Металл который не пропускает радиацию

Обновлено: 06.01.2025

Допустим, существует угроза повышенной радиации. Чем можно защитить свое тело, воду и продукты, исходя из отсутствия спецсредств. Какие материалы не пропускают радиацию?

Радиация - это излучение. Состав излучения изотопов радиоактивных материалов разделяется на Альфа частицы, которые задерживаются поверхностью кожи, Бета частицы проникают глубже, но фольга толщиной 0,1 мм для них является непреодолимым барьером, нейтронное излучение легко прошибает бетон толщиной 15 см, но полиэтиленовая пленка 1 мм для них труднопроходимая преграда. Свинец используют для защиты от рентгеновского излучения и гамма квантов. Бетон в 10см ослабит поток гамма квантов в 2 раза. Свинцовый экран для рентгеновских лучей будет непреодолим при толщине около 0,5см. Так что если изладить бетонный бункер с метровой толщиной стен и облицевать его свинцом и полиэтиленом, то от радиации вы защититесь на 100%.

Спасибо за подробный ответ. А при опасном повышенном фоне солнечной радиации помогут ли эти средства или здесь понадобится что-то другое? — 11 лет назад

Солнечная радиация (излучение) это жесткий ультрафиолет (ЖУ), мягкий ультрафиолет (МУ), видимый спектр (ВС) и инфракрасное излучение (тепло). ЖУ задерживает озоновый слой. МУ - нужен и растениям и нам, фотосинтез и выработка витамина Д. ВС - мы в нем видим. Тепло - тоже хорошо. Есть ещё в солнечном ветре поток частиц, но с ними справляется магнитосфера Земли, раскидывая потоки по полюсам. — 11 лет назад

А что свинец вреден человеку сам по себе, помимо радиации, - это ничего? Или бетон и полиэтилен под свинцом сведут этот вред к нулю? — 4 года назад

С английского «radiation» переводится как излучение. В принципе, любое тело, температура, которого выше «абсолютного нуля» излучает какую-то энергию (как правило, это комплекс энергий). Радиаций (излучений) достаточно много, например: солнечная, тепловая, световая, звуковая, и др. Какие-то виды излучений полезны, а какие-то вредны и опасны. Самое опасное излучение ионизирующее, потому что у человека (да и многих животных) отсутствуют органы чувств, способные его воспринимать. Ионизирующее излучение такое, которое при взаимодействии с веществом вызывает ионизацию или возбуждение его атомов и молекул, т.е. создаёт пару ионов с противоположными зарядами.

В результате воздействия излучений (радиации), облучаемое тело или предмет получает определённое количество энергии.

Радиацию задерживает любой предмет (вещество) помещённый между источником излучения и облучаемым предметом. Другое дело насколько он задерживает или ослабляет то или иное излучение. Например: свинцовая пластина серьёзно ослабит рентген-излучение, но совершенно бесполезна в качестве защиты от теплового излучения.

Источниками ионизирующих излучений на земле являются Солнце и радиоактивные (способные к распаду) вещества находящиеся в земле. Сумма этих излучений и образует так называемый «естественный фон». Защищаться от него бесполезно, да и глупо. Большая вероятность того, что всё живое на Земле произошло в результате воздействия ионизирующего излучения.

Для оценки «вредности» воздействия радиации существует понятие приемлего риска. Но это уже предмет другого вопроса.

Что задерживает радиацию?

Почему свинец не пропускает радиацию?

На самом деле пропускает! Не путайте с гамма-излучением!
Гамма-излучение и близкое к нему по свойствам рентгеновское излучение, обладает наибольшей проникающей способностью – это высокоэнергетическое коротковолновое электромагнитное излучение, представляющее собой поток фотонов, имеет нулевой заряд и поэтому не отклоняется при воздействии магнитным полем. Для защиты от такого вида излучения понадобится толстый слой материала с тяжёлыми ядрами (свинец, объединённый уран, вольфрам) . Есть ряд веществ (бор, графит, кадмий) , которые способны нейтрализовать гамма-излучение.

Последнее предложение ответа "Кота . " неверно. Бор и кадмий сильно поглощают так называемые тепловые нейтроны. Гамма-излучение возникает не только при распаде урана и т. д., а от распада большинства р/акт. элементов по всей т-це Менделеева.
Физик.

графит отражатель нейтронов а не поглатитель используется для отражения нейтронов и усиления взрыва в ядерной бомбе

Свинец пропускает радиацию.
Защита - кратко-временная.

Учитываю силу радиации и конечность защиты свинца - время.

Ничточно мало. 1 дециметр свинца удерживает излучение не более 46 минут до того состояния, когда излучение радиации превышает допустимые пределы для жизни человека.

Именно проникающая радиация при взрыве атомной бомбы в первые часы защищает, но уже само, защита свинца, начинает излучать при радиактивном заражении!

Вы просто не понимаете что такое радиация))
Альфа-излучение, например, способно человека быстренько превратить в труп - спросите Литвиненко - он подтвердит, когда будет возможность. Массой больше чем в 7000 электронов, альфа-частица оставляет за собой лавину исковерканных белков, ДНК и поврежденных клеток. Но Литвиненко излучатель СОЖРАЛ, пару десятков микрограмм, малюсенькую пылинку - но сожрал, со стаканом знаменитого английского чая. А если просто стоять рядом, то альфа- излучение вязнет даже в воздухе, а лист бумаги от нее уже защищает полностью. Примерно так же ведет себя и бета- излучение - поток электронов высоких энергий. В принципе, бета-лучи были у нас дома, хилые - но были, в электронно-лучевых трубках телевизоров, а кинескоп излучал от их торможения немножечко рентгена.
Для гамма-излучения (полу) прозрачен даже свинец, его способны поглощать некоторые материалы, но полностью - только большие слои, даже воздуха (атмосфера вполне справляется с космическими гаммой и рентгеном). Но и человек для гаммы - почти прозрачен, хотя и тоже - не полностью, и дозу от него можно схватить. Свинец защитит надежно и полностью - от рентгена, вы же помните тяжелый фартучек в рентгенкабинете. Рентген и гамма - родственники, это фотоны света, гамма - пожестче, рентген - помягче.
А вот от нейтронов свинец не защитит, тут нужны материалы типа циркония, который очень любит их поглощать. И то - материалы еще и избирательно относятся к поглощению нейтронов разных энергии. К тому же, нейтроны вызывают ядерные реакции, превращая безобидные элементы в радиоизотопы - вот вам и заражение.
Вобщем, радиация бывает разная, и способы защиты от нее разные. Но самый полезный для нас совет - не жрать радиоактивные пылинки. Например, достаточно пронести через комнату кусок плутония, и - срочно нужно надеть респиратор, плутоний (внезапно) очень летуч.

Лучший ответ. Почему не в топе, не понимаю.

Также.
Для поглощения гаммы важен атомный номер, от которого, свою очередь, зависит количество электронов в материале. Чисто теоретически - можно бустануть поглощение гаммы, накачав материал электронным излишком. Если я не ошибаюсь, в этом суть электризации (хотя, я совсем не представляю, сколько электронного газа можно впихнуть таким образом и какой от этого эффект).

В свою очередь, от нейтронов использую лёгкие материалы - полиэтилен, вода. В существующих статьях уточняется, что работают ядра лёгких элементов, когда нейтроны выбивают протоны (а те тормозятся куда быстрее), причём лучший поглотитель - водород.

Радиационностойкие материалы и их особенности

Радиационное облучение может быть достаточным, чтобы ухудшить критические свойства конструкционных материалов. Радиационная стойкость зависит от мощности источника излучения, расстояния до него, а также допустимыми уровнями воздействия, при которых эти эффекты становятся важными.

Свойства материалов, которые подвергаются воздействию излучения, должны рассматриваться в трёх категориях:

  • Механической (прочность, твёрдость, относительное удлинение);
  • Тепловой (теплопроводность);
  • Оптической (коэффициенты излучения, поглощения и отражения).

Радиационная стойкость материалов принято рассматривать отдельно для наземных и искусственных космических объектов.

Понятие радиационной стойкости материалов

Материалы, защищающие от излучения, используются для различных радиологических применений – в медицине, технике неразрушающего контроля, при производстве космических летательных аппаратов и пр. Однако использование радиации сопряжено с риском. Те, кто использует радиацию, должны быть надлежащим образом обучены радиационной безопасности, радиационной физике, биологическим эффектам радиации, чтобы гарантировать безопасность.

Таким образом, выбор радиационно стойких материалов важен для того, чтобы снизить влияние внешнего радиационного облучения на человека, а также на экологию окружающей среды.

Одним из основных принципов снижения влияния радиоактивного излучения является экранирование - использование поглощающего материала (оргстекла, для бета-частиц и свинца для рентгеновских и гамма-лучей). Экранирование используется в различных областях, включая диагностическую визуализацию, лучевую терапию, ядерную и промышленную защиту. Способность к экранированию считается одной из основных составляющих, которой определяется радиационная безопасность материалов.

Различают экранирование объектов и экранирование производственного персонала. В первом случае используют механически прочные защитные экраны, конфигурация которых соответствует форме защищаемого объекта, во втором – защитную одежду, которая ослабляет рентгеновское излучение: фартуки, жилеты, обувь. Интенсивность экранирования зависит от индивидуальной стойкости веществ к радиоактивному излучению.

радиационная безопасность материалов

Стойкость неорганических материалов

Исторически материалы для защиты от излучения изготавливались из свинца. Однако в последнее время, кроме свинца, используются также композиты на его основе и бессвинцовистая неорганика.

Противорадиационная стойкость свинца связывается с его высокой плотностью, которая составляет 11,34 г/см³. Это делает данный металл полезным для эффективной защиты от рентгеновского и гамма излучения.

Свинец в чистом виде хрупок, поэтому непосредственно для экранирования его не применяют. Чтобы превратить чистый свинец в радиационно-защитный материал, его смешивают со связующими веществами и добавками, получая гибкий свинцово- виниловый лист. Затем из этих листов набирается необходимая толщина защитного покрытия. Существует три стандартных уровня защиты, эквивалентных свинцу, для традиционной одежды с радиационной защитой из свинца: 0,25 мм, 0,35 мм и 0,5 мм.

Свинцовая композитная защита представляет собой смесь свинца с другими, более лёгкими металлами. Состав композита варьируется в зависимости от назначения, но обычно туда входят олово, резина, ПВХ, и другие металлы, ослабляющие радиацию. Экранирование из композиционной смеси на основе свинца легче (до 25%), чем свинец обычного сорта, при этом фактическая эффективность защиты остаётся на прежнем уровне.

Из других металлов, обладающих высокой радиационной стойкостью, следует отметить некоторые тяжёлые металлы, которые относятся к той же группе, что и свинец, и, следовательно, так же хорошо поглощают или блокируют излучение. В ряду высокой радиационной стойкости находятся олово, сурьма, вольфрам, висмут.

Стойкость полимеров

Радиационная стойкость полимеров и пластика сильно зависит от длины волны базового излучения, но с уменьшением длины волны (что характерно именно для рентгеновского и гамма-излучения) противорадиационная способность всех неметаллов снижается. Поэтому излучение высокой энергии часто приводит к снижению характеристик удлинения и развитию хрупкости в полимере.

радиационная стойкость материалов

Общий срок службы пластика зависит от общего количества поглощённого излучения. Такие материалы, как полиэстер или полиамид, обладают удовлетворительной устойчивостью к гамма-излучению и рентгеновским лучам. Наоборот, полиэтилен (особенно высокого давления) весьма чувствителен к радиации, и поэтому в активных ионизирующих средах не применяется.

Информацию, касающуюся радиационного сопротивления пластмасс, следует рассматривать только как ориентир, поскольку различный химический состав пластика, мощность дозы, уровень механического напряжения, температура окружающей среды играет основную роль в противорадиационной стойкости. Обычно рекомендуется проводить экспериментальное тестирование применительно к конкретным условиям.

Стойкость органических веществ

Радиационная стойкость материалов органического происхождения – сельскохозяйственных культур, кустарников, деревьев – важна для оценки их экологической безопасности при потреблении (овощи, фрукты) и проведении сезонных лесохозяйственных работ, например, при высадке саженцев.

Высокие дозы облучения, используемые при попытках произвести стерильные или пригодные для длительного хранения фрукты или овощи, ухудшают вкус продуктов. При этом их безопасность (при сравнительно низких дозах облучения, ниже 3 кГр) для потребления полностью обеспечивается. С другой стороны, облучение эффективно убивает бактериальные патогены в свежих, а также свежесрезанных овощах и фруктах. Эта эффективность распространяется на некоторые бактериальные патогены человека, а также на бактериальные фитопатогены, что приводит к увеличению сроков сохранения органики. Более устойчивыми к облучению являются патогенные вирусы и грибы.

Таким образом, радиационное облучение считается одним из наилучших способов безопасности потребления фруктов и овощей.

Защита от гамма-излучения

Основным вариантом для защиты от альфа-, бета-, гамма-излучения выступает экранирование, а также использование специализированных индивидуальных защитных средств, которые обеспечат безопасность человека в опасных условиях радиации.

Различают несколько типов вредного излучения, каждый из которых имеет свою проникающую способность и, исходя из этого, особенность защиты:

  • Альфа-излучение обладает небольшой проникающей способностью, поэтому для защиты от него достаточно будет использование рабочих перчаток из резины, пластиковых очков, простого респиратора.
  • Бета-излучение отличается большей способностью проникать в различные материалы, поэтому для безопасности человека необходимо использовать противогаз, экраны на основе тонкого слоя алюминия и стекла.
  • Гамма-излучение проникает практически в любую поверхность кроме вольфрама, свинца, чугуна.
  • Для защиты от гамма- и нейтронного излучения требуется использование многослойных экранов.

Источниками радиации выступает не только радионуклиды, но и в частности прохождение флюорографического обследования, компьютерной томографии.

Чтобы понять какая защита от гамма-излучения наиболее эффективна, необходимо определиться с источником радиации.

Защита от внешнего гамма-излучения

Источниками внешнего радиационного опасного излучения выступают:

  • радиоактивные вещества;
  • ядерные реакторы;
  • рентгеновское оборудование и т. д.

Использование источников радиации предполагает соблюдение специализированных необходимых мер защиты. Допустимые уровни облучения прописаны в нормах радиационной безопасности, которые обязательно должен знать рабочий персон и не превышать указанных данных.

Обычно для защиты от гамма-излучения целесообразно применять защитные сооружения, которые экономически выгодны и обеспечат значительное ослабление радиационного воздействия. Мощность точечного источника радиации прямо пропорциональна активности облучения, поэтому ее удается ограничить путем меньшего использования и на большем удалении.

Такой вариант защиты предусматривает возможность выполнения работ в определенный промежуток времени, который не позволит получить большую дозу облучения, так как первое свойство ионизирующего излучения — это накопление. Следовательно, чем меньше времени человек находится в зоне повышенного радиационного фона, тем меньший вред это нанесет его здоровью.

Следующий способ защиты от внешнего гамма-излучения выступает снижение его мощности при увеличении расстояния между источником изучения и объекта. Четкие указания по допустимому промежутку времени для нахождения вблизи источника излучения предъявляются рабочему персоналу, по истечению которого люди должны выводиться в безопасную зону.

При работе с источниками повышенной радиационной активности необходимо применение специализированных многослойных экранов, позволяющих существенно снизить интенсивность проникновения опасного излучения.

Отличной защитой от гамма-излучения являются материалы с большим атомным номером и высокой плотностью:

  • Свинец.
  • Сталь.
  • Бетон.
  • Свинцовое стекло.

В зависимости от мощности гамма-лучей подбирается необходимый материал для повышенной защиты здоровья людей.

Защита от гамма-излучения: свинец

Для защиты от гамма-излучения применяют чаще всего свинцовый лист. Металл способен задерживать заряженные крупные и мелкие радиационные частицы, а также комбинированные излучения.

Используется свинцовые изделия в медицине, научных институтах, лабораториях для защиты от гамма-лучей, рентгеновского излучения от специализированных приборов в поликлиниках.

Помещения для диагностики организма при помощи рентген аппаратов обязательно должны быть экранированы свинцовыми пластинами во избежание избыточного облучения как медицинского персонала, так и пациентов.

Для защиты от гамма-излучения целесообразно использовать специализированную одежду со свинцовыми прокладками:

Свинцовое стекло используется при проведении опытов с радиоактивными веществами, оно необходимо для установки в специализированном оборудовании в качестве смотрового окна.

Свинец выступает тяжелым металлом, который не взаимодействует с бета- и гамма-лучами, радиоактивными изотопами, поэтому станет эффективным для них препятствием.

Способы защиты от гамма-излучения внутри зданий

Для защиты от внутреннего облучения проводятся мероприятия по уменьшению накопления опасной радиоактивной пыли — это специализированная облицовка стен, пола, потолка, проведение регулярной влажной уборки помещений, обустройство эффективной вытяжной вентиляции.

Дополнительно требуется тщательная личная гигиена персонала, применение индивидуальных средств защиты от альфа излучения (это комбинезоны, шапочки, очки, резиновые перчатки, сапоги, респираторы либо шланговые противогазы). При надевании и снятии СИЗ, чтобы не загрязнить одежду и кожные покровы, окружающие предметы необходимо четко следовать инструкции, проводить контроль мощности дозы рентгеновского и прочего излучения.

Расчет защиты от гамма-излучения

Когда рентгеновские лучи проходят через вещество, они не полностью поглощаются материалом, а ослабляются, то есть уменьшается их интенсивность.

Величина ослабления может быть описана математическим соотношением: линейный коэффициент ослабления зависит от следующих данных:

  • типа защитного материала;
  • энергии падающего рентгеновского излучения.

Определить максимальную длину пробега гамма-излучения необходимо с учетом атомной массы, плотности поглощающего вещества.

Мощность дозы источников гамма-излучения может быть измерена соответствующими приборами или подсчитана математически.

После измерения мощности радиационных лучей получится правильно подобрать методы защиты от гамма-излучения, чтобы обезопасить пребывание людей вблизи с источником радиации.

Читайте также: