металлический блеск. Белый чугун обладает повышенной твердостью (в 10 раз тверже железа), но он очень хрупок, не поддается обработке режущим инструментом, что является большим недостатком.
В сером чугуне практически весь углерод находится в форме графитовых включений. Серые чугуны с содержанием углерода до 3,8% можно обрабатывать режущими инструментами. Серый чугун обладает хорошей жидкотекучестью (способностью проникать в малые пространства, не остывая). Он обладает малой усадкой при затвердевании; относительно дешев.
Кроме железа и углерода в чугуне есть и другие элементы (или примеси). Основные: фосфор, сера, марганец, кремний. Примеси могут быть как полезными (т. е. улучшать потребительские и технологические свойства), так и вредными.
Фосфор в чугунах является полезной примесью. Его содержание колеблется от 0,3 до 0,8%. Он увеличивает жидкотекучесть серого чугуна, повышает твердость и износостойкость.
Сера. В чугунах допускается не более 0,1% серы. Сера является очень вредной примесью, т. к. она ухудшает жидкотекучесть материала, повышает его хрупкость и отбеливает чугуны.
Марганец. Содержание марганца в чугунах обычно 0,4-1,3%. Он повышает твердость материала, но в больших количествах также отбеливает чугуны.
Металлохозяйственные товары
Кремний. Содержание кремния в чугунах колеблется от 0,5 до 4,5%., Он способствует графитизации чугуна, соответственно при получении белого чугуна кремния должно быть не более 0,5%.
Чугуны обрабатываются только в горячем состоянии, поэтому товары широкого потребления из чугуна изготавливают, как правило, методом литья.
С целью снижения хрупкости и соответственно повышения прочности и пластичности чугуны модифицируют, т. е. при выплавке вводят в расплав специальные добавки (магний, алюминий). Такие чугуны называют высокопрочными или модифицированными.
чугун", а цифры то же, что и у высокопрочного чугуна. Применяют для изготовления деталей, эксплуатируемых при значительных статических и динамических нагрузках: крюки подъемников, вентили и крестовины для водопровода, гаечные ключи, гайки и др.
В настоящее время чугун все чаще заменяется другими материалами, тем не менее некоторые виды посуды (утятницы, казаны, сковороды для тушения) пользуются спросом. Чугунная посуда толстостенная (литье), она равномерно прогревается и пища не пригорает. Однако для предотвращения коррозии, чугунная посуда должна "работать" постоянно.
Стали
Сталь - сплав железа с углеродом, с содержанием последнего менее 2,14%, По содержанию углерода различают стали низкоуглеродистые (менее 0,25%), среднеуглеродистые (от 0,25 до 0,6%) и высокоуглеродистые (0,6-2,14%). От процентного содержания углерода в стали зависит такое важнейшее свойство, как прочность и пластичность. При содержании углерода более 1,4% прочность стали начинает резко уменьшаться, поэтому в практике редко используют стали с содержанием углерода более 1,4%.
По сравнению с чугуном сталь имеет более высокие физико-механические свойства, она характеризуется большей прочностью и пластичностью, ее можно ковать, прокатывать, обрабатывать ре-заньем, она обладает достаточной жидкотекучестью для получения изделий и деталей методом литья. Стали имеют достаточную упругость, гибкость, твердость, легкость, хорошие магнитные свойства, относительно высокую коррозионную устойчивость.
Так же как в чугуне, в стали, кроме железа и углерода, присутствуют примеси. Основные: фосфор, сера, марганец, кремний, кислород. Примеси могут быть как полезными, так и вредными.
Фосфор в сталях (в отличие от чугунов) является вредной примесью. Фосфор резко снижает пластичность стали. Содержание фосфора не должно превышать 0,05%.
Сера признается очень вредной примесью, ее содержание в сталях не должно превышать 0,05%. Пз-за высокого содержания серы
стали приобретают "красноломкость", т. е. снижается их способность обрабатываться металлорежущим инструментом.
Марганец в сталях является полезной примесью. Содержание марганца обычно 0,4-0,8%. Марганец повышает твердость и прочность стали, устраняет вредное воздействие серы, т. е. снижает хрупкость и красноломкость. "Марганцевая сталь" (т. е. сталь с высоким содержанием марганца), не теряет своих свойств даже при эксплуатации в условиях повышенных температур. Такая сталь используется, например, для деталей двигателей внутреннего сгорания, для лопастей турбин, для лабораторного оборудования, которое должно работать при повышенных температурах и т. п.
Кремний. Содержание кремния в сталях колеблется от 0,1 до 0,5%. Кремний улучшает механические свойства стали: прочность и твердость.
Кислород. Содержание кислорода в стали не должно превышать 0,05%. Он является вредной примесью - чем меньше в стали кислорода, тем она прочнее. Однако кислород очень тяжело удаляется.
С целью удаления кислорода проводят специальную технологическую операцию, которая называется раскислением. В зависимости от условий раскисления сталь разделяют на "кипящую" КС, "полуспокойную" ПС и "спокойную" СС. Больше всего кислорода содержит КС. СС - наиболее качественная и дорогая сталь.
Кипящая сталь (КС), как правило, прокатывается. Пузырьки кислорода удаляются при прокатке (как из теста для пельменей). КС дает наибольший выход металла.
Сталь выплавляется при втором переделе из чугуна тремя способами: в конвертерах, в мартеновских и электрических печах. Методы получения: бессемеровский, томасовский, кислородно-конвертерный.
Стали подразделяют на углеродистые (обычные) и легированные (имеющие специальные добавки, которые придают сплаву заданные свойства).
Углеродистые стали по содержанию углерода делят:
- на низкоуглеродистые (содержание углерода до 0,25%);
- среднеуглеродистые (от 0,25 до 0,65%);
- высокоуглеродистые (от 0,65 до 1,4%).
По назначению углеродистые стали делят на конструкционные (обычного качества и качественные) и инструментальные (качественные и высококачественные).
Конструкционные стали (например, для изготовления труб, деталей мебели) относят к низко- и среднеуглеродистым (содержание углерода до 0,65%). Конструкционные стали обыкновенного качества по назначению делят на три группы: А, Б, В, каждая из которых содержит определенные марки.
1. Углеродистые конструкционные стали обыкновенного ка
чества группы А имеют гарантированные механические свойства
(прочностные и упругопластичные) и предназначены для изго
товления различных товаров строительного назначения. Марки
стали в группе А обозначаются буквами Ст (сталь) и цифрами
от 1 до 7, которые являются условными порядковыми номерами.
С увеличением номера марки стали увеличивается ее прочность,
но снижается пластичность. Марки Ст1 и Ст2 характеризуются
высокой пластичностью и применяются для изготовления закле
пок в металлоконструкциях; марки СтЗ и Ст5 - для изготовления
несущих металлоконструкций и арматуры железобетона. Марка
Ст4 - основная для изготовления шурупов и болтов.
2. Углеродистые конструкционные стали обыкновенного ка
чества группы Б имеют гарантированный химический состав и ми
нимальное содержание фосфора и серы. Марки сталей группы Б
обозначаются МСт!, где первая буква обозначает способ выплавки
(М - мартеновский, Б — бессемеровский, К - кислородно-конвер
терный). Стали группы Б используют для изделий и деталей, в про
цессе изготовления или эксплуатации которых необходим нагрев
(например, для изделий, получаемых методом литья).
3. Углеродистые конструкционные стали обыкновенного ка
чества группы В имеют гарантированные химический состав и фи
зико-механические свойства. Стали группы В маркируются так же,
как и стали группы Б, но с добавлением впереди буквы В (ВМСт2).
Стали группы В применяют при изготовлении сварных изделий или
при использовании горячей пластической деформации.
Углеродистые конструкционные качественные стали выпускают двух групп - I и П. Марки обозначают цифрами 08, 10, 15
и до 85. Цифры обозначают среднее содержание углерода в сотых долях процента. Ко второй группе относят марки с повышенным содержанием марганца (от 0,8% до 1%).
В конце марок второй группы ставится буква Г (например, 15Г, 25Г). Качественные конструкционные стали применяют для изготовления деталей, испытывающих ударные нагрузки: шестерни, валы и т. п.
Углеродистые инструментальные стали делятся на качественные и высококачественные, Их маркируют буквой У и цифрами от 7 до 13, которые обозначают содержание в стали углерода в десятых долях процента. Марки высококачественной стали дополняются буквой А в конце маркировки. Углеродистые инструментальные стали могут содержать повышенное количество марганца, тогда к их маркировке прибавляется буква Г. Инструментальные стали применяются для изготовления инструментов. При этом из сталей марок У7, У8, У7А, У8А, У7ГА, которые обладают умеренной твердостью и прочностью, изготовляют инструменты для обработки древесины, слесарные молотки, монтажные инструменты, ножи, ножницы. Стали марок У12, У12А и У13 применяют для производства инструментов, которые должны обладать высокой твердостью, но в процессе эксплуатации не подвергаются ударным нагрузкам: напильники, метчики, плашки, инструменты для гравировки.
Основным недостатком углеродистых инструментальных сталей является их красноломкость и подверженность коррозии. При нагреве выше 200 °С их твердость резко снижается, что не позволяет использовать эти стали, например, для сверл. В таких случаях применяют легированные стали. .
Легированными называют стали, в которые специально вводят легирующие элементы, позволяющие наделять стали необходимыми специфическими свойствами. К легирующим элементам относят кремний, хром, никель, марганец, молибден, вольфрам, ванадий, титан и др. Легированием можно повысить прочность и пластичность стали, увеличить красностойкость, повысить износостойкость и сопротивление коррозии, придать стали какие-либо особые физические или химические свойства.
Свойства легированных сталей зависят от природы легирующих элементов, их концентрации и характера взаимодействия с железом и углеродом.
Кремний повышает прочность и твердость стали, но уменьшает пластичность.
Марганец повышает прочность стали.
Хром повышает механические свойства стали, увеличивает коррозионную стойкость.
Никель увеличивает упругость стали, снижает ее коробление при термической обработке.
Ванадий, молибден, титан увеличивают твердость и износостойкость стали.
В маркировке легированных сталей первые две буквы обозначают содержание углерода в сотых долях процента. Далее буквой обозначают легирующие элементы: Г - марганец, С - кремний, X - хром, Н - никель, В - вольфрам, М - молибден, Ф - ванадий, Т - титан, Ю - алюминий, Д - медь, К - кобальт, Б - бор. После буквы, обозначающей легирующий элемент, ставится цифра, указывающая на его содержание в процентах. Если легирующего компонента содержится менее 1%, то после буквы цифру не ставят.
Например, маркировка 12Х18Н9Т читается следующим образом: легированная качественная сталь с содержанием углерода 0,12%, хрома 18%, никеля 9%, титана менее 1%.
Если инструментальная сталь является высококачественной, то добавляется буква А. Например, 50ХГА - легированная сталь высококачественная с содержанием углерода 0,5%, марганца менее 1%.
В маркировке легированных сталей есть еще один нюанс: иногда, чтобы не писать очень большие формулы, некоторые постоянно используемые марки стали договорились обозначать определенными символами:
Ш - шарикоподшипниковые стали (обладают высокой прочностью и выносливостью, а также повышенной износоустойчивостью);
Э - электротехнические стали.
К сталям с особыми свойствами относят в первую очередь нержавеющие стали.
Основным легирующим элементом нержавеющих сталей является хром. При введении в сталь более 13% хрома сталь становится некоррозионной, однако при введении хрома более 20% резко возрастает ее хрупкость.
Уменьшение концентрации углерода в хромистых сталях также способствует увеличению коррозионной стойкости. Нержавеющие хромистые стали марок 08X13, 12X13 и 20X13 применяют для изготовления ложек и вилок. Стали ЗОХ13 и 40Х13 имеют чуть меньшую коррозионную устойчивость, но гораздо большую твердость и прочность (особенно после термической обработки),, их применяют для производства ножей и хирургических инструментов.
Введение в хромистую сталь никеля повышает упругость, не ухудшая коррозионную стойкость. Хромоникеливые стали лучше свариваются, штампуются, не теряют пластичности при низких температурах. Основными марками являются 12Х18Н9Т, 04Х18Н10,17Х18Н9. Данные сплавы используют для изготовления кухонной посуды, баков стиральных машин, деталей холодильников, галантерейных изделий.
Известная фирма "Цептер" для своей посуды использует хро-моникелевые сплавы.
Кроме нержавеющих, к сталям и сплавам с особыми свойствами относят сплавы с высоким электросопротивлением или нихромы (ХН80ТБЮ, ХН70ВМТЮ), магнитные сплавы (ЕХЗ - для магнитов, 79МНА - для элементов ЭВМ), инвар (Н36) - сохраняет постоянным коэффициент линейного расширения, платинит (Н48) - имеет коэффициент линейного расширения, как у стекла, эленвар (Н42ХТЮ) -сохраняет коэффициент расширения постоянным и имеет одинаковые упругие свойства в интервале температур от -50 до 100 °С.
Читайте также: