Металл для глубокой вытяжки
Диагонали отпечатка измеряются в микроскопе, смонтированном вместе с нагружающим устройством приборов для измерения микротвердости, ПМТ-2 или ПМТ-3.
Испытания на глубину выдавливания. В практике европейских заводов принято испытывать листовой металл на глубину выдавливания по методу Эриксена, а на заводах США — по методу Олсена.
Принцип действия обоих приборов заключается в выдавливании лунки сферическим пуансоном до появления трещины на образце. Глубина проникновения пуансона и является показателем штампуемости.
Отличие прибора Олсена заключается в том, что на нем можно определять усилие выдавливания лунки. Испытания на приборе Эриксена для тонкого листа и жести на отечественных заводах оговорены стандартом.
Для испытаний на приборе Эриксена с диаметром пуансона 20 мм в качестве образца берется квадрат 70X70 мм (90X90 мм) или полоса шириной 70 или 90 мм.
Уменьшение размера образца приводит к ошибке в определении глубины выдавливания. Если уменьшить сторону квадрата образца с 90 до 55 мм, ошибка в показаниях прибора составит 10% .
В начале испытания полоса плотно зажимается в зажиме, затем начинается движение пуансона. За началом образования трещины ведется визуальное наблюдение.
Недостатком прибора является прежде всего несоответствие схем деформации и напряжений при испытаниях и штамповке. В последнем случае процесс гораздо сложнее. Кроме того, условия испытания не соответствуют скорости деформирования в процессе штамповки, а также количеству переходов и т. д.
Большое влияние на показания прибора оказывает смазка, которая наносится перед испытанием на пуансон.
При испытаниях по Эриксену края образца зажаты и не участвуют в формовании лунки, деформация вытяжки происходит за счет утонения металла в лунке, испытывающего двухосное растяжение.
В практике при глубокой вытяжке симметричных деталей, типа колпаков, формообразование происходит за счет уменьшения диаметра заготовки; к радиально растягивающим силам от пуансона добавляются еще тангенциально сжимающие усилия.
Глубина выдавливания, определенная по Эриксену, зависит также от толщины листа. Полагают, что усовершенствование прибора Эриксена позволит получать более точные результаты. Для этого надо сделать постоянным усилие прижима и скорости деформирования, а также с большой точностью (+0,1 мм) фиксировать разрыв металла.
Чтобы учесть влияние старения малоуглеродистой стали, испытания на приборе Эриксена необходимо производить незадолго до штамповки деталей. При несоблюдении этого условия неизбежна ошибка в оценке пластических свойств, что часто наблюдается в практике. Все эти недостатки заставляют исследователей изыскивать новые методы испытаний на штампуемость, моделирующих реальный производственный процесс штамповки.
Гидростатические испытания. Исследования, проведенные в ИМАШ АН СССР по вытяжке чашечки под давлением жидкости, показали, что этот метод более чувствителен к качеству металла, чем испытания по Эриксену, хотя схема действия сил в этих двух испытаниях одинакова и соответствует двухосному растяжению.
Испытание на глубокую вытяжку. На заводе «Запорож-Сталь» проводились сравнительные испытания на глубокую вытяжку листов малоуглеродистой стали марки 08кп на приборе ЦНИИТМАШ. Испытывалась вытяжка колпачков пуансонами различных конфигураций: круглых, овальных, квадратных и др.
Изучалось распределение деформаций и напряжений в радиальном и тангенциальном направлении, для чего был использован метод накатанных сеток. Было установлено, что в деталях, получаемых глубокой вытяжкой, наряду с неравномерным распределением напряжений и деформаций по периметру наблюдается существование на различных участках разноименных схем главных напряжений.
При вытяжке цилиндрических колпачков металл испытывает одновременно двухосное растяжение и в перпендикулярном ему направлении — двухосное сжатие. Это относится к колпачкам с вертикальными стенками. При испытаниях по Эриксену, как и при вытяжке полых нецилиндрических изделий, наблюдается двухосное растяжение, причем большее в радиальном направлении и меньшее в тангенциальном. Различные комбинации этих деформаций и отличают каждый процесс штамповки.
Было установлено, что для моделирования простых процессов штамповки надо применять вытяжку цилиндрического колпака из круглой заготовки, а для сложных процессов — из квадратной. Этот метод, по-видимому, целесообразен для оценки штампуемости деталей симметричной формы, вытягиваемых без утонения, но не соответствует процессу сложной вытяжки кузовных деталей.
За рубежом также ведутся работы по усовершенствованию метода испытаний на глубокую вытяжку. Сущность одного из подобных методов заключается в том, чтобы, испытывая последовательно ряд образцов все увеличивающихся диаметров, подойти к предельному значению диаметра, при котором
вытяжка происходит без разрушения, т. е. является максимальной (критерий штампуемости).
Такой способ испытания весьма трудоемкий и связан с большим расходом металла. Чтобы ускорить испытание, поступают следующим образом. Изготавливают три образца различных диаметров. Первый — несколько больше диаметра пуансона, но заведомо обеспечивающий формование целого колпачка. Второй — еще большего диаметра, однако в тех пределах, когда еще можно ожидать вытяжку колпачка. Третий образец настолько большого диаметра, что прорыв донышка при вытяжке будет обеспечен. Затем выдавливают все три колпака и определяют усилие деформации и вытяжку.
На графике зависимости усилия от вытяжки (рис. 33) точка С1 соответствует усилию и вытяжке, полученным при продавливании первого образца, а точка С2 — второго образца.
Экстраполируя кривую, проведенную через начало координат и экспериментальные точки С1 и С2, до значений максимального усилия, полученного при разрушении третьего образца Рzз, определяем точку С3, а по ней — максимально возможную вытяжку
где D — диаметр заготовки;
d — диаметр колпачка.
Часто испытывают колпачки, вытянутые из заготовок разных диаметров, на повторное вытягивание. О способности к вытяжке судят по тому образцу, который деформируется повторно без разрушения.
Большое значение при испытаниях на вытяжку имеет величина зазора на прижиме, толщина листа, смазка и т. п. Заслуживают внимание последние работы по упрощению этого метода, заключающиеся в том, что применяются пуансоны малых диаметров. Для листов толщиной 0,5—2,0 мм диаметр пуансонов составляет 10—70 мм. Установлено, что характеристики вытяжки при этом не искажаются.
Испытания на глубокую вытяжку целесообразно применять для оценки штампуемости деталей симметричной формы, штампуемых без утонения стенки. Соответствия с процессом штамповки сложных кузовных деталей в этом случае также не будет.
Испытания на разбортовку отверстия. Испытание, предложенное Зибелем и Помпом, похоже на вытяжку по Эриксену (рис. 34).
Образец с отверстием диаметром d0 зажимается в приборе. Вытяжка пуансоном диаметром D (D=3d) производится до появления первой радиальной трещины. В случае применения квадратного образца возможна погрешность за счет того, что
вытяжка со стороны углов будет меньше, так как здесь находится зона затрудненной деформации.
Элер, используя круглую заготовку, пришел к выводу, что этот метод надежнее растяжения, перегиба, выдавливания по Эриксену и глубокой вытяжки и выявляет анизотропию механических свойств листа.
Степень доброкачественности металла определяется из соотношения
где d0 — диаметр отверстия до разбортовки, мм; t — глубина продавливания, мм; dmax — наибольший размер отверстия, мм; dmin — наименьший размер отверстия, мм. Испытание на глубокую вытяжку ударом. Этот метод, разработанный Петрашем, применим для моделирования процессов штамповки на фрикционных прессах.
Испытание заключается в следующем. Образец определенного диаметра зажимается с небольшим усилием в прижиме, установленном в вертикальном копре. Сверху падает груз, который ударяет по пуансону, свободно стоящему на образце.
Автор: Администрация
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
19. Процесс вытяжки листовых металлов
Вытяжка представляет собой процесс превращения плоской заготовки в полую деталь любой формы (или дальнейшее изменение ее размеров) и производится на вытяжных штампах.
Рис. 79. Последовательность перемещения металла в процессе вытяжки
На рис. 79 приведена схема вытяжки цилиндрической детали из плоской заготовки и последовательность перемещения металла в процессе вытяжки. Последнее характеризуется уменьшением наружного диаметра фланца и перемещением элементов заготовки (1 - 5) по мере увеличения глубины вытяжки.
При вытяжке кольцевая часть заготовки (D - d) превращается в цилиндр диаметром d и высотой h. Так как объем металла при вытяжке не изменяется, то при полной вытяжке цилиндра высота детали h больше ширины кольцевой части b и составляет
где k = D/d - степень вытяжки. При k = 2, h = 1,5b.
Следовательно, вытяжка происходит за счет пластической деформации, сопровождаемой смещением значительного объема металла в высоту. При большой степени деформации, что соответствует глубокой вытяжке, и при небольшой толщине материала смещенный объем является причиной образования гофров (волн) на деформируемой заготовке. При малой степени деформации и при относительно большой толщине материала гофрообразования не происходит, так как в этом случае смещенный объем металла невелик, а заготовка устойчива.
Для предотвращения образования гофров и складок при вытяжке применяется прижим заготовки складкодержателем.
Вытяжкой изготовляется большое количество полых деталей самой разнообразной формы, отличающихся друг от друга как очертанием в плане, так и формой боковых стенок.
- осесимметричной формы (тела вращения);
- коробчатой формы;
- сложной несимметричной формы.
Каждая из групп подразделяется на несколько разновидностей. Например, тела вращения по форме образующей могут быть цилиндрическими, коническими, криволинейными, ступенчатыми, выпукло-вогнутыми. Построение технологического процесса и технологические расчеты для них различны.
Установлено, что процесс глубокой вытяжки с прижимом начинается не с пластической деформации фланца заготовки, а с предшествующей ей начальной стадии процесса, заключающейся в местной пластической деформации кольцевой не зажатой части заготовки [117].
Рис. 80. Последовательность процесса глубокой вытяжки с прижимом заготовки |
На рис. 80 приведена последовательность процесса глубокой вытяжки с прижимом заготовки: на верхних схемах показана начальная стадия процесса вытяжки, состоящая из локальной пластической деформации свободного кольцевого участка а при зажатом фланце, сохраняющем свои начальные размеры DФ = D0. Эта стадия вытяжки осуществляется за счет растяжения и утонения кольцевого участка, причем наибольшее утонение возникает на границе этого участка с плоским дном.
По мере погружения пуансона тянущее усилие возрастает, а растяжение и утонение свободного участка заготовки увеличиваются. К концу этой стадии происходит пластическая деформация донной части заготовки. После достижения равновесия между тянущими усилием и сопротивлением фланца деформированию начинается вторая стадия процесса вытяжки, заключающаяся в пластической деформации фланца и втягивании его в матрицу (см. схемы II на рис. 80). Таким образом, процесс глубокой вытяжки с прижимом состоит из двух технологически различных стадий: начальной и завершающей. При вытяжке без прижима с малой степенью деформации начальная стадия практически отсутствует.
В начальной стадии процесса глубокой вытяжки возникает значительное утонение свободного участка, которое в процессе дальнейшей деформации превращается в опасное сечение.
Во второй стадии вытяжки имеет место сложная пластическая деформация, в процессе которой элемент плоской заготовки I (рис. 81, а) изменяет свои размеры (удлиняется в радиальном и укорачивается в тангенциальном направлении) и занимает положение //, а затем подвергается изгибу и превращается в элемент боковой поверхности полого изделия.
Рис. 81. Деформация элемента фланца (а) и схема образования гофров (б) при вытяжке
Условие пластичности деформируемого фланца, определяющее момент перехода его в пластичное состояние, выражается уравнением (с учетом знаков напряжений) σ r + σ t = 1,15σ\f2 t.
Вначале для элемента заготовки I, находящегося вблизи наружного края фланца (рис. 81, а), наибольшей является деформация тангенциального сжатия, средней - деформация удлинения в радиальном направлении, а наименьшей - утолщение металла.
В результате деформации тангенциального сжатия при вытяжке тонкого материала легко возникает потеря устойчивости фланца, благодаря чему на нем образуются гофры. В толстом материале, при тех же размерах заготовки и изделия, возникновение гофров затруднено благодаря большей устойчивости фланца заготовки.
При перемещении элемента к вытяжному ребру матрицы наибольшей становится деформация рациального удлинения, так как тангенциальное сжатие постепенно уменьшается. При переходе элемента через вытяжное ребро матрицы эта деформация элемента усложняется появлением дополнительной деформации пространственного изгиба. После этого элемент заготовки переходит в криволинейно-вертикальную стенку и претерпевает небольшое осевое удлинение вдоль образующей, при утонении материала.
Дно изделия подвергается небольшому плоскому удлинению (1-3%) и утонению (2-5%), которыми в большинстве случаев практически можно пренебречь.
Произведенные опыты показывают, что деформация цилиндрических стенок в зазоре и у донного закругления продолжается на протяжении всего рабочего хода и сопровождается непрерывным уменьшением толщины материала.
На рис. 81, бприведена схема образования гофров (волн) по краю вытягиваемого фланца.
Под действием напряжений тангенциального сжатия происходит потеря устойчивости фланца заготовки и образование волнообразного гофра (l1, этап 1). В результате ударного приложения нагрузки к заготовке возникший гофр упруго деформирует складкодержатель и его крепление и увеличивает зазор между ним и матрицей. Дальнейшее действие тангенциального сжатия усиливается вследствие непрерывного уменьшения наружного диаметра заготовки при вытяжке. Это приводит к сплющиванию гофрированной волны (этап 2), а затем к потере устойчивости плоской части гофра, которая прогибается в обратную сторону (этап 3). В результате образуется более мелкий гофр, в котором вместо одной возникли три волны длиной l2 (этап 4).
Процесс гофрообразования продолжается скачкообразно и дальше до тех пор, пока не образуется вполне устойчивый мелкий гофр. В зависимости от различной степени устойчивости фланца заготовки, харакгеризуемой отношением S/d, а также от различной степени деформации К = D/d первоначально возникает различное количество волн по окружности.
При достаточно большой относительной толщине заготовки гофрирования не происходит, так как фланец не теряет устойчивости в процессе вытяжки.
Наиболее опасным местом детали является зона перехода от дна к стенкам вследствие возникшего здесь в начальной стадии вытяжки значительного утонения материала и больших растягивающих напряжений.
При большой степени деформации или в случае образования складок на заготовке растягивающие напряжения в опасном сечении превышают его прочность и приводят к отрыву дна. Условие прочности опасного сечения определяет возможную степень деформации при вытяжке и выражается зависимостью:
Здесь σmах - максимальное напряжение в опасном сечении; σр - истинное сопротивление разрыву.
- уменьшении напряжений в начальной стадии вытяжки;
- уменьшении сопротивления плоского фланца деформированию;
- повышении прочности металла в опасном сечении;
- снижении тангенциальных напряжений сжатия в деформируемом фланце или повышении его устойчивости с целью предотвращения образования складок.
В результате выполнения указанных условий достигают увеличения глубины вытяжки за одну операцию, уменьшения количества операций, улучшения процесса вытяжки деталей сложной формы. Необходимо указать, что при разных способах вытяжки не все из указанных выше условий будут одинаково благоприятны.
В технологическом отношении способы вытяжки необходимо различать главным образом по виду напряженного состояния деформируемой части заготовки. Геометрическая форма детали является в этом отношении вторичным признаком.
Следует различать три основных способа вытяжки.
1. Вытяжка полых деталей путем превращения плоского фланца в цилиндрическую или коробчатую форму, при создании во фланце плоского напряженного состояния по схеме сжатие-растяжение (рис. 81). Сюда относится вытяжка цилиндрических, овальных, коробчатых и других деталей с вертикальными или слегка наклонными стенками.
2. Вытяжка сферических, криволинейных и сложной формы деталей в штампах с вытяжными (тормозными) ребрами. В этом случае под прижимом преобладают растягивающие напряжения и деформации, а в остальной деформируемой части заготовки возникает напряженное состояние двустороннего растяжения.
3. Вытяжка эластичной матрицей и фрикционная вытяжка, создающие заталкивание заготовки, в результате чего снижаются растягивающие напряжения в очаге деформации и облегчается процесс вытяжки.
В первом способе вытяжки наиболее благоприятные условия деформирования заключаются в максимально возможном уменьшении сопротивления плоского фланца деформированию. Это достигается путем применения металла пониженной прочности, отжигом заготовки, нагревом фланца, вытяжкой без прижима, эффективной смазкой. В результате снижаются растягивающие напряжения в опасном сечении, улучшается условие прочности этого сечения и становится возможной более глубокая вытяжка.
Во втором способе вытяжки в штампах с вытяжными ребрами значительная часть заготовки вначале находится вне контакта с рабочими частями штампа и легко образует гофры и морщины. Для их предотвращения приходится создавать повышенные радиальные растягивающие напряжения и искусственно увеличивать сопротивление деформируемого металла путем перетягивания его через вытяжные (тормозные) ребра. При этом значительно возрастают растягивающие напряжения в опасном сечении и ухудшается условие его прочности. Для того чтобы в данном случае создать благоприятные условия деформировании и избежать разрыва, надо обеспечить условие прочности опасного сечения. Это возможно лишь при применении металла повышенной прочности и упрочняемости при достаточно высокой пластичности (вязкости).
Автором исследован и предложен способ вытяжки из закаленных и отпущенных тонколистовых заготовок малоуглеродистой стали, давший положительные результаты [-109]. Отжиг или нагрев заготовок с целью увеличения пластичности в данном случае недопустим, так как приводит к понижению их прочности и преждевременному разрыву.
Третий способ вытяжки обладает наиболее благоприятными условиями деформирования, потому что в этом случае прочность опасного сечения позволяет получить значительную степень деформации.
Рис. 82. Схемы напряжений и деформаций при вытяжке (σ - напряжения, ε - деформации; индексы у σ и ε означают: r - радиальные; t - тангенциальные: s - осевые)
На рис. 82 приведены схемы напряженно-деформированного состояния в разных участках изделия при обычной вытяжке с прижимом (складкодержателем).
Для наглядного представления о характере деформации и возможности определения ее величины на отдельных участках применяют метод нанесения на заготовку прямоугольной или радиально-кольцевой координатной сетки, а затем изучают ее искажение при вытяжке. Измерения искаженной сетки показывают, что в первой операции вытяжки деформация тангенциального сжатия превосходит деформацию радиального растяжения.
При вытяжке происходит изменение толщины стенок деталей. В случае вытяжки цилиндрических деталей без фланца наибольшее утонение составляет 10-18%, а утолщение у края 20-30% от толщины материала. Толщина материала в месте перехода от дна к стенкам уменьшается с увеличением степени деформации, относительной толщины заготовки S/D, пластичности металла, количества операций вытяжки и с уменьшением радиусов закругления пуансона и матрицы.
Приблизительная толщина края определяется из следующих зависимостей:
где S', S - толщина края детали и заготовки, мм;
D, d - диаметр заготовки и вытяжки, мм;
DФ - диаметр фланца, мм.
Более показательно исследование изменения координатной сетки в логарифмических деформациях 1 .
Удлинение в радиальном направлении:
, где r0 - начальный радиус сетки на заготовке;
r - конечный радиус той же сетки после вытяжки.
Сжатие (укорочение) в тангенциальном направлении:
, где d0 - начальный, a d - конечный диаметр сетки.
Изменение толщины материала:
При этом вследствие постоянства объема металла существуют зависимости (с учетом знаков деформаций):
Рис. 83. Деформации при цилиндрической вытяжке
На рис. 83 приведены кривые изменения логарифмических деформаций (εr, εt и εS ) разных точках вытянутого цилиндрического изделия А, В, С, D. Эти кривые показывают, что на участке донного закругления и несколько выше, где происходит утонение материала.
Анализ технологического процесса глубокой вытяжки тонкостенной детали: режимы обработки, размеры формообразующих инструментов и производственные браки
Вытяжка — это процесс превращения плоской или полой заготовки в открытое сверху полое изделие, осуществляемый при помощи вытяжных штампов. Исходя из формы и технологических особенностей листовой штамповки, полые детали, получаемые вытяжкой, можно разделить на несколько основных групп:
1) детали, имеющие форму тела вращения;
2) детали коробчатой формы;
Рис. 1. Полые детали различной формы (а-л), получаемые вытяжкой
Детали, имеющие форму тела вращения, могут быть с фланцем или без фланца, с плоским или с фасонным дном (рис. 1, а-д).
Детали коробчатой формы могут иметь квадратные, прямоугольные, криволинейные боковые стенки с фланцем или без фланца; дно у них может быть плоское или фасонное (рис. 1, е-з).
Детали сложной формы могут быть полусимметричные, имеющие только одну плоскость симметрии (корпус и крыша кабины автомобиля, рис. 1, и), и несимметричные (крыло автомобиля, рис. 1, к).
В зависимости от формы детали заготовка подвергается либо вытяжке в чистом виде, либо вытяжке в сочетании с формовкой, гибкой и обжимом или с отбортовкой.
Вытяжку производят на кривошипных прессах двойного и тройного действий, кулисных прессах двойного действия с подвижным нижним столом, кривошипных прессах простого действия (одноходовых) с пневматическим или гидропневматическим устройством (подушкой), а также на гидропрессах простого и двойного действий.
Рис. 2. Схема процесса вытяжки: d1 — диаметр полой заго-товки после
первой операции; d2 — диаметр полой заготовки после второй операции
Особую группу составляют операции обтяжки — получение полых деталей криволинейной формы путем растяжения материала и обтягивания его вокруг специального обтяжного шаблона- болвана (рис. 1, л). Обтяжка производится на специальных обтяжных гидропрессах.
По характеру и степени деформации различают: 1) вытяжку без утонения стенок; 2) вытяжку с утонением стенок (протяжку) и 3) комбинированную вытяжку.
В первом случае вытяжка происходит без заранее обусловленного изменения толщины материала стенки изделия, но при значительном уменьшении диаметра заготовки; во втором — вытяжка осуществляется за счет заранее предусмотренного уменьшения толщины стенки вытягиваемого полуфабриката при незначительном уменьшении его диаметра. Комбинированная вытяжка характеризуется одновременным значительным уменьшением диаметра и толщины стенки вытягиваемого полуфабриката.
В зависимости от относительной толщины заготовки или полуфабриката вытяжку производят с применением или без применения прижима. Так как при вытяжке происходит втягивание материала заготовки 3 пуансоном 2 с закруглением rп большего диаметра D в матрицу 1 с закруглением rм, имеющую меньший диаметр d (рис. 2, а), то естественно, что по краю вытянутого колпака образуются складки (гофры) за счет наличия избыточного материала или так называемых характеристичных треугольников b, b1, b2, . bn (рис. 2, б), ибо для образования полого колпака диаметром d и высотой h достаточно было бы иметь заготовку диаметром D’ без заштрихованных участков. Наличие избыточных треугольников приводит к необходимости вытеснения и перемещения металла при вытяжке вверх. На рис. 2, в показана вытяжка на второй операции из полой заготовки 4.
Рис. 3. Вытяжка с прижимом материала
Образование складок вызывается напряженно-деформированным состоянием металла, приводящим при определенных геометрических соотношениях к потере устойчивости заготовки (рис. 2, а).
Для предотвращения образования складок применяют прижимное кольцо или складкодержатель 3, который прижимает фланец заготовки к матрице 1 таким образом, что материал не имеет возможности образовать складки, а вынужден перемещаться под давлением пуансона 2 в радиальном направлении. Прижим материала применяется как для первой операции вытяжки, т. е. при вытяжке детали из плоской заготовки (рис. 3, а), так и при последующих операциях вытяжки из полой заготовки (рис. 3, б).
Вытяжка без прижима применяется при изготовлении неглубоких сосудов или изделий из толстых материалов, когда складки почти не образуются или выглаживаются при прохождении через вытяжную матрицу.
Напряженно-деформированное состояние металла при вытяжке полых тел
При вытяжке плоская заготовка диаметром D (рис. 4), перемещаясь во время вытяжки, изменяет свои размеры и занимает ряд промежуточных положений. При этом материал деформированной заготовки в различных ее частях находится в разных условиях. В случае вытяжки с прижимом без утонения материала и с зазором, большим толщины заготовки (для случая осесимметричного деформирования в полярной системе координат), можно принять следующую схему напряженно-деформированного состояния (рис. 4).
Рис. 4. Схема напряженно-деформированного состояния отдельных
участков заготовки при вытяжке (σ — напряжения, ε — деформации)
1. Дно частично образованного полого цилиндра — колпака (элемент а) находится в плоско-напряженном и объемно-деформированном состоянии. Так как деформация металла — двустороннее равномерное растяжение в плоскости дна и осевое сжатие составляют на первой операции всего 1-3%, то практически ими можно пренебречь. При многооперационном процессе вытяжки уже после второй-третьей операции толщина дна заметно уменьшается, так как металл со дна постепенно поступает в зону максимального утонения (у донного закругления); интенсивность утонения Дна особенно проявляется у латуни, имеющей небольшую сосредоточенную деформацию сужения (по сравнению со сталью).
2. Цилиндрическую часть полого тела, находящуюся в зазоре между матрицей и пуансоном (элемент b), можно считать находящейся в линейно-напряженном и объемно-деформированном состоянии. Непосредственно у донного закругления изделия (элемент с) в металле возникают напряжения ввиде двухосного растяжения и одноосного сжатия, приводящие к значительному растяжению и утонению стенок в этом месте. Вследствие этого поперечное сечение тела здесь является наименее прочным и наиболее опасным с точки зрения отрыва дна от стенок изделия. Это опасное сечение и ограничивает возможность максимального использования пластических свойств штампуемого металла.
3. Часть, находящаяся на закруглении рабочих кромок матрицы (элемент d), испытывает сложную деформацию, вызванную одновременным изгибом и распрямлением заготовки, наибольшим традиальным (меридиональным) растяжением и незначительным тангенциальным (окружным) сжатием.
4. Часть заготовки, находящаяся под прижимным кольцом (элемент ё), находится в объемно-напряженном и объемно-деформированном состоянии. Однако при достаточно сильном прижиме можно считать εп (εz) = 0. В плоскостях фланца заготовки возникают радиальные (меридиональные) растягивающие σр и тангенциальные (окружные) сжимающие σθ напряжения, а в перпендикулярном к ней направлении — осевые сжимающие напряжения σn (σz), причем ввиду небольшой величины σn на практике им часто пренебрегают (при образовании явного клинового сечения во фланце σn = 0).
Рис. 5. Кривая изменения толщины стенки в различных частях колпака при вытяжке
Меридиональные растягивающие напряжения σp, вызываемые давлением пуансона у края заготовки, равны нулю; по мере удаления от края заготовки к центру матрицы они возрастают, достигая наибольшей величины на входной кромке матрицы. Тангенциальные сжимающие напряжения σθ, наоборот, у наружного края имеют наибольшую величину, а по мере удаления от края заготовки значения их уменьшаются. В тот момент, когда край заготовки переместится на величину, составляющую 39% от радиуса заготовки (0,39 R), σθ становится равным σp. Под действием напряжений тангенциального сжатия ст фланец заготовки утолщается (образуя иногда как бы клиновое сечение) и упрочняется; при недостаточном прижиме и тонком материале [(s/D) 100 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Металл для листовой штамповки
Хорошо штампуются также листы с зернами феррита 5— 6-го балла, но поверхность отштампованных деталей часто получается шероховатая (табл. 29).
Крупное зерно само по себе не ухудшает штампуемость, так как и крупнозернистый металл обладает достаточно высокой пластичностью, но поверхность отштампованной детали получается хуже, так как она приобретает вид так называемой «апельсинной корки».
Малоуглеродистая конструкционная листовая сталь весьма глубокой и глубокой вытяжки поставляется с величиной зерна, приведенной в таблице 30.
Неравномерность зерна допускается для группы ВГ в пределах двух смежных номеров, для группы Г — в пределах трех смежных номеров.
Сталь тонколистовая холоднокатаная малоуглеродистая, применяемая для холодной штамповки сложных по вытяжке деталей автомобильных кузовов категории ОСВ и СВ (ГОСТ 9045-59), проверяется в состоянии поставки также на микроструктуру. Она должна иметь зерно в пределах баллов № 6, 7, 8 по ГОСТу 5639-51, причем смешанное зерно допускается в пределах двух смежных баллов.
Структура металла должна быть, как правило, с равноосными и равномерными по величине зернами по той причине, что наличие в стали неравноосной структуры с различными по величине зернами при штамповке может привести к разрывам, так как пластическая деформация будет происходить неравномерно: раньше будут деформироваться крупные и неравноосные зерна, а затем мелкие.
Неравноосность зерен в листах стали марки 08Ю не снижает пластических свойств за счет образования так называемой «оладьеобразной» структуры, когда зерна вытянуты вдоль поверхности листов. Такая форма зерен может допускаться в металле, предназначаемом для особо сложных вытяжек.
В том случае, если в структуре содержатся крупные выделения цементита, вытяжка ухудшается, так как в местах скоплений цементита нарушается сплошность металла при деформации. В этих местах концентрируются напряжения при деформировании, что приводит к браку по разрывам.
Поскольку структурно-свободный цементит ухудшает вытяжку стали, ограничивается его величина для холоднокатаных сталей групп ВГ и Г марок 05кп, 08кп, 08пс, 10кп и 10 в пределах баллов 0, 1, 2 и 3-го по ГОСТу 5640-51, а для сталей категорий ОСВ и СВ марок 08кп, 08Фкп и 08Ю — в пределах 0, 1 и 2-го балла.
При медленном охлаждении после горячей прокатки в металле образуются крупные скопления цементита, особенно в случае высокой температуры конца прокатки. При последующей прокатке эти скопления раздробляются и вытягиваются в цепочки, которые невозможно разрушить рекристаллизационным отжигом. Такая полосчатость структуры недопустима, так как она приводит к анизотропии механических свойств: свойства листа хуже в поперечном направлении, чем в продольном.
Для листов группы ВГ из стали марок 15кп, 15 допускается полосчатость в пределах баллов 1, 2 и 3-го шкалы № 3, а для листов из стали марок 20кп, 20 — баллов 1, 2 и 3-го шкалы № 4 (ГОСТ 5640-51).
Недопустимо выпадение цементита по границам зерен, имеющее место при отжиге стали в случае нагрева выше точки Ac1.
Чрезвычайно большое значение имеет присутствие в металле атомарного азота и углерода. Наличие даже незначи
тельных примесей их, не связанных в нитриды и карбиды, приводит к интенсивному старению дрессированного металла и соответственному ухудшению штампуемости.
Требования к поверхности листов
Поверхность листов, предназначенных для штамповки изделий глубокой вытяжки и идущих на облицовку различных машин, должна быть совершенно чистой и гладкой. Поверхность листов должна быть глянцевой или матовой.
Не допускаются плены, царапины, раковины, пузыри, закаты, надавы от валков, разрывы, расслоения и тому подобные дефекты. На поверхности не должны быть окалина, ржавчина, цвета побежалости или неметаллические включения.
Листы как горячекатаные, так и холоднокатаные групп вытяжки ВГ, Г и Н в зависимости от состояния поверхности подразделяются на четыре, группы: первую, вторую, третью и четвертую. Причем холоднокатаные листы относятся к первым трем группам (табл. 31), а горячекатаные — к третьей и четвертой (табл. 11).
Тонколистовая сталь для автомобильных кузовов, применяемая для штамповки сложных по вытяжке деталей (категорий ОСВ и СВ марок 08кп, 08Фкп, 08Ю), по качеству поверхности разделяется на две группы отделки:
I группа отделки — поверхностные дефекты не допускаются на лицевой стороне. На обратной допускаются в пределах 1/4 абсолютных величин, допускаемых по толщине отклонений, общая легкая рябизна и неглубокие царапины.
II группа отделки — на лицевой стороне могут допускаться общая легкая рябизна и мелкие царапины. На обратной стороне допускаются общая рябизна, поры и раковины, царапины и надавы от валков в пределах половины допуска от толщины листа (ГОСТ 9045-59).
На поверхности отштампованных деталей не должны появляться линии текучести (Людерса) или линии надлома (выпуклые линии или полосы).
Требования к размерам листов
Качественные штамповки в серийном производстве можно получать только из листов равной толщины и равных размеров по длине и ширине. Отклонения, особенно по толщине листов, должны быть минимальными.
Наиболее важно иметь заготовки с небольшой разнотолщинностью при работе на штампах двойного действия, наиболее часто применяемых при изготовлении сложных деталей глубокой вытяжки.
В этом случае штамп, настроенный на максимальную толщину при работе с более тонким металлом, дает брак по морщинам, так как эффективность торможения металла в прижиме снижается, а штамп, настроенный на минимальную толщину при работе с завышенной толщиной металла, даст брак по разрывам, так как лист под прижимом защемляется и скольжение его затрудняется.
Поскольку получать листы ровной толщины практически невозможно вследствие воздействия при прокатке большого числа переменных факторов — температуры, трения, профилировки валков, выработки валков и т. п., допускаются отклонения по толщине листов, предназначаемых для листовой штамповки в пределах, указанных в таблице 32.
Читайте также: