Металл или металлический сплав
Видео: 14. Чугун и сталь. Окружающий мир - 2 класс
Содержание
Главное отличие - металл против стали
Металлы - это вещества, обладающие уникальными свойствами, такими как отличная электрическая и теплопроводность, отражательная способность света, пластичность и пластичность. Иногда термин металл используется для обозначения химических элементов в группе 1, группе 2 и блоке d в периодической таблице. Это также общий термин, используемый для обозначения металла или металлических сплавов. Сталь - это металлический сплав, состоящий из железа, углерода и некоторых других химических компонентов. Существуют различные виды стали, изготовленные для получения желаемых свойств. Основное различие между металлом и сталью заключается в том, что термин металл может использоваться для обозначения химического элемента или вещества с характерными металлическими свойствами, тогда как термин сталь используется для обозначения металлического сплава, состоящего из железа, углерода и некоторых других элементов.
Ключевые области покрыты
1. Что такое металл
- определение, свойства металла
2. Что такое сталь
- определение, разные типы
3. В чем разница между металлом и сталью
- Сравнение основных различий
Ключевые слова: коррозия, пластичность, электропроводность, ковкость, металл, металлический сплав, отражательная способность света, сталь
Что такое металл
Термин металл можно использовать для обозначения химического элемента или вещества с характерными металлическими свойствами. В общем, мы называем вещества с высокой прочностью, высокой электрической и теплопроводностью и высокой пластичностью металла.
Элементы группы 1 и группы 2 в периодической таблице элементов известны как металлы. Элементы группы 1 называются щелочными металлами, а элементы группы 2 - известными щелочноземельными металлами. Эти элементы могут образовывать катионы, удаляя валентные электроны. Кроме того, элементы d-блока также рассматриваются как металлы.
Вещества, изготовленные из этих элементов, известны как металлы. Эти металлы обладают уникальными свойствами, известными как металлические свойства. Некоторые основные свойства металлов перечислены ниже.
- Металлический внешний вид (блеск благодаря высокой отражающей способности света)
- Очень высокие температуры плавления и кипения
- Высокая плотность
- Отличная тепловая и электрическая проводимость
- тягучесть
- тягучесть
Рисунок 1: Золото это металл
Металлы и их применение
Некоторые общие полезные металлы приведены в следующей таблице с некоторыми их применениями.
Металл или металлический сплав
Видео: Медь и ее сплавы
В ключевое отличие между металлом и сплавом заключается в том, что металл представляет собой чистое вещество, тогда как сплав представляет собой смесь двух или более компонентов.
Мы можем разделить все элементы на металлы и неметаллы на основе определенных характеристик. Металлы имеют блеск, и они хорошо проводят тепло и электричество. Когда мы полируем металлы, они также хорошо отражают свет. Однако не только металлы, но и их твердые смеси, а именно сплавы, очень полезны для человечества. Для обычного человека нет разницы между металлом и сплавом, но между ними есть много различий, и мы выделим их в этой статье.
1. Обзор и основные отличия
2. Что такое металл
3. Что такое сплав
4. Параллельное сравнение - металл и сплав в табличной форме
5. Резюме
Что такое металл?
Металл - это материал, обладающий металлическими свойствами. Это означает, что металлы имеют блеск и хорошо проводят тепло и электричество. Кроме того, если мы полируем поверхность, они также будут хорошими отражателями света. Кроме того, большинство металлов пластичны и пластичны. Более того, они более плотные, чем неметаллы. В большинстве случаев эти материалы имеют более высокие плотности и температуры плавления и кипения. Ковкость и пластичность металлов позволяют им деформироваться под нагрузкой без раскалывания.
Кроме того, металл может иметь три основных кристаллических структуры;
- Телоцентрированная кубическая структура
- Гранецентрированная кубическая структура
- Гексагональная плотноупакованная структура
Прежде всего, металлы склонны к образованию катионов. Они образуют катионы, теряя электроны со своих крайних атомных орбиталей. Следовательно, большинство металлов могут образовывать оксиды при реакции с кислородом в нормальном воздухе. Однако есть некоторые металлы, которые вообще не вступают в реакцию с воздухом из-за их высокой стабильности.
Что такое сплав?
Сплав - это вещество, состоящее из двух или более компонентов, смешанных с металлом. Следовательно, он также имеет металлические свойства. Кроме того, сплав может иметь фиксированный или переменный состав. С учетом цели, мы делаем сплавы, чтобы улучшить существующие свойства металла или придать металлу новые свойства. В основном, цель производства сплавов - сделать их менее хрупкими, твердыми, устойчивыми к коррозии или иметь более желаемый цвет и блеск. Более того, можно изменить свойства сплава в соответствии с требованиями, варьируя добавки или легирующие материалы.
Слово легирование стало обозначать процесс, который приводит к образованию сплавов. На протяжении веков люди использовали железо, считая его очень прочным. Но это было образование стали; его сплав, который дал миру один из самых прочных конструкционных материалов. Кроме того, существует два основных типа сплавов: сплавы замещения и сплавы внедрения.
Взглянем на пример стали; это сплав, состоящий в основном из железа и небольшого количества углерода, процентное содержание которого варьируется от 0,2% до 2% в зависимости от марки сплава. Мы знаем о прочности и долговечности стали, которая намного больше, чем железо, которое мягче стали. Таким образом, очевидно, что путем легирования мы можем получить более качественные материалы и, что немаловажно, со свойствами, отличными от свойств ингредиентов сплава. Кроме того, железо - это тот металл, который делает многие сплавы, помимо стали, с такими веществами, как марганец, хром, ванадий, вольфрам и т. Д.
В чем разница между металлом и сплавом?
Металл - это материал с металлическими свойствами, тогда как сплав - это вещество, состоящее из двух или более компонентов, смешанных с металлом. Следовательно, это основное различие между металлом и сплавом. Более того, металлы являются чистыми веществами, если только они не вступают в реакцию с воздухом и водой, но сплав всегда представляет собой смесь двух или более компонентов. Следовательно, металл - это природное вещество, а сплав - это искусственное вещество. Еще одно различие между металлом и сплавом заключается в том, что, в отличие от чистых металлов, сплав нелегко вступает в химические реакции с воздухом и водой, поэтому мы склонны использовать сплавы в автомобильных колесах, а не чистый металл.
Резюме - металл против сплава
Металлы - очень важные вещества, которые мы используем в повседневной жизни. Сплав - это подкатегория металла. Ключевое различие между металлом и сплавом заключается в том, что металл представляет собой чистое вещество, тогда как сплав представляет собой смесь двух или более компонентов.
Сплавы. Виды, характеристики сплавов
Из-за низких механических свойств чистые металлы как конструкционные материалы в машиностроении находят ограниченное применение по сравнению со сплавами.
Сплав — это конструкционный материал, полученный путем сплавления нескольких химических элементов (металлов и неметаллов) и обладающий свойствами, присущими основному сплавляемому элементу.
Металлический сплав может быть получен не только сплавлением химических элементов, но и такими способами, как спекание, электролиз, диффузия, плазменное напыление, возгонка и др. Конструкционный материал, полученный не сплавлением, называется псевдосплавом. Если сплав имеет в своем составе 50 % металла и более, то он называется металлическим сплавом.
Металлический сплав имеет более высокие механические и технологические свойства по сравнению с неметаллическим сплавом. Химические элементы, образующие сплав, называются компонентами.
По своему составу сплавы могут быть двухкомпонентными (металл + металл, металл + неметалл), трех- и более компонентными. Внутреннее строение сплавов определяется формой связи между компонентами.
Двухкомпонентные сплавы при нагревании (охлаждении) в силу особенностей взаимодействия друг с другом ведут себя неадекватно и, в связи с этим, имеют различное физическое строение и свойства.
К промышленным сплавам, которые находят широкое применение, относятся:
- чугун и сталь — сплавы железа с углеродом;
- латунь — сплав меди с цинком;
- бронза — сплав меди с оловом и др.
Сплавы имеют атомно-кристаллическое строение, обладают аллотропией (полиморфизмом) и, по сравнению с чистыми металлами, более высокими механическими и технологическими свойствами.
Форма металлической связи сплавляемых химических элементов влияет на образование структуры сплава, их атомно-кристаллическую решетку.
Фазы. Сплавам, так же как и чистым металлам, характерно атомно-кристаллическое строение. Сплав в твердом состоянии может иметь различную связь атомно-кристаллических решеток. Жидкое или твердое состояние химических компонентов, образующих сплав при определенной температуре и давлении, называется системой.
Однородная часть системы, отделенная от других частей условной границей (линией), называется фазой.
Жидкая фаза характеризуется тем, что атомные кристаллические решетки сплавляемых компонентов распадаются и компоненты растворяются друг в друге или не растворяются и присутствуют в сплаве самостоятельно. Эта закономерность присуща многим сплавам.
Твердая фаза — это однородная часть сплава с определенными атомно-кристаллическим строением и массовой долей сплавляемых компонентов. Атомные решетки сплавляемых компонентов взаимодействуют в строго определенном порядке. Атомные решетки химических элементов, образующих сплав в твердом состоянии, образуют мелкие кристаллы — структуры.
В зависимости от внутреннего строения сплавов и металлической или химической связи между сплавляемыми элементами сплавы подразделяются на две группы:
- однородные сплавы;
- неоднородные сплавы.
Однородные сплавы имеют общие атомные кристаллические решетки, в которые входят атомы сплавляемых компонентов.
Неоднородные сплавы имеют самостоятельные кристаллические решетки сплавляемых компонентов.
По характеру взаимодействия сплавляемых компонентов в твердой фазе различают механические смеси, твердые растворы и химические соединения.
Механическая смесь сплавляемых компонентов А и Б (рис. 1, а) образуется тогда, когда атомные кристаллические решетки сохраняются и не вступают в химическую реакцию с образованием какого-либо нового соединения. Связь между атомными решетками осуществляется за счет металлической связи. Механическая смесь сплава будет неоднородного типа, т. е. сплавляемые компоненты А и Б в сплаве будут самостоятельными и чередоваться между собой в зависимости от их соотношения.
Рис. 1. Схематическое изображение структуры сплава: а — механическая смесь; б — твердый раствор (I — раствор замещения; II — раствор внедрения); в — химическое соединение; А, Б — сплавляемые компоненты
Свойства механической смеси зависят от свойств сплавляемых компонентов А и Б. Как правило, эти микроструктуры имеют относительно высокую твердость, прочность, ударную вязкость, хорошо обрабатываются резанием.
Твердые растворы в зависимости от взаимодействия атомов подразделяются на твердые растворы внедрения и твердые растворы замещения (рис. 1, б ).
На рис. 1, б, I показана атомно-кристаллическая решетка твердого раствора замещения. Атомно-кристаллическая решетка основного компонента А в форме объемно-центрированного куба (девять атомов) сохранилась, но три атома этого компонента замещены атомами сплавляемого компонента Б.
На рис. 1, б, II показана атомно-кристаллическая решетка твердого раствора внедрения. При этом виде образования сплава атомно-кристаллическая решетка основного компонента А сохраняется. Атомно-кристаллическая решетка сплавляемого компонента Б разрушается, и его отдельные атомы внедряются в пространство атомно-кристаллической решетки основного компонента А. Таким образом, в атомно-кристаллической решетке твердого раствора внедрения девять атомов, как в основном компоненте А, плюс два-три атома компонента Б.
Твердые растворы по своим свойствам наиболее близки к свойствам основного компонента. Они имеют низкую твердость, высокую плотность, ударную вязкость, прочность, хорошо деформируются в холодном и горячем состоянии. Микроструктура большинства конструкционных и инструментальных сталей представляет собой твердые растворы внедрения и замещения.
Химические соединения сплава образуются тогда, когда атомно-кристаллические решетки сплавляемых компонентов А и Б распадаются. Отдельные атомы этих компонентов образуют новые атомные решетки, которые по своему типу, форме и числу атомов отличаются от атомно-кристаллических решеток сплавляемых компонентов.
Химические соединения в сплаве образуются при строго определенном массовом соотношении сплавляемых компонентов А и Б. Например, химическое соединение углерода с железом образуется при массовой доле углерода, равной 6,67 %.
Свойства химических соединений также резко отличаются от свойств сплавляемых компонентов. Химические соединения, как правило, очень твердые, хрупкие, тугоплавкие, имеют мелкозернистую или игольчатую микроструктуру. На рис. 1, в показана атомно-кристаллическая ячейка химического соединения углерода с железом. Это сложная ромбическая пространственная атомно-кристаллическая решетка, состоящая из атомов железа и атомов углерода (компонентов А и Б).
В практике чаще всего в сплаве наблюдается смесь нескольких соединений (микроструктур), например механическая смесь химического соединения и твердого раствора или механическая смесь двух твердых растворов.
Диаграммы состояния двухкомпонентных сплавов. Любое изменение химического состава сплава влечет за собой изменение физических параметров: температуры, давления и структуры. Изменение этих параметров на границах фаз происходит скачкообразно или замедленно.
В практике металловедения для определения температур, давления, структуры и взаимодействия сплавляемых компонентов применяют графики — диаграммы состояния сплавов. Для этого нагревают (охлаждают) сплав в закрытом тигле с помощью термопары, по прибору наблюдают поведение этого сплава и по наблюдениям строят соответствующие графики.
На диаграммах состояния отображаются только условия, когда сплав имеет постоянные параметры, — равновесие, поэтому в научной литературе диаграммы состояния также называют диаграммами равновесия. В связи с тем что сплавляемые компоненты (металлы и неметаллы) обладают аллотропией, при нагревании (охлаждении) в сплавах происходят аллотропные изменения. Аллотропные изменения можно наблюдать при лабораторных исследованиях с помощью термического метода, а иногда визуально (цвет сплава становится ярче или, наоборот, тускнеет, или длительное время остается постоянным).
Любое изменение в металле при нагревании (охлаждении) характеризуется определенной температурой, которая называется критической температурой. Критические температуры на прямой отражаются соответствующими точками, которые называются критическими точками. Если рассматривать любой металл или сплав в одном измерении (температура нагрева), то графическая характеристика будет отображена в виде вертикальной прямой, на которой указывают критические температуры (точки). Если состояние металла или сплава рассматривать в двух измерениях (температура нагрева (охлаждения) и время нагрева (охлаждения), то график будет изображен в двух координатах (ось ординат и ось абсцисс).
Для примера рассмотрим состояние чистого железа при нагревании и охлаждении. На рис. 2 приведены критические температуры чистого железа при нагревании (охлаждении). Железо имеет следующие критические точки (температуры): 768; 910; 1 392 и 1 539 °С. При температуре 910 °С Fе-α (α-железо) переходит в Fе-β (β-железо). При температуре 1 392 °С Fе-β переходит в Fe-γ (γ-железо). При температуре 1 539 °С Fe-γ начинает медленно расплавляться с поглощением энергии (температуры).
При всех критических температурах на диаграммах показаны задержки перекристаллизации (горизонтальные участки). При охлаждении железа процесс перекристаллизации происходит в обратном порядке.
Для двухкомпонентных сплавов диаграмма состояния — это графическое изображение состояния сплавов в двух измерениях: температура нагрева (охлаждения) и химический состав сплава (концентрация).
Рис. 2. Кривые нагрева и охлаждения железа: t — температура; τ — время
Температуру нагрева (охлаждения) откладывают по оси ординат, по оси абсцисс откладывают массовую долю сплавляемых компонентов (концентрация).
Для примера рассмотрим диаграмму состояния двухкомпонентного сплава свинец — сурьма (рис. 3). На оси абсцисс слева берем 100 % свинца (Pb), справа — 100 % сурьмы (Sb). Свинец и сурьма в жидком состоянии неограниченно растворяются друг в друге, в твердом состоянии — образуют механическую смесь сплавляемых компонентов.
При нагревании (охлаждении) сплава от твердого состояния до температуры плавления (а при охлаждении от жидкого состояния до температуры затвердевания) в сплаве происходит образование механических смесей (эвтектика) и расплавление при различных температурах.
Возьмем чистый свинец. При нормальной температуре и до температуры 245 °С в свинце никаких изменений внутреннего строения не происходит, и свинец будет иметь структуру Рb-α (α-свинец). При температуре 245 °С Рb-α перестраивается в Рb-β (β-свинец). Эта структура остается до температуры 327 °С.
При температуре 327 °С свинец начинает расплавляться. При расплавлении за счет поглощения энергии (температуры) температура свинца остается постоянной — 327 °С. При охлаждении свинца процесс происходит в обратном порядке.
Рис. 3. Кривые охлаждения и структуры (а, б, в, д, е), диаграмма состояния (г) сплавов свинец—сурьма: 1 — температура ликвидуса; 2 — температура солидуса; АВС — линия ликвидуса; DBE — линия солидуса; Ж — жидкость; Эвт. — эвтектика
При нагревании сурьмы до температуры 245 °С никаких изменений в металле не происходит. Структура сурьмы будет Sb-α (α-сурьма). При температуре 245 °С Sb-α переходит в Sb-β. При температуре 631°С сурьма начинает расплавляться. В связи с тем что при расплавлении происходит большое поглощение теплоты, температура расплавления сурьмы на 8 … 10 °С будет ниже. При охлаждении процесс идет в обратном порядке. Далее рассмотрим поведение типовых сплавов свинца и сурьмы: 95 % Рb + 5 % Sb; 87 % Рb + 13 % Sb; 60 % Рb + 40 % Sb. Для составления диаграммы состояния двухкомпонентного сплава свинец — сурьма строим кривые нагрева (охлаждения).
При нагревании (охлаждении) 100 % Pb (рис. 3, а) при температуре 327 °С на графике будет горизонтальный участок. При нагревании (охлаждении) сплава 95 % Рb + 5 % Sb (рис. 3, б) при температуре 245 °С на графике будет горизонтальный участок. Далее при нагревании (охлаждении) при температуре 300 °С будет перегиб кривой, при этой температуре сплав начнет расплавляться (при нагревании) или кристаллизоваться (при охлаждении). При нагревании (охлаждении) сплава 87 % Рb + 13 % Sb (рис. 3, в) при температуре 245 °С также будет горизонтальный участок. При этой температуре сплав начинает плавиться и заканчивает расплавление при температуре 245 °С.
При нагревании (охлаждении) сплава 60 % Рb + 40 % Sb (рис. 3, д) до температуры 245 °С в структуре сплава никаких изменений не происходит. При температуре 245 °С свинец начинает расплавляться — на графике будет горизонтальный участок. При дальнейшем нагревании (охлаждении) при температуре 350 °С сплав расплавляется (при нагревании) или начинает кристаллизоваться (при охлаждении).
При нагревании (охлаждении) 100 % сурьмы (рис. 3, е) до температуры 631 °С сплав будет иметь твердую фазу, и при температуре 631 °С на графике будет горизонтальный участок, сурьма начинает расплавляться. За счет поглощения энергии расплавление сурьмы происходит при температуре несколько ниже 631 °С.
Для наглядного изображения характеристики сплава свинец — сурьма строим следующий график. На оси ординат откладываем температуры нагрева (охлаждения) от нормальной температуры. На этой оси будем откладывать критические точки для 100 % свинца. На оси абсцисс откладываем массовую долю в сплаве свинца и сурьмы. Справа проводим ось температур для 100 % содержания сурьмы. Далее на оси ординат проектируем критические точки, полученные в результате нагрева рассмотренных ранее сплавов.
Как видим из графиков, первое фазовое изменение сплавов происходит при температуре 245 °С. Проводим горизонтальную прямую DE, соответствующую этой температуре. На оси температур свинца проектируем точку, соответствующую температуре 327 °С — температуре плавления чистого свинца. Полученную точку обозначим буквой А.
На оси температур сурьмы проектируем точку, соответствующую 631 °С — температуре плавления сурьмы. Полученную точку обозначим буквой С. На оси абсцисс из точки, соответствующей 87 % Рb и 13 % Sb, восстанавливаем перпендикуляр (пунктиром) до горизонтальной прямой DE (температура расплавления данного сплава). Точку А (критическую температуру 327 °С) на оси ординат соединяем с критической точкой, лежащей на горизонтальной прямой, соответствующей температуре плавления данного сплава (87 % Рb + 13 % Sb). Полученную точку обозначим буквой В.
На оси абсцисс из точки, соответствующей 95 % Рb и 5 % Sb, восстанавливаем перпендикуляр до пересечения с отрезком АВ. В данной точке имеем критическую температуру 300 °С — температуру плавления (затвердевания) сплава 95 % Pb + 5 % Sb.
На оси абсцисс из точки, соответствующей 60 % Рb и 40 % Sb, восстанавливаем перпендикуляр до пересечения с отрезком ВС, получаем точку, которая соответствует критической температуре 350 °С — плавления (затвердевания) сплава 60 % Pb + 40 % Sb.
Таким образом, мы получили диаграмму состояния двухкомпонентного сплава свинец — сурьма. Все сплавы Рb— Sb независимо от массовой доли компонентов до температуры 245 °C имеют твердую фазу — механическая смесь. Сплав по линии DВЕ начинает медленно расплавляться при нагревании и затвердевает при охлаждении. Эту линию называют линией солидуса (от лат. solidus — твердый).
По линии АВС сплавы расплавляются при нагревании, при охлаждении начинают медленно кристаллизоваться. Эта линия называется линией ликвидуса (от лат. liquidus — жидкий). Между линиями DBE и линией АВС сплавы находятся в полужидком состоянии. Сплав с 87 % Рb и 13 % Sb имеет самую низкую температуру плавления (затвердевания). Этот сплав, так же как и чистые металлы, плавится при одной температуре. Такие сплавы получили название эвтектических сплавов.
Эвтектика — мелкодисперсная механическая смесь двух компонентов, образовавшаяся при температуре плавления (кристаллизации), значительно ниже температуры плавления сплавляемых компонентов в процессе затвердевания. Левее эвтектики сплавы называются доэвтектическими, правее — заэвтектическими.
Рассмотрим фазовые состояния сплава свинец — сурьма. Выше линии АВС сплав находится в жидком состоянии (жидкая фаза), между линией АВ и DB — в полужидком (Pb + жидкость). Ниже лини DB сплав состоит из механической смеси свинца и эвтектики. Между линиями ВС и ВЕ сплав будет иметь полужидкую фазу и кристаллы сурьмы. Ниже линии ВЕ сплав будет состоять из механической смеси (эвтектика и сурьма).
Диаграмма состояния сплава Pb — Sb относится к типу диаграмм, в которых сплавляемые компоненты неограниченно растворяются в жидком состоянии и не растворяются в твердом состоянии, образуя механические смеси (эвтектика).
Анализируя диаграмму состояния сплавов, можно изучить следующие характеристики: температуру плавления (кристаллизации), виды структур сплавов, способность образовывать ликвацию, режимы термообработки и обработки давлением. При изучении диаграмм состояния двухкомпонентных сплавов следует обращать внимание на превращение компонентов сплавов в кристаллическом (твердом) состоянии.
В связи с этим различают следующие особенности аллотропных изменений сплавов (типовые диаграммы состояния):
Читайте также: