Металл горит зеленым цветом

Обновлено: 05.01.2025

Соединения калия используются с древнейших времён. Так, производство поташа (который применялся как моющее средство) существовало уже в XI веке. Золу, образующуюся при сжигании соломы или древесины, обрабатывали водой, а полученный раствор (щёлок) после фильтрования выпаривали. Сухой остаток, помимо карбоната калия K2CO3, содержал сульфат калия K2SO4, соду и хлорид калия KCl.

19 ноября 1807 года в Бейкеровской лекции английский химик Дэви сообщил о выделении калия электролизом расплава едкого кали (KOH)(в рукописи лекции Дэви указал, что он открыл калий 6 октября 1807 года). Дэви назвал его «потасий»

(лат. potasium; это название (правда, в некоторых языках с двумя буквами
s
) до сих пор употребительно в английском, французском, испанском, португальском и польском языках. При электролизе влажного едкого кали KOH на ртутном катоде он получил амальгаму калия, а после отгонки ртути — чистый металл. Дэви определил его плотность, изучил химические свойства, в том числе разложение воды и поглощение водорода.

В 1808 году французские химики Гей-Люссак и Л. Тенар выделили калий химическим путём — прокаливанием KOH с углём.

В 1809 году немецкий физик Л. В. Гильберт предложил название «калий» (лат. kalium, от араб. аль-кали

— поташ). Это название вошло в немецкий язык, оттуда в большинство языков Северной и Восточной Европы (в том числе русский) и «победило» при выборе символа для этого элемента — K.

Почему пламя окрашивается в зеленый цвет?

Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имело бы яркий зеленый цвет. Окислы же меди дают изумрудно-зеленое окрашивание.

Как изменить аватарку в гугл хром? Как изменить чужого персонажа Симс 4? Как изменить дату доставки мвидео? Как изменить дату рождения в аккаунте Wildberries? Как изменить дату рождения в Амонг АС на ПК? Как изменить дату создания видео на андроид? Как изменить e mail в Uplay? Как изменить фоновую картинку в гугл? Как изменить формат IMG в JPG? Как изменить формат текстового документа?

Цвет пламени

Нетрудно догадаться, что оттенок пламени определяется химическими веществами, сгорающими в нем, в том случае, если воздействие высокой температуры высвобождает отдельные атомы сгораемых веществ, окрашивая огонь. Чтобы определить влияние веществ на цвет огня, проводились различные эксперименты, о которых поговорим ниже.

Цвет пламени


С древних времен алхимики и ученые старались узнать, какие вещества сгорают, в зависимости от цвета, который приобретало пламя.

Пламя газовых колонок и плит, имеющихся во всех домах и квартирах, имеет голубой оттенок. Такой оттенок при сгорании дает углерод, угарный газ. Желто-оранжевый цвет пламени костра, который разводят в лесу, или бытовых спичек, обусловлен высоким содержанием солей натрия в природной древесине. Во многом благодаря этому цвет пожарной машины — красный. Пламя конфорки газовой плиты приобретет тот же цвет, если посыпать ее обыкновенной поваренной солью. При горении меди пламя будет зеленого цвета. Думаю, вы замечали, что при долгой носке кольца или цепочки из обычной меди, не покрытой защитным составом, кожа становится зеленого оттенка. То же самое происходит при процессе горения. Если содержание меди высокое, имеет место очень яркий зеленый огонь, практически идентичный белому. Это можно увидеть, если насыпать на газовую конфорку медной стружки.

Было проведено много экспериментов с участием обыкновенной газовой горелки и различных минералов. Таким образом определялся их состав. Нужно взять минерал пинцетом и поместить в пламя. Цвет, который приобретет огонь, может указать на различные примеси, имеющиеся в элементе. Пламя зеленого цвета и его оттенков говорит о присутствии меди, бария, молибдена, сурьмы, фосфора. Бор дает сине-зеленый цвет. Селен придает пламени синий оттенок. В красный пламя окрашивается при наличии стронция, лития и кальция, в фиолетовый — калия. Желто-оранжевый цвет получается во время горения натрия.

Исследования минералов для определения их состава проводятся с использованием бунзеновской горелки. Цвет ее пламени ровный и бесцветный, он не мешает ходу опыта. Бунзен изобрел горелку в середине XIX века.

Он и придумал метод, позволяющий определить состав вещества по оттенку пламени. Подобные эксперименты ученые пытались проводить и до него, но они не обладали бунзеновской горелкой, бесцветное пламя которой не мешало ходу эксперимента. Он помещал в огонь горелки разные элементы на проволоке из платины, так как при внесении этого металла пламя не окрашивается. На первый взгляд метод кажется хорошим, можно обойтись без трудоемкого химического анализа. Достаточно лишь поднести элемент к огню и увидеть из чего он состоит. Но вещества в чистом виде можно встретить в природе крайне редко. Обычно в них в большом количестве содержатся различные примеси, которые изменяют окраску пламени.

Бунзен пытался выделить цвета и оттенки различными методами. К примеру, с помощью цветных стекол. Допустим, если смотреть через синее стекло, не будет виден желтый цвет, в который огонь окрашивается при горении наиболее часто встречающихся солей натрия. Тогда становится различимым лиловый или малиновый оттенок искомого элемента. Но даже такие ухищрения приводили к верному определению состава сложного минерала в очень редких случаях. Большего такая технология не смогла добиться.

В наши дни такую горелку используют только для пайки.

Применение

  • Жидкий при комнатной температуре сплав калия и натрия используется в качестве теплоносителя в замкнутых системах, например, в атомных силовых установках на быстрых нейтронах. Кроме того, широко применяются его жидкие сплавы с рубидием и цезием. Сплав с составом 12 % натрия, 47 % калия, 41 % цезия обладает рекордно низкой температурой плавления −78 °C.
  • Соединения калия — важнейший биогенный элемент и потому применяются в качестве удобрений. Калий является одним из трёх базовых элементов, которые необходимы для роста растений наряду с азотом и фосфором. В отличие от азота и фосфора, калий является основным клеточным катионом. При его недостатке у растения прежде всего нарушается структура мембран хлоропластов — клеточных органелл, в которых проходит фотосинтез. Внешне это проявляется в пожелтении и последующем отмирании листьев. При внесении калийных удобрений у растений увеличивается вегетативная масса, урожайность и устойчивость к вредителям.
  • Соли калия широко используются в гальванотехнике, так как, несмотря на относительно высокую стоимость, они часто более растворимы, чем соответствующие соли натрия, и потому обеспечивают интенсивную работу электролитов при повышенной плотности тока.

Важные соединения

  • Бромид калия применяется в медицине и как успокаивающее средство для нервной системы.
  • Гидроксид калия (едкое кали) применяется в щелочных аккумуляторах и при сушке газов.
  • Карбонат калия (поташ) используется как удобрение, при варке стекла, как кормовая добавка для птицы.
  • Хлорид калия (сильвин, «калийная соль») используется как удобрение.
  • Нитрат калия (калийная селитра) — удобрение, компонент чёрного пороха.
  • Перхлорат и хлорат калия (бертолетова соль) используются в производстве спичек, ракетных порохов, осветительных зарядов, взрывчатых веществ, в гальванотехнике.
  • Дихромат калия (хромпик) — сильный окислитель, используется для приготовления «хромовой смеси» для мытья химической посуды и при обработке кожи (дубление). Также используется для очистки ацетилена на ацетиленовых заводах от аммиака, сероводорода и фосфина.



Кристаллы перманганата калия

  • Перманганат калия — сильный окислитель, используется как антисептическое средство в медицине и для лабораторного получения кислорода.
  • Тартрат натрия-калия (сегнетова соль) в качестве пьезоэлектрика.
  • Дигидрофосфат и дидейтерофосфат калия в виде монокристаллов в лазерной технике.
  • Пероксид калия и супероксид калия используются для регенерации воздуха на подводных лодках и в изолирующих противогазах (поглощает углекислый газ с выделением кислорода).
  • Фтороборат калия — важный флюс для пайки сталей и цветных металлов.
  • Цианид калия применяется в гальванотехнике (серебрение, золочение), при добыче золота и при нитроцементации стали. Чрезвычайно ядовит, один из сильнейших ядов.
  • Калий совместно с перекисью калия применяется при термохимическом разложении воды на водород и кислород (калиевый цикл «Газ де Франс», Франция).
  • Сульфат калия применяется как удобрение.

Нахождение в природе

Ввиду высокой химической активности калий в свободном состоянии в природе не встречается. Породообразующий элемент, входит в состав слюд, полевых шпатов и т. д. Также калий входит в состав минералов сильвина KCl, сильвинита KCl·NaCl, карналлита KCl·MgCl2·6H2O, каинита KCl·MgSO4·6H2O, а также присутствует в золе некоторых растений в виде карбоната K2CO3 (поташ). Калий входит в состав всех клеток (см. ниже раздел Биологическая роль

). Кларк калия в земной коре составляет 2,4 % (5-й по распространённости металл, 7-й по содержанию в коре элемент). Средняя концентрация в морской воде — 380 мг/л.

Месторождения

Крупнейшие месторождения калия находятся на территории Канады (производитель PotashCorp), России (ПАО «Уралкалий», г. Березники, г. Соликамск, Пермский край, Верхнекамское месторождение калийных руд), Белоруссии (ПО «Беларуськалий», г. Солигорск, Старобинское месторождение калийных руд).

Температура

Температура пламени зависит от природы горючего вещества и интенсивности подвода окислителя. Например:

  • Температура воспламенения для большинства твёрдых материалов – 300 °С.
  • Температура пламени в горящей сигарете – 250-300 °С.
  • Температура пламени спички 750-1400 °С; при этом 300 °С – температура воспламенения дерева, а температура горения дерева равняется примерно 800–1000 °С.
  • Температура горения пропан-бутана – 800-1970 °С.
  • Температура пламени керосина – 800 °С, в среде чистого кислорода – 2000 °С.
  • Температура горения бензина – 1300-1400 °С.
  • Температура пламени спирта не превышает 900 °С.
  • Температура горения магния – 2200 °С; значительная часть излучения в УФ-диапазоне.

Наиболее высокие известные температуры горения:

  • дицианоацетилен C4N2 5260 К (4990 °C) в кислороде и до 6000 К (5730 °C) в озоне;
  • дициан (CN)2 4525 °C в кислороде.

Так как вода обладает очень большой теплоёмкостью, отсутствие водорода в горючем исключает потери тепла на образование воды и позволяет развить большую температуру.

Содержание

  • 1 История и происхождение названия
  • 2 Нахождение в природе 2.1 Месторождения
    5.1 Взаимодействие с простыми веществами
    6.1 Важные соединения
    7.1 Калий в организме человека


Цветные свечи

Чтобы получить свечи с разноцветным пламенем надо добавить в расплавленный парафин соль металла, окрашивающего пламя в той или иной цвет.

Синяя свеча. Покрасить парафин в синий цвет можно стеаратом меди. Эту соль получают смешивая растворы сульфата меди и хозяйственного мыла. Пламя свечи тоже будет синим, благодаря ионам меди.

Зеленая свеча. В качестве пигмента используется зеленый оксид хрома (III). Он получается при термическом разложении бихромата аммония (опыт с вулканом). Цвет пламени тоже будет зеленым.

Желтая свеча. Желтый хромат натрия окрасит парафин и пламя свечи в желтый цвет.

Красная свеча. Парафин подкрашивают любым красным пигментом, например гуашью. Чтобы пламя было красным надо добавитькакую-либо соль стронция или лития.

Библиография

  1. Кшиштоф Кушмерчик, журнал «Горизонты техники для детей» 1989-3

Химические свойства

Элементарный калий, как и другие щелочные металлы, проявляет типичные металлические свойства и очень химически активен, является сильным восстановителем. На воздухе свежий срез быстро тускнеет из-за образования плёнок соединений (оксиды и карбонат). При длительном контакте с атмосферой способен полностью разрушиться. С водой реагирует со взрывом. Хранить его необходимо под слоем бензина, керосина или силикона, дабы исключить контакт воздуха и воды с его поверхностью. С Na, Tl, Sn, Pb, Bi калий образует интерметаллиды.

Взаимодействие с простыми веществами

Калий при комнатной температуре реагирует с кислородом воздуха, галогенами; практически не реагирует с азотом (в отличие от лития и натрия). При умеренном нагревании реагирует с водородом с образованием гидрида (200—350 °C):

с халькогенами (100—200 °C, E = S, Se, Te):

При сгорании калия на воздухе образуется надпероксид калия KO2 (с примесью K2O2):

В реакции с фосфором в инертной атмосфере образуется фосфид калия зелёного цвета (200 °C):

Взаимодействие со сложными веществами

Калий при комнатной температуре (+20 °C) активно реагирует с водой, кислотами, растворяется в жидком аммиаке (−50 °C) с образованием тёмно-синего раствора аммиаката калия.

2K + 2H2O ⟶ 2KOH + H2↑ 2K + 2HCl ⟶ 2KCl + H2↑ K + 6NH3 ⟶ [K(NH3)]6

Калий глубоко восстанавливает разбавленные

серную и азотную кислоты:
8K + 6H2SO4 ⟶ 4K2SO4 + SO2↑ + S↓ + 6H2O 21K + 26HNO3 ⟶ 21KNO3 + NO↑ + N2O↑ + N2↑ + 13H2O
При сплавлении металлического калия со щелочами он восстанавливает водород гидроксогруппы:

2K + 2KOH ⟶ 2K2O + H2↑ (450∘C)

При умеренном нагревании реагирует с газообразным аммиаком с образованием амида (+65…+105 °C):

2K + 2NH3 ⟶ 2KNH2 + H2

Металлический калий реагирует со спиртами с образованием алкоголятов:

2K + 2C2H5OH ⟶ 2C2H5OK + H2↑

Алкоголяты щелочных металлов (в данном случае — этилат калия) широко используются в органическом синтезе.

Соединения с кислородом

При взаимодействии калия с кислородом воздуха образуется не оксид, а пероксид и супероксид:

2K + O2 ⟶ K2O2 K + O2 ⟶ KO2

Оксид калия

может быть получен при нагревании металла до температуры не выше 180 °C в среде, содержащей очень мало кислорода, или при нагревании смеси супероксида калия с металлическим калием:
4K + O2 ⟶ 2K2O KO2 + 3K ⟶ 2K2O
Оксиды калия обладают ярко выраженными осно́вными свойствами, бурно реагируют с водой, кислотами и кислотными оксидами. Практического значения они не имеют. Пероксиды представляют собой желтовато-белые порошки, которые, хорошо растворяясь в воде, образуют щёлочи и пероксид водорода:

K2O2 + 2H2O ⟶ 2KOH + H2O2 4KO2 + 2H2O ⟶ 4KOH + 3O2↑ 4KO2 + 2CO2 ⟶ 2K2CO3 + 3O2↑



Советский изолирующий противогаз ИП-5

Свойство обменивать углекислый газ на кислород используется в изолирующих противогазах и на подводных лодках. В качестве поглотителя используют эквимолярную смесь супероксида калия и пероксида натрия. Если смесь не эквимолярна, то в случае избытка пероксида натрия поглотится больше газа, чем выделится (при поглощении двух объёмов CO2 выделяется один объём O2), и давление в замкнутом пространстве упадёт, а в случае избытка супероксида калия (при поглощении двух объёмов CO2 выделяется три объёма O2) выделяется больше газа, чем поглотится, и давление повысится.

В случае эквимолярной смеси (Na2O2:K2O4 = 1:1) объёмы поглощаемого и выделяемого газов будут равны (при поглощении четырёх объёмов CO2 выделяется четыре объёма O2).

Пероксиды являются сильными окислителями, поэтому их применяют для отбеливания тканей в текстильной промышленности.

Получают пероксиды прокаливанием металлов на воздухе, освобождённом от углекислого газа.

Также известен озонид калия KO3, оранжево-красного цвета. Получить его можно взаимодействием гидроксида калия с озоном при температуре не выше +20 °C:

4KOH + 4O3 ⟶ 4KO3 + O2 + 2H2O

Озонид калия является очень сильным окислителем, например, окисляет элементарную серу до сульфата и дисульфата уже при +50 °C:

6KO3 + 5S ⟶ K2SO4 + 2K2S2O7

Гидроксид

Основная статья: Гидроксид калия

Гидроксид калия (или едкое кали

) представляет собой твёрдые белые непрозрачные, очень гигроскопичные кристаллы, плавящиеся при температуре 360 °C. Гидроксид калия относится к щелочам. Он хорошо растворяется в воде с выделением большого количества тепла. Растворимость едкого кали при +20 °C в 100 г воды составляет 112 г.

Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк. Цвет пламени спирта.

Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк. Цвет пламени спирта.

Про спирт: хотя чистый этиловый спирт горит синим пламенем, а метиловый спирт горит зелёным пламенем - технические присадки поменяют цвет в соответствии с таблицей ниже, что не позволяет достоверно отличить метиловый спирт от этилового по цвету пламени, да и остальные способы малонадежны. Не пейте неизвестно какой спирт - вероятность умереть, если это метанол, выше 80%.

Металл, входящий в соединение Цвет пламени Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк.
Стронций Sr Темно-красный
Литий Li Малиновый
Кальций Ca Кирпично-красный
Натрий Na Желтый
Железо Fe Светло-желтый
Молибден Mb Желто-зеленоватый
Барий Ba Желтовато-зеленый
Медь Cu Ярко-зеленый или сине-зеленый
Бор B Бледно-зеленый
Теллур Te Зеленый
Таллий Tl Изумрудный
Селен Se Голубой
Мышьяк As Бледно-синий
Индий in Сине-фиолетовый
Цезий Cs Розово-фиолетовый
Рубидий Rb Красно-фиолетовый
Калий K Фиолетовый
Свинец Pb Голубой
Сурьма Sb Зелено-синий
Цинк Zn Бледно сине-зеленый

Дополнительная информация от Инженерного cправочника DPVA, а именно - другие подразделы данного раздела:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Цветное пламя: проба на окрашивание пламени

Для химика пламя не только источник тепла, но и инструмент химического анализа. Давно известно, что некоторые химические соединения, введенные в пламя, придают ему характерную окраску. В этом можно убедиться, если в любое пламя внести кусочек поваренной соли.

Проволока для анализа веществ в пламени

Возьмите кусок нихромовой проволоки (например, из старого утюга) длиной 10 см и выпрямите. Для опыта понадобится еще стеклянная трубка из легкоплавкого стекла. Надо заплавить проволоку в стеклянную трубку при помощи газовой горелки. Потом на конце проволоки сделайте маленькую петельку, как показано на рисунке.

Можно поступить не совсем спортивно и заменить стеклянную трубку корковой пробкой из винной бутылки.

При подведении определенного количества воздуха пламя газовой горелки становиться голубым и не коптит. Отчетливо видны в нем две части. Внутренняя часть называется восстанавливающей. Она голубого цвета и имеет сравнительно низкую температуру. Внешняя часть бесцветная — окисляющая. Температура этой части пламени равно около 1300 °С.

Растворите в нескольких миллилитрах воды, налитых в пробирку щепотку хлори­стого натрия. Очищенную проволоку погрузите в раствор, а потом введите в окисляющую часть пламени.

Проба в окисляющей части пламени

Какой великолепный эффект! Пла­мя в одно мгновение меняет окраску на интенсивно желтую. А теперь проверьте, содержит ли натрии во­да, которую вы пьете (этот металл придает пламени желтый цвет). Ре­зультат анализа будет положительным. Можете проверить, содержат ли натрий другие вещества. Окажется, что натрий «пронырливый» металл, везде он есть, пламя всегда будет более или менее желтым.

Если вы уже знаете, как меняет окраску пламени натрий, проверьте «поведение» других металлов. Возьмите образцы солей кальция, стронция, бария, калия и меди. Лучше всего взять хлориды или нитраты. Если у вас их нет, возьмите другие соли, но помните, что сначала проволоку нужно очистить в пламени и соляной кислоте. После такой очистки опять опускайте проволоку в раствор анализируемого вещества, а затем вводите в окисляющую часть пламени.

При анализе твердых субстанций раскаленную проволоку опускают в анализируемое вещество, которое прилипает к ней и затем сплавляется в пламени горелки, образуя перл. Перл на мгновение опускают в соляную кислоту. Образующиеся при этом хлористоводородные соединения летучие и быстро испаряются с проволоки в пламени, окрашивая его в характерный цвет.

Вероятно вы удивитесь, когда начнете исследовать калий, так как цвет пламени будет такой же как в ходе анализа натрия, и лишь время от времени через желтое пламя будут проскакивать розовые отблески калия. Это потому, что натрий, содержащийся в воде, употребляемой для растворения образца, не позволяет калию показать себя в полной красоте. В пламени идет „борьба” между натрием и калием, в которой натрий побеждает. Если хотите, можете помочь победить калию. Наблюдайте через так называемое синее кобальтовое стекло. Это стекло представляет собой фильтр, который задерживает цвет натрия, пропуская цвет калия. Вы, наверное, огорчитесь, что в вашей лаборатории нет кобальтового стекла. Но не падайте духом, вместо него можно взять раствор метилового фиолетового. А если его тоже нет, растворите в воде несколько капель синих чернил. Если будете наблюдать пламя через этот раствор, увидите фиолетовую вспышку, свидетельствующую о наличии калия.

А теперь сопоставьте результаты работы:

Металл Цвет пламени

Медный факел

Зная, что некоторые металлы окра­шивают пламя, сделайте медный «факел». Это не­обыкновенно интересный опыт. Со­берите аппаратуру, показанную на рисунке.

Всыпьте в пробирку несколь­ко криеталликов какой-либо соли меди, например, CuSO4 (медный ку­порос), и добавьте до 1/3 высоты пробирки денатурат и несколько капель разбавленной соляной кислоты За­купорьте пробирку пробкой, через которую проходит трубка, изогнутая под прямым углом и суженая на конце. Поместите пробирку в химический стакан с горячей водой, денатурат начнет испаряться, увлекая с собой соль меди. Приставьте к выхо­ду трубки горящую спичку: пары денатурата зажгутся, а пламя при­обретет зелено-синий цвет. Эффект опыта необыкновенно красив, если его наблюдать в темной комнате.

А теперь модифицируйте опыт, взяв вместо соли меди ранее употре­блявшиеся химические соединения, окрашивающие пламя. А если у вас есть бура или борная кислота, про­верьте, как окрашивает пламя бор. Борную кислоту можно купите в ап­теке. И еще одно: не заливайте про­бирку более чем на 1/3 высоты. И ни в коем случае не нагревайте пробир­ку горелкой!

Какие металлы окисляются зеленым цветом

Как определить, какой металл перед вами? Этот вопрос крайне важен, например, в ситуациях, когда необходимо подобрать марку электрода или присадочного прутка, а тип материала неизвестен. При отсутствии возможности прибегнуть к специальным исследованиям — спектральному анализу или анализу на углерод — первое, что можно сделать, это провести визуальный осмотр. Процесс лучше совместить с такими способами, как высекание искры, закалка, проверка напильником, изучение залома.

Для исследования образца материала и сопоставления результата пригодятся следующие сведения:

  • Черные металлы в процессе резки или при зачистке имеют серебристый цвет. При этом они быстро окисляются под воздействием воздуха и приобретает тусклый серый оттенок. Также черные металлы отличает низкая стойкость к коррозии и моментальная реакция на воздействие магнитного поля.
  • Алюминий и его сплавы не реагируют на воздействие магнита. При срезе можно увидеть блестящий светлый металл, который тускнеет при окислении. У чистого алюминия окисленная поверхность как будто покрывается белым налетом.
  • Бронза обладает желтоватым оттенком. Слабо подвергается окислению, не магнитится.
  • Медь отличается красноватым оттенком, при воздействии воздуха цвет темнеет, а на поверхности образуется зеленоватый налет. Не поддается воздействию магнитного поля. В процессе сгорания пламя приобретает зеленый цвет.
  • Латунь имеет те же отличительные признаки, что и бронза, но гораздо сильнее подвержена окислению.
  • Магний имеет серебристый оттенок, в момент сгорания окрашивает пламя в белый цвет. Не магнитится.

Изображение №1: различия металлов по цвету

Определение марки стали

Стальные заготовки изготавливаются из твердых металлических растворов, в основе которых — углерод и железо. В зависимости от содержания углерода материалы делятся на: низкоуглеродистые (до 0,25%), среднеуглеродистые (до 0,6%), высокоуглеродистые (0,6% и более).

Легирование сталей дополнительными материалами позволяет добиться более качественного состава с уникальными свойствами. Добавлены могут быть: титан, никель, медь, молибден и пр. Выделяют высоколегированные (от 10%), среднелегированные (до 10%) и малолегированные стали (до 2,5%).

Обычно стальные заготовки имеют маркировки, которые позволяют определить марку и другие особенности материала путем визуального осмотра. Но если таких отметок нет, можно использовать следующие способы для получения нужных сведений:

  • Аккуратно срезаем верхний тонкий материала. Получившуюся стружку изучаем на предмет ломкости. Если срезать полноценный завиток невозможно или его легко сломать, значит перед вами высокоуглеродистая сталь. Материал с низким содержанием углерода даст плотную длинную стружку однородной структуры, которую будет легко срезать.
  • При наличии печи можно использовать более энергозатратный метод. На заготовке делаем надрез, после чего подвергаем ее воздействию максимально высокой температуры. После закаливания проводим повторный распил. Если это потребовало небольшого усилия, как и при надрезе холодного материала, то сталь является малоуглеродистой.
  • Берем точильный круг и подготавливаем рабочее место — обеспечиваем хорошее освещение, а сзади устанавливаем темный фон. Наша задача — определить тип стали по особенностям высекаемых искр. Если они яркие и их много, то материал насыщен углеродом. У мягких малоуглеродистых сталей искры тусклые, их частицы небольшие.
  • С помощью точильного круга можно также определить металл по цвету искр. Так, если оттенок звездочек красный, то вы имеете дело с высокоуглеродистой сталью. Светлый сноп с небольшим количеством искр свидетельствует о том, что образец среднеуглеродистый. Если металл мало насыщен углеродом, он будет образовывать лучи соломенного цвета без звездочек на концах.

Изображение №2: определение марки стали по искре

Зеленый налет

Нити вошерии можно встретить и на дне водоемов с быстротекущей водой, и в стоячих водоемах у самого берега, и в виде свободноплавающих скоплений нитей на поверхности воды, а также на сильно увлажненной почве, где она образует зеленые бархатистые дерно-винки. При сборе материала необходимо лопаточкой или широким ножом осторожно снять верхний слой почвы с зеленым налетом . [31]

Сухой воздух при атмосферном давлении и комнатной температуре не взаимодействует с медью. Влажный воздух, содержащий углекислый газ, действует на ее поверхность, создавая на ней зеленые налеты основного карбоната меди . Это относится в особенности к отожженной меди. Это явление необходимо учитывать при актив ировке оксидных катодов в лампах с медными внутренними деталями, так как выделяющийся во время этого процесса кислород связывается медью, а впоследствии при высокой температуре освобождается и может отравить активированные катоды. [32]

К химическим свойствам металлов и сплавов относится способность их вступать в реакцию с различными веществами. При взаимодействии металлов с кислородом воздуха и влагой происходит их коррозия ( разрушение): чугун ржавеет, бронза покрывается зеленым налетом , сталь при нагреве в закалочных печах окисляется, превращаясь в окалину, а в кислотах растворяется. [33]

Итак, мы узнали, на какие составные части разлагается зеленый налет. Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода, и пары воды. Зеленый налет называют патиной. Такая же соль встречается и в природе — это не что иное как знаменитый минерал малахит. [34]

Стойкость меди к воздуху значительно выше, чем у железа. На воздухе медь не ржавеет, а постепенно покрывается тонким черным слоем сернистой меди. В сыром и содержащем углекислоту воздухе на меди появляется зеленый налет . К кислым жидкостям медь нестойка. Из щелочей на медь разъедающе действует аммиак. Из солей наибольшее действие на медь, так же как и на железо, оказывают соли соляной кислоты. Сплавы меди обладают большей химической стойкостью, чем чистая медь. [36]

Стойкость меди к воздуху значительно выше, чем у железа. На воздухе медь не ржавеет, а постепенно покрывается тонким черным слоем сернистой меди. В сыро1м и содержащем углекислоту воздухе на меди появляется зеленый налет . К кислым жидкостям медь нестойка. Из щелочей на медь разъедающе действует аммиак. Из солей наибольшее действие на медь, так же как и на железо, оказывают соли соляной кислоты. Органические кислоты — уксусная, лимонная, муравьиная, масляная и др. — мало разъедают медь. Сплавы меди обладают большей химической стойкостью, чем чистая медь. [37]

Безопасные средства и инструменты для чистки меди

Чтобы правильно подобрать метод очищения меди в домашних условиях, следует определить, есть ли на изделии налет из окиси или оно покрыто лаком. Для этого на потемневшее место нужно нанести небольшое количество смеси из соды и уксусной кислоты. Если обработанная область быстро посветлеет и начнет блестеть, значит, изделие не покрыто лаком и нуждается в очищении. Если же защита присутствует, достаточно помыть медный предмет теплой мыльной водой.

Зеленый налет на меди выделяет токсины, а чистящие средства могут быть вредны для здоровья, поэтому начиная чистку изделий, следует позаботиться о собственной безопасности. Необходимо приготовить резиновые перчатки, защитные очки и ватно-марлевую повязку.

Самые бережные средства

Ценные медные изделия, такие как монеты или антиквариат, необходимо очищать очень осторожно, используя средства, которые не оставляют царапин и не портят поверхность. Можно применить:

  • 10% раствор из лимонной кислоты, который поможет бережно убрать любой налет с медной поверхности.
  • Кефир или кетчуп. Кислые продукты хорошо растворяют налет. Загрязненный предмет поместить в любой ингредиент на несколько часов, после чего помыть под проточной водой.
  • Мыльный раствор. Натертое хозяйственное или детское мыло залить кипятком. Затем медную вещь поместить в него на несколько часов.

Последний способ занимает много времени. Сильные загрязнения им с первого раза не удалить. Зато он бережный и не повредит ценное изделие.

Химические средства для чистки медных изделий

Очищая медь от зеленоватого налета химией, не стоит использовать абразивные вещества, которые могут поцарапать поверхность. Лучше приобретать препараты, предназначение для драгоценных и цветных металлов, которые выпускаются в виде гелей и пасты.

Названия некоторых средств для чистки меди:

  • Unicum – гелеобразный препарат, с помощью которого можно восстановить изначальный вид металла и вернуть ему блеск. Не оставляет царапин и легко удаляет загрязнения.
  • Centralin – паста, которая за короткое время очищает медные изделия, возвращает им блеск и образует защитную влагоотталкивающую пленку.
  • Delu Kupferfix polish – бережно очищает медную поверхность, защищает от потускнения и удаляет загрязнения.
  • Sambol – мягко и тщательно чистит изделия. Убирает грязь и окисления, не повреждая поверхность. Восстанавливает блеск и защищает от потемнения.

Прежде чем использовать препарат, следует испробовать его на небольшой поверхности медного изделия. Если металл не реагирует, продолжать чистку.

Народные средства для удаления налета с меди

Почистить медные изделия можно подручными веществами, которые дешевле и безопаснее для организма, чем химия. Вот несколько простых рецептов:

  • Гель для мытья посуды. Помогает почистить предметы с небольшими загрязнениями. Изделие обрабатывается мягкой губкой с нанесенным на нее средством. После ополаскивается под проточной водой.
  • Лимон. Медная поверхность натирается половинкой цитруса. Для большего эффекта прочищается ворсистой упругой щеткой.
  • Уксус и мука. Вернуть изначальный блеск можно с помощью средства, которое в народе называется «уксусное тесто». В равных пропорциях смешивается пшеничная мука и уксусная кислота. Смесь наносится на изделие и оставляется до полного высыхания. Образовавшаяся корка легко оттирается, поверхность отполировывается мягкой тканью.
  • Нашатырный спирт. Чтобы убрать зеленый налет и почернение, изделие обрабатывается нашатырем и тщательно ополаскивается под проточной водой.
  • Соль и уксусная кислота. В слабом растворе уксуса растворяется 2 ст. л. соли. В емкость помещается очищаемая вещь и кипятится 10 мин. Затем на некоторое время изделие опускается в чистую воду, после чего протирается насухо мягкой тканью.

Применяя любой из методов, необходимо придерживаться правил безопасности.

Патина и ее виды

Патина – это защитная пленка, которая покрывает медь при окислении на воздухе. Она необходима для предохранения изделий от дальнейшего разрушения. Патина может делиться по нескольким категориям:

Патина может проявляться различными оттенками естественным путем

Благородная патина на медных предметах имеет черный цвет. Она защищает его от дальнейшего окисления и разрушения поверхности.

«Дикая» патина имеет зеленый налет. Она появляется на изделиях во влажной среде. Почему же она не ценится? Потому что, такой ее вид является следствием неправильного ухода за металлом, вследствие чего на нем появляются углубления, которые являются коррозией.

Дикая патина, так ли она плоха?

Обычно такой вид патины возникает на памятниках. Самый яркий пример — это статуя Свободы в Нью-Йорке. Наверное, если спросить каждого человека, какого она цвета, все скажут, что голубоватого, на самом же деле она сделана из меди и первоначально имела красноватый цвет.

Нанесение патины на медные монеты

Но, несмотря на все ее недостатки, дикая патина вошла в моду. Почему же это случилось? Это произошло потому, что ее легко можно воссоздать в домашних условиях за короткий период времени. Ею часто декорируют предметы мебели, ручки дверей и бижутерию. Она смотрится оригинально и в отличие от своего естественного аналога защищает изделие от воздействия окружающей среды.

Три способа изготовления патины в домашних условиях

Дикая патина на статуе Свободы

Первый способ – аммиачное патинирование. Для этого нужно взять пластиковый контейнер. На дно положить пару бумажных или обычных полотенец. Смочить их аммиаком. Затем посыпать крупной поваренной солью. Положить медный предмет изделие и посыпать его солью. А потом накрыть еще несколькими полотенцами, и полить все аммиаком.

Срок выдерживания изделия в контейнере зависит от желаемого результата. Первые изменения будут заметны спустя две минуты. Но благородный зеленый цвет будет хорошо виден только через 2 дня. После чего следует промыть изделие и высушить его.

Второй способ – запекание. Нужно взять 5 частей уксуса на 1 часть соли и смешать их. От габаритов изделия будет зависеть количество раствора. Нужно чтобы металл полностью был погружен в жидкость. Выдерживать изделие в растворе нужно час. По истечении времени вынуть его и положить на противень, который предварительно нужно застелить фольгой.

И запекать изделие при температуре 200 градусов до зеленоватого цвета. После нужно опять окунуть металл в раствор и выдержать его там час. Повторить запекание. Такую процедуру нужно повторить 3 раза, если нужен глубокий цвет или 2 раза, если нужен легкий налет старины. После вымыть и высушить металл.

Третий способ – патинирование с помощью яйца. Сварить его нужно вкрутую, очистить и разрезать напополам. Положить половинки яйца и изделие, которое нуждается в патинировании, в целлофановый пакет и завязать его. Яйцо выделяет серный газ, который входя в реакцию с медью, дает зеленый налет изделию. Нужно держать яйцо и изделие в пакете до тех пор, пока результат не станет удовлетворительным. Обычно это требует 1–2 дня.

Профилактика образования зеленого налета

Чтобы предотвратить окисление медных предметов, хранить их нужно в специальных футлярах, положив туда кусок мела. Не стоит допускать попадания на изделия из меди прямых лучей солнца. Также нужно хранить их подальше от обогревательных приборов и батарей.

Для предотвращения появления зеленого налета на медных украшениях нужно их мыть и полировать тряпочкой после каждого использования. Не стоит оставлять изделия влажными, лучше сразу же после мытья вытирать их насухо.

Научившись чистить медь от зеленого налета, можно продлить срок эксплуатации предметов и приборов. Они, в свою очередь, создадут уют в помещении, а медные украшения будут радовать блеском и теплым чистым видом.

Дисбаланс в топливовоздушной смеси возникает по различным причинам. Могут быть забиты отверстия для всасывания воздуха частичками пыли. Таким образом, создается препятствие для прохода воздуха. Больше всего газовое оборудование подвергается налету в первый год пользования. Так как после штамповки трубка запальной группы и горелка какое-то время сохраняют масляную пленку. Поэтому пыль налипает и мешает проходить воздуху, но газ пропускает отлично. Происходит большая подача газа в горелку. И нарушается баланс при смешивании подачи топлива к горелке.

Процесс горения газа

Следовательно, газ попадает с пылью и сажей, поэтому возникает желтый и оранжевый цвет горения газа.

Еще главной ошибкой является покупка газового оборудования для другого вида газа. Ведь если вы применяете один газ, а ваше оборудование рассчитано на другой, то появляется желтый цвет горения газа.

В газовой плите заслонка для регулировки подачи воздуха может упасть, соскочить или может быть закрыта. Таким образом, не поступает необходимое количество воздуха. Если не хватает кислорода, то не все плиты могут гореть от электророзжига и иметь синий цвет пламени. Многие копят и теряют нагрев. В таком случае необходимо проводить ремонт газовой плиты.

Правильный цвет горения газа – синий

Процесс горения газа

Для того чтобы газ сгорал полностью и выделялось максимальное количество тепла нужно достаточное количества воздуха. Он смешивается с газом в горелке в необходимых пропорциях. Таким образом, будет обеспечиваться высокая интенсивность нагрева и выделения тепла. Если существуют какие-либо препятствия для поступления воздуха, то газ сгорает не полностью и выделяется окись углерода. А пламя становится желтым цветом.

От количества поступаемого воздуха зависит нагрев теплоносителя и цвет пламени. Если поступает нужное количество воздуха, то цвет пламени становится синим.

Если в топливовоздушной смеси больше содержится газа, чем воздуха, то пламя может стать желтым цветом. А через какое-то время и вовсе может стать красным или белым цветом. Связано это с повышенной подачей газа в основную горелку. В таком случае происходит неправильный расход топлива, и горелка начинает коптить. Если горелка коптит, то она не будет нагревать воду, котел будет плохо нагревать теплоноситель, на посуде будет оставляться черный след от газовой плиты, и таким образом еда будет насыщаться серой.

Цвет пламени

Что делать в такой ситуации

После того как цвет пламени стал оранжевым, красным или желтым следует понимать что это говорит об опасности. Поэтому необходимо найти проблему и устранить ее. После того как вы обнаружили изменение цвета горения пламени, то следует обратить к квалифицированному специалисту для диагностики и проведению ремонта газового устройства.

Возможно, необходимо будет провести чистку газового оборудования, замену форсунок горелки и отрегулировать воздушный затвор в котле. Отрегулировать топливовоздушную смесь можно самостоятельно. Для этого не требуется помощь мастера.

Главным требованием перед установкой газового оборудования является устройство датчиков обнаружения угарного газа.

Для квалифицированных специалистов не составит труда устранить копчение пламени. Для этого не требуется специальных инструментов. При малейших подозрениях на протечку угарного газа срочно обращайтесь к специалистам.

Полезное о металлах: медь

В ходе многолетней практики создания украшений часто приходится сталкиваться с необходимостью рассказать покупателю или человеку, пришедшему на мастер-класс, о свойствах металлов и их славов.

Понятия — серебро, золото, железо — в целом являются общеизвестными и пояснений не требуют, а вот такие загадочные обозначения как «бижутерный сплав», томпак, бронза, нейзильбер и другие могут вызывать некоторые затруднения.

В связи с этим, возникла потребность написания цикла обзорных статей, которыми я бы хотела поделиться.

Первая статья цикла посвящена меди — первому освоенному человеком металлу.

Медь — элемент одиннадцатой группы IV периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum).

В чистом виде медь — это пластичный, вязкий и легко прокатываемый в тонкие листы металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки), обладающий высокой тепло- и электропроводностью. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Медь встречается в природе в самородном виде чаще, чем золото, серебро и железо.

Поэтому из-за сравнительной доступности для получения из руды и малой температуры плавления медь входит в семёрку металлов, известных человеку с очень древних времён и один из первых металлов, широко освоенных человеком . Одни из самых древних изделий из меди, а также шлак — свидетельство выплавки её из руд — найдены на территории Турции, при раскопках поселения Чатал-Гююк, относящегося к периоду медного века. Медный век, когда значительное распространение получили медные предметы, следует во всемирной истории за каменным веком и предшествует бронзовому. Медь как художественный материал использовался для изготовления украшений, скульптур, утвари и посуды.

В наши дни медь широко используется в промышленности разного рода из-за:

  • высокой теплопроводимости;
  • высокой электропроводимости;
  • ковкости;
  • хороших литейных качеств;
  • большого сопротивления на разрыв;
  • химической стойкости.

Около 40% меди идёт на изготовление различных электрических проводов и кабелей.

Кроме того, медь обладает высокой декоративной возможностью, что активно используется при изготовлении предметов декоративно-прикладного искусства и даже дизайне интерьеров.

На равне с прекрасной деформируемостью и устойчивостью к условиям окружающей среды, высокая декоративность меди обусловлена потрясающей цветовой палитрой патины, образующейся на ее поверхности.

Патина — пленка, образующаяся на поверхности металла в ходе окисления под влиянием окружающей среды.

Химический состав и цвет патины слегка отличается в зависимости от окружающей среды и формирует химически стабильный и прочный защитный слой, изолирующий металл от внешней среды. Патина предохраняет металл от дальнейшего разрушения. В случае механических повреждений эта поверхность восстанавливается сама.

Для соединений, образующихся на поверхности металлической меди характерны цвета: Cu2O — красный (в природе в виде минерала куприт), CuO — черный (в природе в виде минерала тенорит), CuCl2+H2O — голубой. Во влажном воздухе на поверхности меди образуются меднозакисные соли: в присутствии углекислого газа образуется зеленоватая пленка карбонатов состава Cu(OH)2·CuCO3; так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения, в виде основного сульфата (II) — (CuOH)2 SO4.

В естественных условиях цвет меди изменяется несколько раз, начиная с момента рождения и до полного формирования патины на ее поверхности. Непосредственно после изготовления металла он покрывается оксидом Cu2O и поверхность меди становится нежно-розовая и блестящая. Под действием кислорода воздуха пленка из оксида меди Cu2O становится более толстой и цвет густеет; медь становится ярко-красной.

Затем на ней начинает образовываться оксид меди CuO черного цвета. Поэтому, по мере наращивания слоя CuO поверхность меди становится тусклой и матовой. Затем цвет темнеет и постепенно меняется на коричневый. Становясь все более непрозрачным, слой CuO меняет цвет меди с темно-коричневого в итоге на антрацитово-черный.

Затем эта поверхность развивается далее, под воздействием находящихся в воздухе углерода, серы, хлоридов и влаги на ней образуются различные меднозакисные соли, обладающие зеленым цветом, иногда с синеватыми или голубоватыми оттенками. С течением времени наступает последняя стадия процесса окисления и на поверхности образуется ярко-зеленый, иногда зеленый с голубовато-синим оттенком слой патины. В основной своей массе природная патина — это соединения родственные зеленоватому минералу меди — малахиту.

Многообразие и красоту этого металла можно отразить, приведя примеры предметов декоративно-прикладного искуссства, бижутерии и фотографий итерьеров, для создания которых использовалась медь.

Широкое применение в ювелирной, инструментальной и машиностроительной промышленности и электротехнике нашли различные сплавы меди с другими веществами. Наиболее важными из них являются латуни, медноникеливые сплавы и бронзы. Также необходимо отметить, что медь является важнейшим компонентом лигатур для изготовления драгоценных сплавов различных проб на основе серебра и золота.

Более подробно о сплавах меди, их свойствах и применении будет рассказано в следующих частях обзора

В завершении этой части приведу несколько советов по чистке медных украшений:

1. Для легкой чистки и удаления жирного налета медные украшения можно промыть в мыльной воде и/ или протереть бумагой или ветошью.

2. Для удаления пятен на медной поверхности и некрасивой патины:

  • можно взять 9% уксус и мелкую пищевую соль. Из этих двух компонентов делают пасту, которой натирают медь, после чего пасту смывают, и ваше украшение блестит, как новое;

ВНИМАНИЕ: при этом методе счищается ВСЯ патина, т.е. если вы хотите сохранить состаренный вид изделия, данный метод не применять.

  • ярко-зеленый налет на медном изделии можно удалить с помощью 10%-ного раствора лимонной кислоты — опустить изделие в нагретый раствор или протереть половинкой лимона. и промыть водой;

ВНИМАНИЕ: при этом методе счищается ВСЯ патина обработанная поверхность приобретает красновато-розовый оттенок, т.е. если вы хотите сохранить состаренный вид изделия, данный метод не применять.

3. Для удаления царапин и крохотных вмятин поверхность изделия можно потереть наждачной бумагой — нулевкой. Выбирать наждачку нужно внимательно, так как слишком грубая оставит полосы и может испортить внешний вид изделия. Самая подходящая — имеющая зернистость 2500 и выше.

ВНИМАНИЕ: не применять, если изделие имеет декоративную патину и вставки — камни, стекло, эмаль (есть риск их поцарапать даже нулевкой).

Хранить медные украшения надо подальше от прямого солнечного света, парфюмерии и воды.

Большое спасибо за внимание!

Смачивая медную пластинку в соляной кислоте и поднося к пламени горелки, замечаем интересный эффект – окрашивание пламени. Огонь переливается красивыми сине-зелеными оттенками. Зрелище довольно впечатляющее и завораживающее.

Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имело бы яркий зеленый цвет. Окислы же меди дают изумрудно-зеленое окрашивание. Например, как видно из ролика, при смачивании меди соляной кислотой пламя окрашивается в голубой цвет с зеленоватым оттенком. А прокаленные медьсодержащие соединения, смоченные в кислоте, окрашивают пламя в лазурно-голубой цвет.

Для справки: Зеленый цвет и его оттенки огню придают также барий, молибден, фосфор, сурьма.

Объяснение:

Почему пламя видимое? Или чем определяется его яркость?

Некоторое пламя почти не видно, а другое наоборот светит очень ярко. Например, водород горит почти совершенно бесцветным пламенем; пламя чистого спирта тоже светит весьма слабо, а свеча и керосиновая лампа горят ярким светящимся пламенем.

Дело в том, что большая или меньшая яркость всякого пламени зависит от присутствия в нем раскаленных твердых частичек.

В топливе в большем или меньшем количестве содержится углерод. Частички углерода, раньше чем сгореть, накаливаются, — оттого-то пламя газовой горелки, керосиновой лампы и свечи светит – т.к. его подсвечивают раскаленные частицы углерода.

Таким образом, можно и несветящееся или слабо светящееся пламя сделать ярким, обогащая его углеродом или раскаляя им негорючие вещества.

Как получить разноцветное пламя?

Для получения цветного пламени к горящему веществу прибавляют не углерод, а соли металлов, окрашивающих пламя в тот или иной цвет.

Стандартный способ окрашивания слабосветящегося газового пламени — введение в него соединений металлов в форме легколетучих солей — обычно, нитратов (соли азотной кислоты) или хлоридов (соли соляной кислоты):

желтое – соли натрия,

красное – соли стронция, кальция,

зеленое – соли цезия (или бора, в виде борноэтилового или борнометилового эфира),

голубое – соли меди (в виде хлорида).

В синий окрашивает пламя селен, а в сине-зеленый — бор.

Этой способностью горящих металлов и их летучих солей придавать определенную окраску бесцветному пламени пользуются для получения цветных огней (например, в пиротехнике).

Чем определяется цвет пламени (научным языком)

Цвет огня определяется температурой пламени и тем, какие химические вещества в нём сгорают. Высокая температура пламени дает возможность атомам перескакивать на некоторое время в более высокое энергетическое состояние. Когда атомы возвращаются в исходное состояние, они излучают свет с определённой длиной волны. Она соответствует структуре электронных оболочек данного элемента.

Читайте также: