Металл который загорается при взаимодействии с водой
IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами.
Все элементы IIA группы относятся к s-элементам, т.е. содержат все свои валентные электроны на s-подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.
Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:
Ме 0 – 2e — → Ме +2
Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.
Взаимодействие с простыми веществами
с кислородом
Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.
Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO2):
Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me3N2.
с галогенами
Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:
с неметаллами IV–VI групп
Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно большая температура.
Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:
Остальные металлы II А группы образуют с углеродом ацетилениды:
С кремнием металлы IIA группы образуют силициды — соединения вида Me2Si, с азотом – нитриды (Me3N2), фосфором – фосфиды (Me3P2):
с водородом
Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.
Взаимодействие со сложными веществами
с водой
Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:
c кислотами-неокислителями
Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:
c кислотами-окислителями
− разбавленной азотной кислотой
С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N2O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH4NO3):
− концентрированной азотной кислотой
Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:
Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.
− концентрированной серной кислотой
Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:
Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.
Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы происходит преимущественно до сероводорода:
с щелочами
Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:
При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород
с оксидами
Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:
Метод восстановления металлов из их оксидов магнием называют магниетермией.
Вещества, самовозгорающиеся при контакте с водой
Химическим называется самовозгорание, возникающее в результате химического взаимодействия веществ.
К этой группе материалов относятся калий, натрий, рубидий, цезий, карбид кальция и карбиды щелочных металлов, гидриды щелочных и щелочноземельных металлов, фосфиды кальция и натрия, силаны, негашеная известь, гидросулъфид натрия и др.
Щелочные металлы — калий, натрий, рубидий и цезий — взаимодействуют с водой с выделением водорода и значительного количества тепла
Выделяющийся водород самовоспламеняется и горит совместно с металлом только в том случае, если кусок металла по объему больше горошины. Взаимодействие указанных металлов с водой иногда сопровождается взрывом с разбрызгиванием расплавленного металла. Также ведут себя гидриды щелочных и щелочноземельных металлов (КН, NаН, СаН2) при взаимодействии с небольшим количеством воды
При взаимодействии карбида кальция с небольшим количеством воды выделяется столько тепла, что в присутствии воздуха образующийся ацетилен самовозгорается. При большом количестве воды этого не происходит.
Карбиды щелочных металлов (например, Nа2С2, К2С2 при соприкосновении с водой взрываются, причем металлы сгорают, а углерод выделяется в свободном состоянии
Фосфид кальция Са3Р2 при взаимодействии с водой образует фосфористый водород (фосфин)
Фосфин РН3 является горючим газом, но самовозгораться не способен. Совместно с РН3 выделяется некоторое количество жидкого Р2Н4 , который способен самовозгораться на воздухе и может быть причиной воспламенения РН3.
Силаны, т. е. соединения кремния с различными металлами, например Мg2Si, Fе2Si при действии воды выделяют водородистый кремний, самовозгорающийся на воздухе
Вещества, самовозгорающиеся при контакте с окислителями.
Многие вещества, в основном органические, при смешении или прикосновении с окислителями способны самовозгораться. К окислителям, вызывающим самовозгорание таких веществ, относятся сжатый кислород, галогены, азотная кислота, перекись натрия и бария, перманганат калия, хромовый ангидрид, двуокись свинца, селитры, хлораты, перхлораты, хлорная известь и др. Некоторые из смесей окислителей с горючими веществами способны самовозгораться только при воздействии на них серной или азотной кислот или при ударе и слабом нагревании.
Сжатый кислород вызывает самовозгорание веществ (минерального масла), которые не самовозгораются в кислороде при нормальном давлении.
Хлор, бром, фтор и иод чрезвычайно активно соединяются с некоторыми горючими веществами, причем реакция сопровождается выделением большого количества тепла и вещества самовозгораются. Так, ацетилен, водород, метан и этилен в смеси с хлором самовозгораются на свету или от света горящего магния. Если указанные газы присутствуют в момент выделения хлора из любого вещества, самовозгорание их происходит даже в темноте
Нельзя хранить галогены вместе с легко воспламеняющимися жидкостями. Известно, что скипидар, распределенный в каком-либо пористом веществе (в бумаге, ткани, вате), самовозгорается в хлоре. Пары диэтилового эфира могут также самовозгораться в атмосфере хлора
Красный фосфор моментально самовозгорается при соприкосновении с хлором или бромом.
Смесь четыреххлористого углерода СС14 или четырехбромистого углерода со щелочными металлами при нагревании до 70 °С взрывается.
Азотная кислота, разлагаясь, выделяет кислород, поэтому является сильным окислителем, способным вызвать самовозгорание ряда веществ.
При соприкосновении с азотной кислотой самовозгораются скипидар и этиловый спирт.
Растительные материалы (солома, лен, хлопок, древесные опилки и стружки) самовозгораются, если на них попадет концентрированная азотная кислота.
При соприкосновении с перекисью натрия способны самовозгораться следующие горючие и легковоспламеняющиеся жидкости: метиловый, этиловый, пропиловый, бутиловый, изоамиловый и бензиловый спирты, этиленгликоль, диэтиловый эфир, анилин, скипидар и уксусная кислота. Некоторые жидкости самовозгорались с перекисью натрия после введения в них небольшого количества воды. Так ведут себя уксусноэтиловый эфир
(этилацетат), ацетон, глицерин и изобутиловый спирт. Началом реакции служит взаимодействие воды с перекисью натрия и выделение при этом атомарного кислорода и тепла
Атомарный кислород в момент выделения окисляет горючую жидкость, и она самовозгорается. Порошок алюминия, опилки, уголь, сера и другие вещества в смеси с перекисью натрия моментально самовозгораются от попадания на них капли воды.
Сильным окислителем является перманганат калия КМпО4. Его смеси с твердыми горючими веществами крайне опасны. Они самовозгораются от действия концентрированных серной и азотной кислот, а также от удара и трения. Глицерин С3Н5(ОН)3 и этиленгликоль С2Н4(ОН)2 самовозгораются в смеси с перманганатом калия через несколько секунд после смешения.
Сильным окислителем является также хромовый ангидрид. При попадании на хромовый ангидрид самовозгораются следующие жидкости: метиловый, этиловый, бутиловый, изобутиловый и изоамиловый спирты; уксусный, масляный, бензойный, пропионовый альдегиды и паральдегид; диэтиловый эфир, этил ацетат, амилацетат, метилдиоксан, диметилдиоксан; уксусная, пеларгоновая, нитрилакриловая кислоты, ацетон.
Смеси селитр, хлоратов, перхлоратов способны самовозгораться при действии на них серной, а иногда азотной кислоты. Причиной самовозгорания является выделение кислорода под действием кислот.
При действии серной кислоты на бертолетову соль происходит следующая реакция:
Хлорноватая кислота малоустойчива и при образовании распадается с выделением кислорода
Вещества, воспламеняющиеся и вызывающие горение при воздействии на них воды
Среди огромного множества химических соединений есть большая группа веществ, способных воспламеняться (взрываться) и гореть при взаимодействии с кислородом воздуха, водой и другими веществами. Обычно считают склонными к химическому самовозгоранию вещества и материалы с температурой самонагревания ниже 50 °С.
К ним относятся:
• Карбиды и гидриды щелочных металлов.
• Порошкообразные металлы - цинк, алюминий, железо, никель, кобальт, титан, цирконий
• Сульфиды металлов - серный колчедан или пирит FeS2.
Так, например, гидриды щелочных металлов - натрия, калия, рубидия и цезия интенсивно взаимодействуют с влагой воздуха по реакции: МеН + Н20 » МеОН + Н2Т.
Среди сульфидов металлов серный колчедан или пирит FeS2 является компонентом ископаемых углей и руд черных и цветных металлов. Другие сульфиды железа - FeS и Fe2S3 - образуются в технологических аппаратах, трубопроводах и резервуарах, где перерабатываются, транспортируются и хранятся серосодержащие вещества (высокосернистые нефти и нефтепродукты, сероводородсодержащие газы и др.). При температурах до 200 °С органическая сера гидролизуется с выделением сероводорода, который реагирует с продуктами коррозии железа с образованием сульфида: 2Fe(OH)2 + 3H2S -> Fe2S3 + 6Н20.
При температуре выше 200 °С органическая сера способна выделяться в чистом виде и вступать с железом в реакцию: Fe+S -> FeS + 100 кДж.
Сульфиды железа легко самовозгораются на воздухе, что является довольно частой причиной пожаров и взрывов в горнодобывающей и перерабатывающей промышленности, а также на транспорте. Сульфиды многих других металлов также склонны к самонагреванию и самовозгоранию, особенно в измельченном состоянии и при соприкосновении с влажным воздухом.
• Гидриды и карбиды щелочных и щелочноземельных металлов.
• Металлоорганические соединения и др.
Щелочные металлы реагируют с водой с выделением водорода и большого количества теплоты по общей схеме: 2Ме + 2Н20 -» 2МеОН + Н2Т + Q.
Многие металлоорганические соединения чрезвычайно чувствительны к кислороду - производные щелочных и щелочноземельных металлов, некоторых элементов 3 и 5 групп периодической системы. Низшие их алкильные производные (метилаты, этилаты и другие) самовоспламеняются на воздухе. Производные щелочных и щелочно-земельных металлов (Be, Mo, Zn, Cd, Ga, In) бурно реагируют с водой, причем многие из них с самовоспламенением выделяющегося углеводорода.
Помимо упомянутых имеется большая группа пожароопасных веществ, энергично взаимодействующих с водой с выделением самовоспламеняющихся на воздухе газов. Например, силициды металлов (Mg2Si, Fe2Si и т.д.) разлагаются водой с образованием силана, который самовозгорается на воздухе:
Некоторые неорганические соединения сильно разогреваются при взаимодействии с водой, как, например оксид кальция СаО (негашеная известь). При попадании небольшого количества воды на негашеную известь она разогревается до яркого свечения и может поджечь соприкасающиеся с ней горючие материалы.
Химические свойства металлов
Металлы занимают в Периодической таблице левый нижний угол. Металлы относятся к семействам s-элементов, d-элементов, f-элементов и частично – р-элементов.
Самым типичным свойством металлов является их способность отдавать электроны и переходить в положительно заряженные ионы. Причём металлы могут проявлять только положительную степень окисления.
1. Взаимодействие металлов с неметаллами.
а) Взаимодействие металлов с водородом.
С водородом непосредственно реагируют щелочные и щелочноземельные металлы, образуя гидриды.
Например:
Образуются нестехиометрические соединения с ионной кристаллической структурой.
б) Взаимодействие металлов с кислородом.
Все металлы за исключением Au, Ag, Pt окисляются кислородом воздуха.
Пример:
в) Взаимодействие металлов с галогенами.
Все металлы реагируют с галогенами с образованием галогенидов.
Пример:
В основном это ионные соединения: MeHaln
г) Взаимодействие металлов с азотом.
С азотом взаимодействуют щелочные и щелочноземельные металлы.
д) Взаимодействие металлов с углеродом.
Соединения металлов и углерода – карбиды. Они образуются при взаимодействии расплавов с углеродом. Активные металлы образуют с углеродом стехиометрические соединения:
Металлы – d-элементы образуют соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC – используются для получения сверхтвёрдых сталей.
2. Взаимодействие металлов с водой.
С водой реагируют металлы, имеющие более отрицательный потенциал, чем окислительно-восстановительный потенциал воды.
Активные металлы более активно реагируют с водой, разлагая воду с выделением водорода.
Менее активные металлы медленно разлагают воду и процесс тормозится из-за образования нерастворимых веществ.
3. Взаимодействие металлов с растворами солей.
Такая реакция возможна, если реагирующий металл активнее, чем находящийся в соли:
Металл, обладающий более отрицательным или менее положительным стандартным электродным потенциалом, вытесняет другой металл из раствора его соли.
4. Взаимодействие металлов с растворами щелочей.
Со щелочами могут взаимодействовать металлы, дающие амфотерные гидрооксиды или обладающие высокими степенями окисления в присутствии сильных окислителей. При взаимодействии металлов с растворами щелочей, окислителем является вода.
1 Zn 0 + 4OH – – 2e = [Zn(OH)4] 2– окисление
Zn 0 – восстановитель
1 2H2O + 2e = H2 + 2OH – восстановление
Металлы, обладающие высокими степенями окисления, могут взаимодействовать со щелочами при сплавлении:
5. Взаимодействие металлов с кислотами.
Это сложные реакции, продукты взаимодействия зависят от активности металла, от вида и концентрации кислоты и от температуры.
По активности металлы условно делятся на активные, средней активности и малоактивные.
Кислоты условно делятся на 2 группы:
I группа – кислоты, обладающие невысокой окислительной способностью: HCl, HI, HBr, H2SO4(разб.), H3PO4, H2S, окислитель здесь H + . При взаимодействии с металлами выделяется кислород (H2↑). С кислотами первой группы реагируют металлы, обладающие отрицательным электродным потенциалом.
II группа – кислоты, обладающие высокой окислительной способностью: H2SO4(конц.), HNO3(разб.), HNO3(конц.). В этих кислотах окислителями являются анионы кислоты: . Продукты восстановления аниона могут быть самыми разнообразными и зависят от активности металла.
H2S↑ – c активными металлами
H2SO4 +6е S 0 ↓ – с металлами средней активности
SO2↑ – c малоактивными металлами
HNO3 +4,5e N2O, N2 – с металлами средней активности
NO – c малоактивными металлами
HNO3(конц.) – NO2↑ – c металлами любой активности.
Если металлы обладают переменной валентностью, то с кислотами I группы металлы приобретают низшую положительную степень окисления: Fe → Fe 2+ , Cr → Cr 2+ . При взаимодействии с кислотами II группы – степень окисления +3: Fe → Fe 3+ , Cr → Cr 3+ , при этом никогда не выделяется водород.
Некоторые металлы (Fe, Cr, Al, Ti, Ni и др.) в растворах сильных кислот, окисляясь, покрываются плотной оксидной плёнкой, которая защищает металл от дальнейшего растворения (пассивация), но при нагревании оксидная плёнка растворяется, и реакция идёт.
Малорастворимые металлы, обладающие положительным электродным потенциалом, могут растворяться в кислотах I группы, в присутствии сильных окислителей.
2.3.1. Химические свойства водорода и галогенов.
Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:
С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H2).
В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.
Взаимодействие водорода с простыми веществами
с металлами
Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)
При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:
Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н2 является окислителем.
с неметаллами
Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!
Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.
При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:
Взаимодействие водорода со сложными веществами
с оксидами металлов
Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:
c оксидами неметаллов
Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.
Смесь CO и H2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:
c кислотами
С неорганическими кислотами водород не реагирует!
Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.
c солями
В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:
Химические свойства галогенов
Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.
Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal2.
Галоген
Физические свойства
Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке. Возгонкой, называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.
Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:
Взаимодействие галогенов с простыми веществами
Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.
Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.
Взаимодействие галогенов с неметаллами
водородом
При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:
Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:
Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:
фосфором
Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:
При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:
При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.
Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:
серой
Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:
Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:
Взаимодействие галогенов с металлами
Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:
Остальные галогены реагируют со всеми металлами кроме платины и золота:
Реакции галогенов со сложными веществами
Реакции замещения с галогенами
Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:
Аналогичным образом, бром вытесняет серу из растворов сульфидов и сероводорода:
Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:
Взаимодействие галогенов с водой
Вода горит во фторе синим пламенем в соответствии с уравнением реакции:
Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:
Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.
Взаимодействие галогенов с растворами щелочей
Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:
Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.
В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:
а при нагревании:
Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду:
Читайте также: