Металл для производства микросхем

Обновлено: 07.01.2025

Кризис производства кремния показал, как сильно мы зависим от полупроводников. Нехватка материала, вызванная сокращением производства в Китае, в конце 2021 года привела к росту цен на него на 300% менее чем за два месяца. Компании и исследователи по всему миру начали еще активнее искать альтернативу кремнию. «Хайтек» рассказывает о самых популярных полупроводниках, которые используются сейчас, и о тех, что придут им на смену.

Читайте «Хайтек» в

От «простых» домашних приборов и компьютеров до солнечных элементов, полевых транзисторов и беспилотных автомобильных цепей — вся техника требует для работы полупроводниковые материалы. Современный мир буквально обязан им своим существованием.

Очевидный лидер отрасли сейчас — кремний. Но он подходит не для всех приборов, кроме того, физические свойства полупроводника ограничивают возможности для дальнейшей миниатюризации и повышения мощности чипов и создание гибких устройств. К счастью, есть и другие альтернативные материалы.

Рассказываем, как работают полупроводники и какие существуют перспективные альтернативы кремнию для создания микроэлектроники. Подробнее про рынок в целом можно прочитать в июльском выпуске дайджеста по робототехнике «Микроэлектроника. Чем меньше, тем лучше», подготовленном Центром компетенций НТИ по направлению «Технологии компонентов робототехники и мехатроники» на базе Университета Иннополис.

Что такое полупроводник

Полупроводник — материал, который по удельной проводимости занимает промежуточное место между проводниками и диэлектриками. Как правило, это кристаллическое твердое вещество. При определенных условиях оно проводит электричество, что делает его идеальным для управления потоком тока.

Полупроводники в нормальном состоянии проводят небольшое количество тока или не вообще блокируют его. Но с ростом температуры или под действием света они начинают лучше пропускать электрические заряды. Также проводимость полупроводников меняется при введении примеси — этот процесс называется легированием.

Важное отличие полупроводника от проводника заключается в том, что ток в нем переносится не только электронами, но и оставленными ими вакансиями — дырками. Дырки, оставшиеся в валентной зоне, могут быть заняты электронами из более низких энергетических состояний и тем самым вносить свой вклад в протекание тока.

Одна из ключевых характеристик полупроводника — это подвижность носителей заряда (электронов и дырок). Это коэффициент, который показывает зависимость между средней скоростью частиц и приложенным внешним электрическим полем. Подвижность электронов и дырок может быть разной, например, у кремния при комнатной температуре отрицательно заряженные частицы движутся почти в три раза быстрее положительных.

Кроме того, полупроводники различаются по ширине запрещенной зоны. Это минимальная энергия, необходимая для перехода электрона из валентной зоны в зону проводимости. У металлов и других полупроводников она равна 0, а при достижении уровня в 4 эВ и больше материал становится диэлектриком.

Еще одна важная характеристика полупроводников — это теплопроводность. Она показывает насколько быстро и просто можно будет отводить от компонентов тепло, чтобы защитить устройство от перегрева.

Кремний

Кремний — второй после углерода по распространенности химический элемент на Земле. Его основным преимуществом является то, что его легко добывать, с кремниевыми кристаллами относительно просто работать, и он обеспечивает хорошие общие электрические и механические свойства. Даже несмотря на относительно низкую подвижность электронов и дырок, пока он остается оптимальным материалом для микроэлектронного производства.

Еще одним его преимуществом является то, что при использовании в интегральных схемах он образует высококачественный оксид кремния, который выступает в качестве изоляционных слоев между различными активными элементами.

Для увеличения плотности элементов и быстродействия интегральных схем используются комбинации элементов монокристаллического и поликристаллического кремния. А для увеличения проводимости поликристаллического кремния его легируют.

Полупроводники из кремния широко применяются для создания интегральных микросхем, биполярных и полевых транзисторов, приборов с зарядовой связью, быстродействующих фотодиодов и многих других устройств. А продукты на основе кремния, такие как MOSFET-или IGBT-транзисторы с суперпереходом, можно использовать в широком диапазоне напряжений (от единиц до нескольких сот вольт) и в различных классах мощности.

Факторы, влияющие на сложность производства. Изображение: Университет Иннополис

Германий

Мы живем в «кремниевую» эпоху, и может показаться, что микроэлектроника началась с этого материала, но первым был германий. Он использовался во многих ранних устройствах: от диодов для обнаружения радаров до первых транзисторов. Именно он до конца 1960-х годов был основным полупроводником, применяемым в электронных приборах, и только в начале 70-х его вытеснил кремний.

Новый «чемпион» гораздо более распространен, его производство дешевле и у него более широкая запрещенная зона и лучше теплопроводность. Но свое преимущество есть и у германия: носители заряда в этом материале гораздо более подвижны.

Например, при температуре 300 K (около 27°С) электроны в «первом» полупроводнике двигаются почти в три раза быстрее, чем у кремния, а дырки — почти в четыре раза.

Хотя германий и не подходит для современной микроэлектроники, благодаря этим свойствам он по-прежнему используется в некоторых радиочастотных приборах. Например, его применяют для создания СВЧ-устройств, аудиоаппаратуры, а также маломощном и прецизионном оборудовании.

Подвижность носителей заряда в различных полупроводниках. Изображение: Университет Иннополис

Арсенид галлия

Арсенид галлия является вторым наиболее распространенным полупроводником, используемым сегодня. В отличие от кремния и германия, арсенид галлия представляет собой соединение, а не элемент, и получается путем соединения трехвалентного галлия с мышьяком, имеющим пять валентных электронов.

Большая ширина запрещенной зоны и высокая подвижность электронов заставляют устройства на основе арсенида галлия быстро реагировать на электрические сигналы, что делает это соединение подходящим для усиления высокочастотных сигналов. Кроме того, этот материал показал свою эффективность при высоких температурах и хорошую устойчивость к радиационному излучению.

Арсенид галлия давно применяется в микроэлектронике, поэтому производство устройств на его основе отлажено. Благодаря особым свойствам, материал используется в основном для создания сверхвысокочастотных приборов микроэлектроники: цифровых и аналоговых интегральных схем, дискретных полевых транзисторов и диодов Ганна, которые работают без p-n-перехода за счет собственных средств материала. Кроме того, микросхемы на основе арсенида галлия применяются при изготовлении мобильных телефонов, микроволновых приборов, устройств спутниковой связи и некоторых радарных систем.

Однако это хрупкий материал с меньшей подвижностью дырок, чем у кремния, что делает невозможными создание таких устройств, как, например, КМОП-транзисторов, быстродействующих и энергосберегающих электронных схем. Его также относительно сложно изготовить, что увеличивает стоимость устройств из арсенида галлия. И у него достаточно низкая теплопроводность, что увеличивает риск перегрева устройств.

Материалы будущего

— Алмазы

Ширина запрещенной зоны алмаза превышает 3 эВ, поэтому по определению он диэлектрик. Однако при добавлении примесей драгоценный камень становится полупроводником.

Теоретически алмазные полупроводниковые устройства обладают превосходными физическими свойствами, включая высокие теплопроводность, напряженность поля пробоя и подвижность носителей. Это позволит существенно снизить потери, быстро рассеивать тепло и увеличить срок службы устройств. Кроме того, он может работать с выходной мощностью и энергоэффективностью в 50 тыс. раз выше, чем у кремниевых устройств, и в 1 200 раз с более высокой частотой.

Однако для промышленного применения в электронных полупроводниковых устройствах необходимы высококачественные алмазные пластины большого размера. Хотя попытки создания алмазных приборов проводятся в течение многих лет. До сих не решены проблемы, связанные с легированием и обработкой материала.

Теплопроводность различных полупроводников. Изображение: Университет Иннополис

— Графен

Графен — двумерная аллотропная модификация углерода. По прогнозу компании McKinsey, у графена есть потенциал превзойти кремний в качестве универсального полупроводникового материала, но до широкой коммерциализации может пройти до 25 лет.

Ключевая особенность этого материала — гибкость, поэтому из него можно производить различные сложные приборы. Этот материал считается многообещающим с точки зрения его дальнейшего использования, и по всему миру существуют целые институты, занимающиеся изучением и разработками в области графена.

Он может пригодиться в самых разных отраслях: от современных энергетических сетей и альтернативной энергетики до биомедицины. В микроэлектронике графен можно использовать в сверхчувствительных микропроцессорах, элементах квантовых компьютеров и датчиках с экстремальными параметрами.

— Арсенид бора

Совсем недавно, в июле 2022 года, исследователи из MIT заявили, что они нашли лучший из известных полупроводников. Им оказался кубический арсенид бора. Этот материал представляет собой соединение из мышьяка и бора.

Его теплопроводность в 10 раз больше, чем у кремния. При этом в отличие от последнего и арсенида галия полупроводник на основе бора демонстрирует высокую подвижность не только для электронов, но и для дырок.

Хотя ученые и говорят о том, что этот материал потенциально способен заменить кремний, но, как и с графеном, до этого еще очень далеко. Например, сначала нужно разработать дешевые способы качественного производства этого материала.

Несмотря на высокую популярность и эффективность кремниевых полупроводников, нужны аналоги. К этому производителей подталкивают сразу два фактора. Во-первых, технология почти достигла предела, за которым будет невозможно создавать все более миниатюрные и мощные устройства. А во-вторых, постоянный рост спроса на кремний приводит к его удорожанию.

Кризис производства, возникший во время пандемии коронавируса, показал, как опасно опираться на единственный источник. Поэтому компании и ученые по всему миру работают над созданием альтернативы. Тем не менее, можно предположить, что благодаря дешевизне, доступности и отлаженности производства кремниевых приборов еще какое-то время этот материал будет занимать лидирующую позицию в микроэлектронике.

Как Россия может остановить производство процессоров во всем мире

Отношения между Россией и США в очередной раз накалены до предела. Угрозы ввода санкций звучат практически ежедневно. Казалось бы, ничего нового. В условиях санкций Россия живет уже восемь лет. Но на этот раз ситуация более серьезная — Америка грозит прекратить поставки в Россию высокотехнологичного оборудования. Это не только смартфоны iPhone и процессоры Intel и AMD, но и прочая электроника, в которой используются чипы, выполненные по технологиям США. Следует понимать, что Америка лицензирует каждую свою разработку, в результате чего создать чип без применения американских технологий практически невозможно. Другими словами, после принятия санкций, поставки электронной продукции прекратят не только американский производители. Чем может ответить Россия в такой ситуации? Попросту обрушить производство полупроводников во всем мире. Дело в том, что Россия является основным поставщиком инертного газа неона и палладия, без которые используются для производства чипов.


Если США введут санкции против России, под угрозой может оказаться производство чипом во всем мире

Почему неон необходим для производства чипов

Современные процессоры изготавливаются методом фотолитографии. Суть данной технологии заключается в получении необходимого рисунка на светочувствительной пленке методом засвета через фотошаблон (маску). Для этого на кремниевую пластину вначале наносится фоторезист, то есть светочувствительная поверхность. Она меняет свои свойства, когда на нее попадает свет определенной волны.


Неон используют не только для изготовления светящихся вывесок, но и при производстве процессоров

Затем эта пленка засвечивается через маску с заданным рисунком при помощи ультрафиолетового газового лазера. В итоге на фоторезисте отпечатывается рисунок. А причем тут неон, спросите вы? Он является основным инертным газом в газовой смеси, которая обеспечивает необходимую длину волны лазера.

Таким образом, без неона не будут работать лазеры, необходимые для производства чипов. Кроме того, неон используется при производстве LCD-мониторов и телевизоров.

Где в России добывают неон

Неон представляет собой достаточно редкий газ, который не имеет цвета, запаха или вкуса, кроме того, он не вступает в химические реакции, то есть является инертным газом. Небольшое количество неона присутствует в воздухе, поэтому даже сейчас вы его вдыхаете.


Неон содержится в атмосфере

Надо сказать, что неон специально обычно не добывают. Он является одним из побочных продуктов, который образуется в результате сжижения и разделения воздуха в промышленности. Его получают в больших количествах на металлургических предприятиях России и Украины. Именно отсюда поставляется 90% неона для производства процессоров и микросхем. Причем большая часть газа поступает именно из России, а в Украине он только проходит очистку.

Для чего используют палладий

Палладий часто используется в транзисторах графического процессора вместе с танталом для увеличения объема памяти чипа. Кроме того, палладий и сплавы палладия применяют для покрытия контактов. Его использование обусловлено высокой износоустойчивостью, а также коррозионной стойкостью.


Палладий — драгоценный металл, который применяют для покрытия контактов

Кроме того, палладий в большом количестве используется в автомобилестроения. Он применяется в катализаторах, которые обеспечивают дожиг отработанных газов и очистку в соответствии с принятыми нормами. Поэтому даже на бюджетных автомобилях катализатор является дорогостоящей деталью.

Где в России добывают палладий

Палладий является одним из самых ценных металлов на земле. Он относится к платиновой группе, имеет серебристо-белый цвет. Крупнейшее его месторождение находится в Норильске. Палладий получают путем переработки сульфидных руд таких металлов, как никель, серебро и медь.

Россия добывает более половины от мировой добычи палладия. Правда США закупает его у разных стран — Канады, ЮАР, а также сами добывают на Аляске. Однако Россия покрывает 35% от потребностей страны. Поэтому, в случае наложения ответных санкций, это так же станет серьезной проблемой.

На нашем Яндекс.Дзен-канале вас ждет еще больше увлекательных материалов, которые небыли опубликованы на сайте.

Кроме палладия Россия также может перестать поставлять гелий, фтор и скандий. В результате это может стать серьезным ударом по производству смартфонов, автомобильных запчастей и даже ракет. С учетом того, что на рынке полупроводниковой продукции и так наблюдается дефицит, выпуск данной продукции может быть поставлен под угрозу. Таким образом без высокотехнологичной продукции может остаться не только Россия, но и весь мир.

Разумеется, если США все равно введут санкции, проблему с чипами в России остановка поставок сырья не решит. Собственные заводы должны быть построены только к 2030 году, причем на них будут производиться чипы по 16-нанометровому техпроцессу, который уже сейчас считается устаревшим. К примеру, компания Intel представила Core i9, созданный по 14-нанометровому техпроцессу еще в 2018 году. Поэтому остается надеяться лишь на то, что до введения санкция дело все же не дойдет.


Россия ограничила экспорт инертных газов до конца года

Россия прекращает экспорт инертных газов (upd: 02.06.2022)

Как мы и предполагали, Россия все же пошла на этот шаг и ограничила поставки всех инертных газов до конца 2022 года, о чем сообщают «Вести». Но, как известно, дьявол кроется в деталях. В данном случае эта деталь в слове “ограничила”. Оно означает, что Россия не исключает экспорт газов, необходимых для производства процессоров, но поставки возможны только по решению правительства, которое принимается на основании Минпромторга.

В переводе с дипломатического это означает, что поставки инертных газов возможны только в ответ на поставки необходимой для России микроэлектроники. Надо сказать, что мера стала вынужденной, ведь поставлять чипы в РФ отказался даже Тайвань по требованию США. Если быть точнее, TSMC сможет поставлять чипы с частотой не более 25 МГц.

Как мы сказали выше, с отечественными производителями микроэлектроники в России и так не сложилось. А сейчас еще и под санкции попали такие производители чипов, как “Байкал электроникс”, МЦСТ (известный как разработчик процессоров “Эльбрус”), НТЦ “Модуль” и другие.

Отсюда следует, что либо США придется пересмотреть свою санкционную политику, либо кризис на рынке микроэлектроники будет усугубляться. Какой вариант событий вам кажется наиболее реалистичным? Делитесь своими мыслями в комментариях.

Как работает микроэлектронное производство и что нам стоит дом построить?


Многие наверняка не раз задавались вопросом, почему процессоры, видеокарты и материнские платы которые мы покупаем в магазинах — разработаны и сделаны где угодно, только не в России? Почему так получается, неужели мы только нефть качать можем?

Сколько стоит запуск производства микросхемы, и почему при наличии 22нм фабрик, бОльшая часть микросхем по всему миру до сих пор делается на «устаревшем» 180нм-500нм оборудовании?

Ответы на эти и многие другие вопросы под катом.

Как же работает микроэлектронное производство и сколько все это стоит?

Транзисторы на кремниевой пластине рисуются с помощью фотолитографии, с помощью аппаратов называемых степперами или сканерами. Степпер — рисует кадр (до 26x33мм) целиком, затем переходит на новую позицию. Сканер — одновременно сдвигает маску и пластину таким образом, чтобы в каждый момент рисовать только одну узкую «строку» в центре кадра, таким образом аберрации оптической системы меньше влияют на изображение.


Основные характеристики степперов/сканеров — длина волны света, на которой они работают (на ртутных лампах i-line — 365nm, затем на эксимерных лазерах — 248nm и 193nm), и численная апертура объектива. Чем короче длина волны, и чем больше апертура — тем меньшие детали могут быть нарисованы объективом в соответствии с дифракционным пределом:

Например, для одного из самых совершенных сканеров ASML NXT 1950i с длиной волны 193нм и численной апертурой 1.35, и k1=0.4(обычное значение для фотолитографии без «хитростей») получаем теоретическое разрешение 57нм. Применяя хитрости вроде фазовых масок, многократной экспозиции, оптической коррекции близости, off-axis illumination, поляризации света — получают минимальные элементы до 22нм.

Другие параметры степперов/сканеров — производительность (сколько пластин в час они могут обработать, до 220 пластин), и ошибка совмещения (на сколько нанометров в штуках промахивается позиционирование пластины относительно заданной позиции. На современных сканерах — до 3-5нм).

Степперы/сканеры печатают уменьшенное в 4–5 раз изображение вот такой маски (стеклянной пластинки с рисунком микросхемы, размер примерно 15x15см) в точно заданных местах.


Операцию печати рисунка (с разными масками) нужно повторить от ~10 (для самых простых и старых микросхем) до ~40 раз чтобы сформировать все нужные слои на микросхеме (начиная от самих транзисторов, и заканчивая 2–10 слоями металлических соединений). Между операциями фотолитографии пластины подвергаются различной обработке — их греют в печке до 1100 градусов, травят в растворах и плазме. На выходе остаётся пластину разрезать на отдельные кристаллы, протестировать и поместить в корпус.

«Крутость» технологии измеряют размером минимального рисуемого элемента (отдельные части транзистора, например затвор — могут быть как меньше так и больше этой цифры — т.е. это величина достаточно условная). Понятно что чем меньше транзисторы — тем быстрее работает микросхема, и больше кристаллов влезет на пластину (но не везде нужна максимальная скорость).

Сейчас начинается медленный и мучительный переход на EUV-литографию, с длиной волны 13.5nm и зеркальной оптикой. EUV сканеры пока дороже и медленнее обычных 193нм, и только-только начинают превосходить их по достижимому разрешению.

Сколько стоит свой процессор сделать?

Цифры — грубые оценки, точных нигде не скажут без NDA.

Лицензия софта на одно рабочее место разработчика микросхем — от 20'000 до 100'000$ в год и выше. Можно конечно и воровать, но за этим все вокруг следят.

Далее — изготовление масок. Они не должны иметь ни одного повреждения, и их изготовление обходится очень дорого: от ~7'000$ за комплект для микросхем на 1000нм, ~100'000$ для микросхем на 180нм и до ~5'000'000$ для микросхем на 32нм. А ведь микросхема с первого раза скорее всего не заработает — и после нахождения ошибки маски придётся переделывать. Частично с этой проблемой можно бороться размещая тестовые микросхемы от многих заказчиков на одном наборе масок — тогда все получат по чуть–чуть тестовых микросхем за 1/3–1/10 цены полного набора масок (это называют Shuttle или MPW — multi project wafer).

Каждая произведённая пластина стоит от 100–400$ для старых технологий на 1000нм, ~1000$ на 180нм и до ~5000$ для самых современных (помимо нанометров тут оказывает влияние и сложность технологии — простая логика дешевле, флеш память дороже, но не в разы). Тут также важно помнить и о размере пластин: самые современные производства сейчас работают с пластинами диаметром 300мм — они по площади примерно вдвое больше пластин на 200мм (которые сейчас используются в России на Микроне, Интеграле и в туманном будущем на Ангстрем-Т), а последние примерно вдвое больше ещё более старых 150мм. Пластины бОльшего размера позволяют получать микросхемы меньшей стоимости при большИх заказах т.к. количество телодвижений для изготовления 100 пластин примерно одинаковое, независимо от диаметра (это одна из причин планируемого перехода передовых производств на пластины диаметром 450мм в 2018 году по оптимистичным оценкам).

Допустим мы хотим разработать x86-совместимый процессор (или любую другую относительно сложную микросхему), по более-менее современной коммерчески доступной технологии 28/32нм (22нм хоть и существует, но коммерческие заказы пока не разместить — так что доступ к технологиям иногда как любовь: за деньги не продается). Вопрос со стоимостью патентов опустим, это вообще очень печальная тема. Предположим, для разработки нужно 200 мифических человеко-лет (это если мы делаем скромный процессор, не претендующий на первое место).

Лицензии на софт — 50k$*100 = 5 млн$ (грубая оценка, не всем нужны лицензии).
Зарплата разработчиков — допустим 3k$*1,5(налоги)*12*200 = 10.8 млн$
Тестовые запуски в MPW — 2*1.5 млн$
Изготовление масок для серийного производства 2*5млн$ = 10 млн$ (2 — потому что как ни старайся — с первого раза не выйдет)

Это было то, что называется Non-recurring engineering (NRE) — единоразовые затраты, которые не зависят от объема производства, и успеха всего мероприятия.

Если процессор у нас получился площадью 200мм2, пластины по технологии 32нм диаметром 300мм стоят 5000$, то с пластины у нас получится 70690/200 = 350 кристаллов (оценка сверху), из которых работать допустим будет 300. Т.е. себестоимость кристалла — 16.6$, 20$ после корпусировки. За сколько теперь такой процессор можно будет продавать? 50$? 100$? Отнимем налоги и наценку магазинов…

И вот теперь вопрос — сколько же нужно продать таких процессоров, чтобы окупить наши NRE, проценты по кредитам, налоги и проч? Миллион? 5 миллионов? А главный вопрос — есть ли какие-то гарантии, что эти 5 миллионов процессоров удастся продать, учитывая что конкурентам ничего не стоит произвести на 5 миллионов больше их уже готового продукта?

Вот такой вот адский бизнес получается — огромные капитальные расходы, огромные риски и умеренная прибыль в лучшем случае.

Китай — решил проблему по своему, они решили во все школы поставить компьютеры со своими процессорами и Linux — и проблема с объёмами производства решена ((1) (2)).

Таким образом, главный вопрос при создании микросхем — это не как и где произвести, а как разработать и кому потом продать миллионы штук получившейся продукции?

А сколько стоит завод построить?

Стоимость современного завода подбирается к отметке 5 млрд$ и выше. Такая сумма получается потому, что стоимость лицензий и некоторых других фиксированных расходов не сильно зависит от объёмов производства — и выгодно иметь большие производства, чтобы затраты «размазывались» по бОльшему объёму продукции. А каждый современный сканер (который собственно рисует эти 22–32нм детали) стоит 60–100млн $ (на большом заводе их может быть пара десятков). В принципе, 5млрд — не такие большие деньги в масштабах страны. Но естественно, никто не потратит 5 млрд без чёткого плана по возврату инвестиций. А ситуация там такая — несмотря на всю сложность индустрии, только монополисты работают с видимой прибылью (TSMC, Intel, Samsung и немногие другие), остальные еле сводят концы с концами.

Это просто не укладывалось у меня в голове — как же так, вкладывать миллиарды, и едва–едва их отбивать? Оказалось, все просто — по всему миру микроэлектроника жесточайше дотируемая отрасль — заводы постоянно выклянчивают освобождение от налогов, льготные кредиты и демпингуют (в Китае пошли ещё дальше — SMIC заводы строит за государственный счёт, и потом ими «управляет» — это у них называется Reverse Build-Operate-Transfer). После появления каждой новой технологии (45нм, 32нм. ) — первые заводы-монополисты обладающие ей и рубят основную прибыль, а те, кто приходят на 2-5-10 лет позже старта — вынуждены работать практически по себестоимости. В результате денег тут заработать крайне сложно (без монополии и без дотаций).

Это похоже поняли и в России — и проекты больших микроэлектронных заводов пока отложили, и строят маленькие производства — чтобы если и терять деньги, то терять их мало. А даже 3000 пластин в месяц, производимых на Микроне — это с головой покрывает объёмы потребления билетов Метрополитена и оборонки (кристалл билета метро имеет размеры 0.6x0.6мм, на одной 200мм пластине получается 87'000 билетов в метро — но о грустной истории с билетами метро я расскажу в одной из следующих статей).

Вопреки расхожему мнению, особых ограничений на продажу оборудования для микроэлектроники в Россию нет — на поправку Джексона — Вэника в США ежегодно накладывается президентский мораторий, и нужно только получать обычное разрешение на экспорт. Сами производители оборудования кровно заинтересованы заработать побольше денег, и сами пинают со своей стороны выдачу разрешений. Но естественно, без денег никто ничего не делает. Так что за ваши деньги — любой каприз.

Но нужно помнить и о том, что свой завод не гарантирует полной независимости производства, и не дешевле производства за рубежом: основную стоимость составляют технологии/лицензии и стоимость закупаемого оборудования — а если своих технологий и оборудования нет, и все импортировать — то и дешевле получится не может. Многие расходные материалы также в любом случае придется импортировать. Отдельный больной вопрос — производство масок, только очень крупные фабрики могут иметь «своё» производство масок.

А сколько нанометров нужно для счастья?

Многим кажется — вот, у Intel–а 22нм, а у нас 90нм — как мы безнадежно отстали, подайте трактор… Но есть и другая сторона медали: посмотрите например на ту же материнскую плату: там сотни полупроводниковых приборов — MOSFET–ы, драйверы, микросхемы питания, всякая вспомогательная мелочь — почти для всех из них хватает и 1000нм технологии. Вся промышленная электроника, и микросхемы для космоса и военных — это практически в 100% случаев технологии 180нм и толще. Таким образом, самые последние технологии нужны лишь для центральных процессоров (которые делать очень сложно/дорого из–за высоких рисков и высокого порога выхода на рынок), и различных «жопогреек» (айфонов и проч). Если вдруг случится война, и Россия лишится импорта — без «жопогреек» прожить можно будет, а вот без промышленной, космической и военной электроники — нет. Т.е. по факту мы видим, что критичные для страны вещи по возможности делают в России (или закупают впрок), а то, без чего можно будет прожить в крайнем случае — импортируем.

Есть и другие факторы — та же стоимость масок. Если нам нужно сделать простую микросхему, то делать для её изготовления по 32нм маски стоимостью 5 млн $ — может быть выгодно если эту микросхему потом производить тиражом в десятки и сотни миллионов копий. А если нам нужно всего 100'000 микросхем — выгоднее экономить на масках, и выпускать микросхему по самой «толстой» технологии. Кроме этого, на микросхеме есть контактные площадки, к которым подсоединяются выводы микросхем — их уменьшать некуда, и следовательно, если площадь микросхемы сравнима с площадью контактных площадок — то делать микросхему по более тонкой технологии также нет смысла (если конечно «толстые нормы» удовлетворяют требованиям по скорости и энергопотреблению).

В результате — подавляющее большинство микросхем в мире делается по «толстым» технологиям (350–500нм и толще), и миллиарды микросхем уходящие на экспорт с Российских заводов (правда в основном в виде пластин) — вполне себе востребованы и продаются (так что в материнских платах и сотовых телефонах есть наши микросхемы и силовые транзисторы — но под зарубежными именами).

Ну и наконец, американский F–22 Raptor до недавнего времени летал на процессоре Intel 960mx, разработанном в 1984–м году, производство в США тогда было по нормам 1000–1500nm — никто особо не жужжал о том, что американцы ставят в самолеты отсталую электронику (хотя ладно, немного жужжали). Главное ведь не нанометры, а соответствие конечного продукта техзаданию.

Резюме

Рыночная экономика эльфов и микроэлектронное производство — слабо совместимые вещи. Чем больше копаешься — тем меньше видно рынка, больше дотаций, картельных сговоров, патентных ограничений и прочих радостей «свободного рынка». Бизнес в этой отрасли — это одна большая головная боль, с огромными рисками, постоянными кризисами перепроизводства и прибылью только у монополистов.

Не удивительно, что в России стараются иметь маленькое, но своё производство, чтобы сохраняя независимость, терять меньше денег. Ни о какой прибыли на рыночных условиях говорить не приходится.

Ну и не для всех микросхем нужно 22-32нм производство, подавляющее большинство микросхем выгоднее производить на более старом 180-500нм оборудовании из-за стоимости масок и объемов производства.

В следующих статьях — расскажу об особенностях космической и военной микроэлектроники, и о текущем состоянии микроэлектроники в России.

Как делают микропроцессоры. Польский химик, голландские монополисты и закон Мура


Современные микропроцессоры поражают своей сложностью. Наверное, это высочайшие технологические достижения человеческой цивилизации на сегодняшний день, наряду с программированием ДНК и автомобилями Tesla, которые после заказа через интернет сами приезжают к вашему дому.

Удивляясь красоте какой-нибудь микросхемы, невольно думаешь: как же это сделано? Давайте посмотрим на каждый шаг в производственном процессе.

Метод Чохральского

Жизнь микросхемы начинается с песка. Песок почти полностью состоит из кварца, а это основная форма диоксида кремния, SiO2. Сам кремний — второй по распространённости элемент в земной коре.

Чтобы получить из кварца чистый кремний, песок смешают с коксом (каменный уголь) и раскаляют в доменной печи до 1800 °C. Так удаляется кислород. Метод называется карботермическое восстановление.



Доменная печь с кварцем и коксом

В результате получаются блоки кремния поликристаллической структуры, так называемый технический кремний.

Чистота полученного кремния достигает 99,9%, но его необходимо очистить, чтобы получить поликристаллический кремний. Тут применяют разные методы. Самые популярные — хлорирование, фторирование и вытравливание примесей на межкристаллитных границах. Техпроцессы очистки кремния постоянно совершенствуются.

Затем из поликристаллического кремния выращивают монокристаллический кремний — это кремний электронного качества с чистотой 99,9999% (1 атом примесей на миллион атомов кремния). Кристаллы выращивают методом Чохральского, то есть введением затравки в расплав, а затем вытягиванием кристалла вверх. Метод назван в честь польского химика Яна Чохральского.

Метод Чохральского, Иллюстрация: Д. Ильин

Поэтому монокристаллический кремний представляет собой красивые цилиндрические слитки — их ведь вытягивали из расплава под воздействием земной гравитации.




Монокристаллический кремний электронного качества, нижняя часть слитка

Из этих цилиндрических слитков нарезают кремниевые пластины диаметром 100, 150, 200 или 300 мм. Многие задаются вопросом, почему у пластин круглая форма, ведь это нерациональный расход материала при нарезке на прямоугольные микросхемы. Причина именно в том, что кристаллы выращивают методом Чохральского, вынимая вверх.


Чем больше диаметр кремниевой пластины — тем эффективнее расходуется материал. Пластины доставляют на полупроводниковую фабрику, где начинается самое интересное.

Заводы

В мире всего четыре компании, способные производить продвинутые микросхемы топового уровня: Samsung, GlobalFoundries, Taiwan Semiconductor Manufacturing Company (TSMC) и Intel.

В других странах производство микроэлектроники отстаёт от лидеров на годы или десятилетия. Причина в том, что строительство современного завода — дорогостоящее мероприятие (около $10-12 млрд), а прогресс идёт так быстро, что этот завод устареет через несколько лет. Поэтому позволить себе такие инвестиции могут только компании с прибылью в десятки миллиардов долларов в год.

Кто получает такую прибыль? Тот, кто продаёт товаров на сотни миллиардов долларов. Это мировой лидер в производстве смартфонов и оперативной памяти Samsung, а также мировой лидер в производстве десктопных и серверных процессоров Intel. Ещё две компании GlobalFoundries и TSMC работают по контрактам в секторе B2B.

Столь высокая стоимость современного завода микроэлектроники объясняется высокой стоимостью оборудования, которая обусловлена чрезвычайной сложностью процесса.

Бор и фосфор

Чтобы запустить свободные электроны, нужно заменить некоторые атомы кремния на атомы других элементов с 3 или 5 электронами на внешней орбите. Для этого идеально подходят соседние с кремнием элементы по таблице Менделеева — бор (3 электрона) и фосфор (5). Их подмешивают к кремнию, и эти атомы встают в его кристаллическую решётку. Но в ней только четыре связи. Соответственно, или одной связи не хватает, или освобождается свободный электрон. Заряд такого атома + или −. Так бор и фосфор в решётке кремния создают два слоя полупроводников с зарядами противоположного знака. «Дырочный» слой p- (positive) с бором и недостающим электроном — сток. А «электронный» слой n- (negative) с фосфором и лишними электронами — исток. Они покрыты изолятором из оксида кремния.



Конструкция полевого транзистора MOSFET с управляющим p-n-переходом

Транзистор — минимальный элемент и основной компонент интегральной схемы. В зависимости от напряжения в затворе из поликристаллического кремния ток или потечёт с истока, или нет. Это соответствует логическому 0 и 1.

Вот как выглядит p-n-переход в транзисторе на атомарном уровне при изменении напряжения в затворе:

Из таких транзисторов состоят все логические элементы, а из них инженеры составляют конструкцию микропроцессора.

Микроархитектура

Современные микросхемы состоят из миллиардов транзисторов, соединённых в сложные конструкции: ячейки памяти, микроконтроллеры, криптографические модули и так далее. Все они располагаются на микросхеме в соответствии с планом инженера-микросхемотехника.



AMD Athlon XP 3000+ из каталога siliconpr0n

Инженеры используют специальное ПО для проектирования микросхем. Таких программ огромное множество, в том числе и бесплатных, среди них нет единого стандарта.


В этом ПО выполняется симуляция электрических и физических свойств микросхемы и отдельных цепей, а также тестируется их функциональность.

Проектированием занимаются целые отделы из сотен инженеров, ведь на современных микросхемах огромное количество элементов. У процессоров производства TSMC (AMD) по 7-нм техпроцессу 113,9 млн транзисторов на мм². Intel поставила амбициозную цель достичь плотности 100 млн транзисторов на мм² уже на техпроцессе 10 нм, почти как 7 нм у TSMC. Цель оказалась слишком амбициозной — с этим и связана позорная задержка с внедрением 10 нм.

Все слои микросхемы объединяются в итоговый проект — blueprint, который по электронной почте отправляют на завод в Китае или Тайване.

Фотодело

Из полученных файлов на заводе делают фотомаски — шаблоны для печати микросхем. Они похожи на плёночные негативы, из которых на фотоувеличителе печатаются фотографии. Но если в фотографии эта техника осталась в прошлом, то в производстве микроэлектроники она сохранилась до сих пор.



Фотомаска

Вот как выглядит современный «фотоувеличитель», а именно, степпер компании ASML для фотолитографии в глубоком ультрафиолете (EUV).



Иллюстрация: ASML

Машина весом 180 тонн размером с автобус продаётся по цене около $170 млн. Это самое сложное и дорогое оборудование на современном заводе микроэлектроники. Компоненты для такого степпера производят около 5000 поставщиков со всего мира: линзы Carl Zeiss (Германия), роботизированные манипуляторы VDL (Нидерланды), лазеры Cymer (США, куплена ASML в 2013 году).

Фиолетовым цветом показан маршрут световых импульсов от источника к прибору подсветки, затем к фотомаске с топологией кристалла — и через проекционную оптику на кремниевую пластину.


Пластины из монокристаллического кремния, полученного на первом этапе нашего процесса, помещаются в этот степпер, и здесь засвечиваются через фотомаску, распечатанную из файлов с проектного бюро. Это завершение всего технологического цикла.



Засветка кремниевой пластины

Засветка пластины лазером EUV — тоже весьма нетривиальный процесс. Вот описание и видео из журнала IEEE Spectrum: «Внутри самой современной EUV-машины каждую секунду 50 тыс. капель расплавленного олова падают через камеру в её основании. Пара высокоэнергетических лазеров на углекислом газе ударяет по каждой капле, создавая плазму, которая, в свою очередь, испускает свет нужной длины волны. Первый импульс преобразует каплю олова в туманную форму блина, так что второй импульс, который является более мощным и следует за ним всего через 3 микросекунды, взрывает олово в плазму, которая светится на длине волны 13,5 нанометров. Затем свет собирается, фокусируется и отражается от узорчатой маски, чтобы проецировать узор на кремниевую пластину». Для 7-нм процессоров используется литография в экстремальном ультрафиолете с длиной волны 13,5 нм.

Настоящая фантастика. Неудивительно, что степпер для EUV по самому современному техпроцессу в мире умеет делать только одна голландская компания ASML, которая сейчас является фактически монополистом в этой нише.

Засветка пластины — не единственный шаг на производстве. Перед степпером пластины нагревают до 1000 °С и окисляют поверхность, чтобы сформировать непроводящий слой из диоксида кремния SiO2. Потом на этом слое диэлектрика равномерно распределяют фоточувствительный материал — фоторезист. И только потом помещают в степпер.



Засветка фоторезиста на кремниевой пластине в степпере

На засвеченных участках пластины обнажается слой SiO2, всё остальное защищено фоторезистом. Теперь наступает этап плазменного вытравливания (plasma etching), где с засвеченных участков снимается слой SiO2, создавая углубления. Вытравленные участки снова окисляют. Поверх SiO2 наносят электропроводящий слой поликристаллического кремния. Потом снова покрывают фоторезистом — и цикл повторяется несколько раз, создавая новые углубления уже во втором слое, затем в третьем, потом пластина покрывается слоем металла — и цикл повторяется. В итоге формируются те самые структуры полевых транзисторов с p-n переходом. Цикл повторяется многократно, пока не будет создана полная структура интегральной микросхемы со всеми необходимыми элементами.



Несколько циклов нанесения разных материалов (фоторезист, поликристаллический кремний, диоксид кремния, металл), засветки и плазменного вытравливания создают многослойную структуру транзистора

В зависимости от техпроцесса, размер минимальных элементов в этих структурах может быть 14 нм, 10 нм, 7 нм, 5 нм или меньше, но это весьма условная разница, которая не совсем отражает реальность. Например, на фотографиях под микроскопом ниже можно сравнить размер транзисторов в кэше L2 процессоров Intel (техпроцесс 14 нм+++) и TSMC (7 нм). У первого ширина затвора 24 нм, у второго 22 нм, высота одинаковая.



Сравнение транзисторов в кэше L2 процессоров Intel (14 нм+++) и TSMC (7 нм), сканирующий электронный микроскоп. Источник

По размеру они практически не отличаются, хотя TSMC плотнее размещает эти транзисторы на микросхеме.

В зависимости от размера, на одной пластине помещается от нескольких десятков до нескольких тысяч микросхем.



Микросхемы на кремниевой пластине

Пластины с готовым продуктом проверяют, а затем осуществляется сборка — упаковка чипов в корпуса, подключение контактов. Сборка полностью автоматизирована.



Сборка микросхем

Потом чипы снова тестируют — и если всё удачно, то отправляют клиенту. Через несколько месяцев процессор уже вовсю работает в сервере или на домашнем компьютере, или в телефоне счастливого покупателя.

Мур не сдаётся. Intel тоже

Утратившая технологическое лидерство компания Intel в реальности не испытывает недостатка в денежных средствах. На самом деле совсем наоборот, компания сейчас показывает рекордные прибыли. И она намерена серьёзно инвестировать в научно-исследовательские и опытно-конструкторские работы.

Благодаря партнёрству с ASML и EUV-литографии Intel планирует вернуться к прежним темпам выпуска новых поколений CPU раз в 2 года, начав с 7-нм техпроцесса в конце 2021 года и дойдя до 1,4-нм технологии в 2029 году.



Слайд из презентации Intel, показанный в выступлении представителя ASML в декабре 2019 года, источник

Если планы реализуются, то Intel сохранит действие закона Мура и догонит AMD/TSMC. В 90-е годы тоже были моменты, когда AMD выпускала более производительные процессоры. После тупика с Pentium 4 ответом стало новое ядро Core — и лидерство Intel на протяжении десятилетий. Впрочем, это было довольно скучное время. Для рынка гораздо полезнее, когда происходит жёсткая «заруба» между конкурентами, как сейчас, в 2021 году.

На правах рекламы

Наша компания предлагает в аренду серверы с процессорами от Intel и AMD. В последнем случае — это эпичные серверы! VDS с AMD EPYC, частота ядра CPU до 3.4 GHz. Создайте собственный тарифный план в пару кликов, максимальная конфигурация — 128 ядер CPU, 512 ГБ RAM, 4000 ГБ NVMe.

От песка до процессора

Сложно в это поверить, но современный процессор является самым сложным готовым продуктом на Земле – а ведь, казалось бы, чего сложного в этом куске железа?

image

Как и обещал – подробный рассказ о том, как делают процессоры… начиная с песка. Все, что вы хотели знать, но боялись спросить )


Я уже рассказывал о том, «Где производят процессоры» и о том, какие «Трудности производства» на этом пути стоят. Сегодня речь пойдет непосредственно про само производство – «от и до».

Производство процессоров

Когда фабрика для производства процессоров по новой технологии построена, у нее есть 4 года на то, чтобы окупить вложенные средства (более $5млрд) и принести прибыль. Из несложных секретных расчетов получается, что фабрика должна производить не менее 100 работающих пластин в час.

Вкратце процесс изготовления процессора выглядит так: из расплавленного кремния на специальном оборудовании выращивают монокристалл цилиндрической формы. Получившийся слиток охлаждают и режут на «блины», поверхность которых тщательно выравнивают и полируют до зеркального блеска. Затем в «чистых комнатах» полупроводниковых заводов на кремниевых пластинах методами фотолитографии и травления создаются интегральные схемы. После повторной очистки пластин, специалисты лаборатории под микроскопом производят выборочное тестирование процессоров – если все «ОК», то готовые пластины разрезают на отдельные процессоры, которые позже заключают в корпуса.

Уроки химии

Давайте рассмотрим весь процесс более подробно. Содержание кремния в земной коре составляет порядка 25-30% по массе, благодаря чему по распространённости этот элемент занимает второе место после кислорода. Песок, особенно кварцевый, имеет высокий процент содержания кремния в виде диоксида кремния (SiO2) и в начале производственного процесса является базовым компонентом для создания полупроводников.

image

Первоначально берется SiO2 в виде песка, который в дуговых печах (при температуре около 1800°C) восстанавливают коксом:

Данные реакции с использованием рецикла образующихся побочных кремнийсодержащих веществ снижают себестоимость и устраняют экологические проблемы:

Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля. В результате образуется так называемая «буля» — монокристалл высотой со взрослого человека. Вес соответствующий — на производстве такая дуля весит порядка 100 кг.

image

Слиток шкурят «нулёвкой» :) и режут алмазной пилой. На выходе – пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (~12 дюймов; именно такие используются для техпроцесса в 32нм с технологией HKMG, High-K/Metal Gate). Когда-то давно Intel использовала диски диаметром 50мм (2"), а в ближайшем будущем уже планируется переход на пластины с диаметром в 450мм – это оправдано как минимум с точки зрения снижения затрат на производство чипов. К слову об экономии — все эти кристаллы выращиваются вне Intel; для процессорного производства они закупаются в другом месте.

Каждую пластину полируют, делают идеально ровной, доводя ее поверхность до зеркального блеска.

image

Производство чипов состоит более чем из трёх сотен операций, в результате которых более 20 слоёв образуют сложную трёхмерную структуру – доступный на Хабре объем статьи не позволит рассказать вкратце даже о половине из этого списка :) Поэтому совсем коротко и лишь о самых важных этапах.

Итак. В отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать? Вообще, нанесение различных слоев на процессорную подложу это целая наука, ведь даже в теории такой процесс непрост (не говоря уже о практике, с учетом масштабов)… но ведь так приятно разобраться в сложном ;) Ну или хотя бы попытаться разобраться.

Фотолитография


Проблема решается с помощью технологии фотолитографии — процесса избирательного травления поверхностного слоя с использованием защитного фотошаблона. Технология построена по принципу «свет-шаблон-фоторезист» и проходит следующим образом:

— На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист — слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом.
— Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон
— Удаление отработанного фоторезиста.

Нужная структура рисуется на фотошаблоне — как правило, это пластинка из оптического стекла, на которую фотографическим способом нанесены непрозрачные области. Каждый такой шаблон содержит один из слоев будущего процессора, поэтому он должен быть очень точным и практичным.

image

Иной раз осаждать те или иные материалы в нужных местах пластины просто невозможно, поэтому гораздо проще нанести материал сразу на всю поверхность, убрав лишнее из тех мест, где он не нужен — на изображении выше синим цветом показано нанесение фоторезиста.

Пластина облучается потоком ионов (положительно или отрицательно заряженных атомов), которые в заданных местах проникают под поверхность пластины и изменяют проводящие свойства кремния (зеленые участки — это внедренные чужеродные атомы).

Как изолировать области, не требующие последующей обработки? Перед литографией на поверхность кремниевой пластины (при высокой температуре в специальной камере) наносится защитная пленка диэлектрика – как я уже рассказывал, вместо традиционного диоксида кремния компания Intel стала использовать High-K-диэлектрик. Он толще диоксида кремния, но в то же время у него те же емкостные свойства. Более того, в связи с увеличением толщины уменьшен ток утечки через диэлектрик, а как следствие – стало возможным получать более энергоэффективные процессоры. В общем, тут гораздо сложнее обеспечить равномерность этой пленки по всей поверхности пластины — в связи с этим на производстве применяется высокоточный температурный контроль.

image

Так вот. В тех местах, которые будут обрабатываться примесями, защитная пленка не нужна – её аккуратно снимают при помощи травления (удаления областей слоя для формирования многослойной структуры с определенными свойствами). А как снять ее не везде, а только в нужных областях? Для этого поверх пленки необходимо нанести еще один слой фоторезиста – за счет центробежной силы вращающейся пластины, он наносится очень тонким слоем.

image

В фотографии свет проходил через негативную пленку, падал на поверхность фотобумаги и менял ее химические свойства. В фотолитографии принцип схожий: свет пропускается через фотошаблон на фоторезист, и в тех местах, где он прошел через маску, отдельные участки фоторезиста меняют свойства. Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски.

image

Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором – вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент – результатом такого подхода становятся различные картины замыканий на каждом слое микропроцессора.

image

Собственно говоря, все предыдущие шаги были нужны для того, чтобы создать в необходимых местах полупроводниковые структуры путем внедрения донорной (n-типа) или акцепторной (p-типа) примеси. Допустим, нам нужно сделать в кремнии область концентрации носителей p-типа, то есть зону дырочной проводимости. Для этого пластину обрабатывают с помощью устройства, которое называется имплантер — ионы бора с огромной энергией выстреливаются из высоковольтного ускорителя и равномерно распределяются в незащищенных зонах, образованных при фотолитографии.

image

Там, где диэлектрик был убран, ионы проникают в слой незащищенного кремния – в противном случае они «застревают» в диэлектрике. После очередного процесса травления убираются остатки диэлектрика, а на пластине остаются зоны, в которых локально есть бор. Понятно, что у современных процессоров может быть несколько таких слоев — в таком случае на получившемся рисунке снова выращивается слой диэлектрика и далее все идет по протоптанной дорожке — еще один слой фоторезиста, процесс фотолитографии (уже по новой маске), травление, имплантация… ну вы поняли.

Характерный размер транзистора сейчас — 32 нм, а длина волны, которой обрабатывается кремний — это даже не обычный свет, а специальный ультрафиолетовый эксимерный лазер — 193 нм. Однако законы оптики не позволяют разрешить два объекта, находящиеся на расстоянии меньше, чем половина длины волны. Происходит это из-за дифракции света. Как быть? Применять различные ухищрения — например, кроме упомянутых эксимерных лазеров, светящих далеко в ультрафиолетовом спектре, в современной фотолитографии используется многослойная отражающая оптика с использованием специальных масок и специальный процесс иммерсионной (погружной) фотолитографии.

image

Логические элементы, которые образовались в процессе фотолитографии, должны быть соединены друг с другом. Для этого пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» — в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.

image

Финишная прямая

Ура – самое сложное позади. Осталось хитрым способом соединить «остатки» транзисторов — принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны – хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов». Отдаленно (при очень большом увеличении) все это похоже на футуристическую дорожную развязку – и ведь кто-то же эти клубки проектирует!

image

Когда обработка пластин завершена, пластины передаются из производства в монтажно-испытательный цех. Там кристаллы проходят первые испытания, и те, которые проходят тест (а это подавляющее большинство), вырезаются из подложки специальным устройством.

image

На следующем этапе процессор упаковывается в подложку (на рисунке – процессор Intel Core i5, состоящий из CPU и чипа HD-графики).

image

Привет, сокет!

Подложка, кристалл и теплораспределительная крышка соединяются вместе – именно этот продукт мы будем иметь ввиду, говоря слово «процессор». Зеленая подложка создает электрический и механический интерфейс (для электрического соединения кремниевой микросхемы с корпусом используется золото), благодаря которому станет возможным установка процессора в сокет материнской платы – по сути, это просто площадка, на которой разведены контакты от маленького чипа. Теплораспределительная крышка является термоинтерфейсом, охлаждающим процессор во время работы – именно к этой крышке будут примыкать система охлаждения, будь то радиатор кулера или здоровый водоблок.

image

image

Сокет (разъём центрального процессора) — гнездовой или щелевой разъём, предназначенный для установки центрального процессора. Использование разъёма вместо прямого распаивания процессора на материнской плате упрощает замену процессора для модернизации или ремонта компьютера. Разъём может быть предназначен для установки собственно процессора или CPU-карты (например, в Pegasos). Каждый разъём допускает установку только определённого типа процессора или CPU-карты.

image

На завершающем этапе производства готовые процессоры проходят финальные испытания на предмет соответствия основным характеристикам – если все в порядке, то процессоры сортируются в нужном порядке в специальные лотки – в таком виде процессоры уйдут производителям или поступят в OEM-продажу. Еще какая-то партия пойдет на продажу в виде BOX-версий – в красивой коробке вместе со стоковой системой охлаждения.

image

The end

Теперь представьте себе, что компания анонсирует, например, 20 новых процессоров. Все они различны между собой – количество ядер, объемы кэша, поддерживаемые технологии… В каждой модели процессора используется определенное количество транзисторов (исчисляемое миллионами и даже миллиардами), свой принцип соединения элементов… И все это надо спроектировать и создать/автоматизировать – шаблоны, линзы, литографии, сотни параметров для каждого процесса, тестирование… И все это должно работать круглосуточно, сразу на нескольких фабриках… В результате чего должны появляться устройства, не имеющие права на ошибку в работе… А стоимость этих технологических шедевров должна быть в рамках приличия… Почти уверен в том, что вы, как и я, тоже не можете представить себе всего объема проделываемой работы, о которой я и постарался сегодня рассказать.

Ну и еще кое-что более удивительное. Представьте, что вы без пяти минут великий ученый — аккуратно сняли теплораспределительную крышку процессора и в огромный микроскоп смогли увидеть структуру процессора – все эти соединения, транзисторы… даже что-то на бумажке зарисовали, чтобы не забыть. Как думаете, легко ли изучить принципы работы процессора, располагая только этими данными и данными о том, какие задачи с помощью этого процессора можно решать? Мне кажется, примерно такая картина сейчас видна ученым, которые пытаются на подобном уровне изучить работу человеческого мозга. Только если верить стэнфордским микробиологам, в одном человеческом мозге находится больше «транзисторов», чем во всей мировой IT-инфраструктуре. Интересно, правда?

Хватило сил дочитать до этого абзаца? ) Поздравляю – приятно, что я постарался не зря. Тогда предлагаю откинуться на спинку кресла и посмотреть всё описанное выше, но в виде более наглядного видеоролика – без него статья была бы не полной.

Эту статью я писал сам, пытаясь вникнуть в тонкости процесса процессоростроения. Я к тому, что в статье могут быть какие-то неточности или ошибки — если найдете что-то, дайте знать. А вообще, чтобы окончательно закрепить весь прочитанный материал и наглядно понять то, что было недопонято в моей статье, пройдите по этой ссылке. Теперь точно всё.

Читайте также: