Марки сталей для металлических конструкций
Мои предположения:
Из переписки с одногруппником:"В ГОСТ 27772-2015 есть таблица 3 (но, в СП 16.13330.2017 про нее ни одного упоминания нет, только в ответе из ЦНИИСК есть зацепка https://pp.userapi.com/c639425/v6394. M4BVlKXM3o.jpg, что из нее идёт определение дополнительных характеристик материала стали), в ней 7 категорий, но нам необходимо обеспеченность более 34 по КCV, как гласит норматив, и в ГОСТ 2015 идёт классификация с 4 по 7 для этого критерия. Так вот, есть предположение, что поскольку в СП 2017 в т.В1 нормируется только соответствие определенных температур испытаний (в моем понимании температура испытаний должна соответствовать расчетной температуре) для заданного промежутка нормативного сопротивления, и для него есть обеспечение в 34 по KCV, то это будет соответствовать стали без категории, но если нам нужно задаться определенным диапазоном нормативного сопротивления, а для него не нормируется соответствие (стоит "-"), соответственно необходимо вводить категорию стали с 4 по 7.
Например: сталь С390 при расчетной температуре в -41 имеет обеспечение 34 (при -40, но допускаем близость значения) по параметру KCV, назначаем - С390 без категории, ибо эта сталь испытана до -40, и уже имеет категорию 6 по т.3 ГОСТ 2015.Но в случае, если нам не нужно такое высокое нормативное сопротивление: задаёмся диапазоном до 290, видим из т.В1 СП 2017, что сталь с таким сопротивлением испытана на +20, а нам необходимо уверенность работы при -40, то обращаемся к т.3 ГОСТ 2015, и вводим категорию 6, тем самым получаем к примеру сталь С255 кат.6
Не уверен, насчет момента с С390 без категории, может быть , нужно все равно прописывать категорию (С390 кат. 6). Если честно в голове ветер, я не знаю.."
Помогите понять все суть выбора, допустим на примере основных элементов (ферма, фасонки, колонна, связи, подкрановая балка) промышленного здания в г.Екатеринбург.
Буду признателен за развернутые ответы, все мы когда-то учились.
г. Екатеринбург. Расчетная температура (температура наружного воздуха наиболее холодных суток обеспеченностью 0,98, определённая согласно СП 131.13330) минус 41 C. Группа конструкций 1. По расчету на прочность нужна сталь с Ry=380 МПа толщиной 10мм. Берем сталь С390 по ГОСТ 27772-2015. Для неё при толщине 10мм Ryn=390 МПа. Итого, для определения необходимого уровня ударной вязкости по табл В1 СП 16.13330.2016 имеем: t>=-45 C, группа конструкций 1, Ryn=390 МПа. Отсюда необходимая ударная вязкость KCV=34 Дж/см2 при температуре испытаний минус 40 С. Согласно ГОСТ 27772-2015 такое значение обеспечивает прокат 6 категории. Принимаем в проекте сталь С390 6 категории по ГОСТ 27772-2015. Потом проверяем сталь на требования к хим. составу по табл В2 СП 16.13330.2016.
Тогда такой вопрос к разобравшимся
г. Казань. Расчетная температура (температура наружного воздуха наиболее холодных суток обеспеченностью 0,98) минус 41°С. Группа конструкций 1.
Ранее там применялась сталь С255.
Сейчас по таблице В.1 16.13330.2016 t>=-45 C, группа конструкций 1, Ryn=255 МПа => необходимая ударная вязкость KCV=34 Дж/см2 при +20°С, остальные ячейки не нормируются.
Таблица 5 ГОСТ 27772-2015 ударную вязкость при +20 вообще не имеет.
Вот мучает вопрос, раз нет данных показателей то могу применять, а соответственно могу и понизить до С245 или С235 (не запрещено). Хотя в СП 16.13330.2011 эти стали были разнесены по разным группам.
Я понимаю, что СП 16.13330.2011 в части приложения В, согласно постановления 1521 пока действует, но живём в России, и новые министры борясь с пережитками, могут отменить прошлое постановление.
Отбросим толщины до 4мм. Тогда для указанных условий по ударной вязкости можно применить прокат С245 (листовой до 30мм и фасонный до 40мм) 4 категории и С255 (до 40мм) 4 категории.
Это я так понимаю взяли ударную вязкость при температуре 0°С, а не как указанно в СП16 при температуре +20°С (самовольно).
С категориями тоже всё однозначно. нынче получается, что вся сталь должна быть не менее 4-той категории.
Это я так понимаю взяли ударную вязкость при температуре 0°С, а не как указанно в СП16 при температуре +20°С (самовольно).
Да. Это недоработка норм, учитывая, что в ГОСТ 27772-2015 нет испытаний KCV при 0°С. Надо было в СП16 указать, что при температуре испытаний выше указанной в стандарте, значение ударной вязкости не ниже чем при температуре испытаний.
С категориями тоже всё однозначно. нынче получается, что вся сталь должна быть не менее 4-той категории.
Подскажите, как подбирать категорию для стали С245 при температуре выше 45 градусов. По СП 16.13330.2011 табл. В.3 нормируется KCV при температуре испытаний +20 градусов, в ГОСТ 27772-2015 по таблице 3 максимальная температура испытаний 0 градусов и +20 там даже нет. То есть мне просто брать 4 категорию? И можно ли это как-то по нашим нормам обосновать?
А почему для тонколистовой стали (2мм - 3,9мм) по ГОСТ 27772 (по старому 88 и новому 2015) не нормируется ударная вязкость? Считается, что она обеспечена?
Возник вопрос по поводу совместного использования т.1 и т.2 ГОСТ 27772-2015, помогите, пожалуйста, разобраться.
Для наглядности хотелось бы разобрать на примере:
1. Группа стальных конструкций - 1
2. Расчётная температура - минус 42°С
3. Пусть по расчёту Ryn=325 Н/мм2, толщина проката до 20 мм
4. Тогда по т.В.1, т.В.3 СП и т.3 ГОСТ принимаем сталь С355 категории 5.
5. По т.В.2 СП необходимо иметь С - 0,014 (0,017 max); P - 0,025; S - 0,025; Cэ - 0,45
6. По т.1 ГОСТ для С355 имеем С, не более - 0,014; P - не более 0,025; S, не более - 0,025; Сэ, не более - 0,45
И вроде бы в таком виде всё подходит, но ведь ещё есть т.2 ГОСТ, которая увеличивает нам содержание серы и фосфора по отклонению до 0,03 (+0,005)?! Как быть? Сразу брать по химическому составу следующий класс прочности С355-1 (категории 5)?
Подбор марки стали для строительных конструкций
Расчет строительных конструкций завязан на выборе марки стали. Многие просто в расчетах принимают марку стали С245 как самую низкую и не парятся по этому поводу — в случае если необходимой марки нет, заменяют на более прочную, а сечение оставляют тоже, что это ведет к перерасходу металла и завышению стоимости строительства.
Также многие ошибочно полагают, что из-за того что самая низкая марка дешевле, то и конструкция будет дешевле. На самом деле увеличение прочности стали ведет к снижению общей массы конструкции и итоговая стоимость всего проката может оказаться ниже. Кроме этого снижается нагрузка на фундамент и сейсмические нагрузки. Однако использование высокопрочных сталей не оправданно для элементов, сечение которых подбирается из условия устойчивости.
Кроме того при подборе марки стали будет не лишним обзвонить поставщиков на наличии и возможность поставки профиля из необходимой марки стали т.к. при замене марки стали на менее прочную придется менять профиль и узлы, что займет некоторое время, а при замене на более прочную будет перерасход стали. Одни из самых распространенных марок стали для прокатного профиля на рынке — 09Г2С и Ст3сп/пс5.
В первую очередь для выбора марки стали нам необходимо определить к какой группе относятся будущий элемент здания. Описание групп написано в приложении В СП 16.13330.2011. Всего их 4:
1) Сварные конструкции либо их элементы, работающие в особо тяжелых условиях (согласно ГОСТ 25546), в том числе максимально стесняющие развитие пластических деформаций или подверженных непосредственному воздействию динамических, вибрационных или подвижных нагрузок. В этот список входят подкрановые балки, балки рабочих площадок, балки путей подвижного транспорта, элементы конструкций бункерных и разгрузочных эстакад, непосредственно воспринимающие нагрузки от подвижных составов, главные балки и ригели при динамической нагрузке, пролетные строения транспортерных галерей, фасонки ферм, стенки, окрайки днищ, кольца жесткости, плавающие крыши, покрытия резервуаров и газгольдеров, бункерные балки, оболочки параболических бункеров, стальные оболочки свободно стоящих дымовых труб, сварные специальные опоры больших переходов линий электропередачи (ВЛ) высотой более 60 м, элементы оттяжек мачт и оттяжечных узлов.
2) Сварные конструкции либо их элементы, работающие при статической нагрузке при наличии растягивающих напряжений. В этот список входят фермы, ригели рам, балки перекрытий и покрытий, косоуры лестниц, оболочки силосов, опоры ВЛ, за исключением сварных опор больших переходов, опоры ошиновки открытых распределительных устройств подстанций (ОРУ) опоры транспортных галерей, прожекторные мачты, элементы комбинированных опор антенных сооружений (АС) и другие растянутые, растянуто-изгибаемые и изгибаемые элементы, а также конструкции и их элементы 1-ой группы при отсутствии сварных соединений и балки подвесных путей из двутавров по ГОСТ 19425 и ТУ 14-2-427 при наличии сварных монтажных соединений.
3) Сварные конструкции или их элементы, работающие при статической нагрузке, преимущественно на сжатие. В этот список входят колонны, стойки, опорные плиты, элементы настила перекрытий, конструкции, поддерживающие технологическое оборудование, вертикальные связи по колоннам с напряжениями в рассчетных сечениях связей свыше 0,4Ry, анкерные, несущие и фиксирующие конструкции (опоры, ригели жестких поперечин, фиксаторы) контактной сети транспорта, опоры под оборудование ОРУ, кроме опор под выключатели, элементы стволов и башен АС, колонны бетоновозных эстакад, прогоны покрытий и другие сжатые и сжато-изгибаемые элементы, а также конструкции и их элементы 2-ой группы при отсутствии сварных соединений.
4) Вспомогательные конструкции зданий и сооружений. В этот список входят связи, кроме указанных в группе 3, элементы фахверка, лестницы, трапы, площадки, ограждения, металлоконструкции кабельных каналов, вспомогательные элементы сооружений и т.п., а также конструкции и их элементы 3-ей группы при отсутствии сварных соединений.
Далее нам необходимо определить климатический район строительства, а точнее нам необходимо узнать расчетную температуру наружного воздуха. Ее можно найти в СП 131.13330.2012 (Актуализированная редакция СНиП 23-01-99*).
За расчетную температуру для определения стали по СП 16.13330.2011 принимается температура наиболее холодных суток с обеспеченностью 0,98.
За расчетную температуру для определения стали по СНиП II-23-81 принималась температура наиболее холодной пятидневки с обеспеченностью 0,92.
Почему температура влияет на выбор марки стали? Потому что с уменьшением температуры увеличивается хрупкость стали.
С 1 июля 2015 г. СП 16.13330.2011 носит обязательный характер, поэтому необходимо пользоваться данными по нему. Давайте сравним требования предъявляемые СП 16.133302011 и уже не действующим СНиП II-23-81.
По таблице В.1 СП 16.13330.2011 назначаются следующие марки стали в проектируемых конструкциях:
Из таблицы мы видим, что здесь 3 столбца со стандартами для выбора марки стали. Марка стали по ГОСТ 27772 характеризует предел текучести металла (С235 означает что сталь имеет предел текучести 235 Н/мм²), маркировка согласно ГОСТ 353,ГОСТ 14637 и ГОСТ 19281 обозначает химический состав, прочностные характеристики данной марки можно посмотреть в этих ГОСТ-ах. Сталь выполненная по одному ГОСТ-у может полностью соответствовать марке стали, выполненному по другому ГОСТ-у, отличие заключается лишь в методе контроля качества стали. В мире нет единого стандарта обозначения марки стали — в России одни стандарты, в США другие, в Европе третьи, но это не значит, что сталь у нас разная.
По таблице 50 СНиП II-23-81 назначаются следующие марки стали:
Обозначения, принятые в табл. 50* СНиП II-23-81:
а) фасонный прокат толщиной до 11 мм, а при согласовании с изготовителем — до 20 мм; листовой — всех толщин;
б) требование по ограничению углеродного эквивалента по ГОСТ 27772-88 для толщин свыше 20 мм;
в) требование по ограничению углеродного эквивалента по ГОСТ 27772-88 для всех толщин;
г) для района II4, для неотапливаемых зданий и конструкций, эксплуатируемых при температуре наружного воздуха, применять прокат толщиной не более 10 мм;
д) при толщине проката не более 11 мм допускается применять сталь категории 3;
е) кроме опор ВЛ, ОРУ и КС;
ж) прокат толщиной до 10 мм и с учетом требований разд. 10;
и) кроме района II4 для неотапливаемых зданий и конструкций, эксплуатируемых при температуре наружного воздуха.
Знак «+» означает, что данную сталь следует применять; знак «-» означает, что данную сталь в указанном климатическом районе применять не следует.
Как видим в СНиП II-23-81 градация по температурам ниже на 5 градусов, чем в СП 16.13330.2011, но и температура здесь не самых холодных суток, а самой холодной пятидневки. Если посмотреть СП «Строительная климатология», то заметим, что в большинстве случаев условия выбора марки стали будут одинаковыми, но есть случаи когда СНиП предъявляет более суровые требования, есть случаи когда в СП требования выше. Поэтому для экспертизы, необходимо чтобы марка стали соответствовала СП 16.13330.2011, но если СНиП II-23-81 предъявляет более суровые требования, то рекомендую воспользоватся этим документом.
Для подбора марки стали труб можно воспользоватся таблицей В.2 Сп 16.13330.2011
Также можно подобрать марку стали по показателям ударной вязкости данной в таблице В.3 Сп 16.13330.2011
Марку стали для соединений стальных конструкций следует выбирать согласно приложению Г СП 16.13330.2011
Из таблицы мы можем определить рекомендуемые марки стали и сделать расчет. Если есть возможность выбора марки стали, то лучше попробовать несколько вариантов и на основании технико-экономического расчета выбрать лучший вариант.
This article has 9 Comments
Почему выбираем сталь по СП? В Распоряжении Правительства РФ от 21.06.2010 г. №1047-р, этих документов нет в качестве обязательных. Необходимо пользоваться СНиП-ами.
Согласен, СП 16.13330.2011 носит рекомендательный характер, сейчас обязательным является СНиП II-23-81, но новый СП практически во всех смыслах копирует СНиП II-23-81. Если смотреть на подбор марки стали, то тут нет противоречий между этими стандартами, разве что в СНиП II-23-81 можно еще выбрать марки стали С390,С390К,С440, но на рынке эти марки стали слабо представлены и я бы не рекомендовал их использовать в проекте без предварительного согласования с поставщиками.
Поэтому я думаю, что моя статья вполне актуальна. Если есть какие-то серьезные противоречия между этими стандартами в выборе марки стали, то прошу написать, я обязательно это включу в статью.
Я сравнил СНиП II-23-81 и новый СП 16.13330.2011. Отличия действительно есть, прежде всего в градации по выбору стали в зависимости от температуры, в СНиП градация идет до -40, -40 до -50, ниже -50, в СП 16.13330.2011 эта планка на 5 градусов выше, поэтому СНиП II-23-81 предъявляет не много более жесткие требования в некоторых случаях.
Я добавлю это сравнение в статью.
Главное отличие в выборе расчетной температуры:
СП, п. 4.2.3 За расчетную температуру в районе строительства следует принимать температуру наружного воздуха наиболее холодных суток обеспеченностью 0,98, определенную согласно СНиП 23-01.
СНиП, прим. к табл. 50* 3. Климатические районы строительства устанавливаются … за которую принимается средняя температура наиболее холодной пятидневки согласно указаниям СНиП по строительной климатологии и геофизике.
Так, например, для Красноярска по СНиП получается расчетная температура -40гр, с обеспеченностью 0,92 наиболее холодной пятидневки. Попадаем в район II4 и соответсвенно сталь С255.
По СП расчетная температура получается аж -48гр, с обеспечнностью 0,98 наиболее холодных суток. И по табл. В.1 получается сталь С345 для всех групп конструкций, кроме вспомогательных.
Поэтому в этом отношении новый СП очень жесток.
Спасибо что поправили меня, действительно температуры разные, надо это отметить. Если смотреть СНиП «Строительная климатология», то можно заметить, что минимальная температура с обеспеченностью 0,98 примерно на 5 градусов ниже, чем температура наиболее холодной пятидневки с обеспеченностью 0,92, поэтому подбор марки стали для большинства регионов идентичен, но есть города, в которых по СНиП предъявляются более суровые требования, есть наоборот более суровые требования предъявляет СП.
На мой взгляд, надо смотреть оба документа и принимать по наихудшему, а вообще принимать сталь по температуре наиболее холодных суток, т.е. по новому СП, более логично.
Ничего не логично. Принимать нужно по действующим документам. Тем более, что прокат из 345 стали, да еще 3-й категории у нас найти весьма сложно, да и по ценнику она дороже.
Более логично т.к. при низкой температуре снижается ударная вязкость металла, что может привести к разрушению металла при сильном ударе и низкой температуре. Не думаю что металл будет охлаждаться 5 дней, поэтому выбор температуры наиболее холодных суток более логичен.
С точки зрения закона пока главным является СНиП II-23-81, но думаю вопрос замены СНиП новыми СП это вопрос времени.
По поводу того, что прокат трудно найти и он стоит дороже я с вами не согласен:
во-первых данная сталь прочнее, поэтому общая масса металла на здание будет меньше, если конечно критическим фактором не является расчет по прогибу или проверка по гибкости, кроме этого стоимость монтажа и доставки рассчитывают исходя из массы металла, поэтому и здесь экономия. Использование более прочной стали в некоторых случаях дает снижение общих затрат;
во-вторых прокат С345, т.е. сталь 09Г2 или 09Г2С довольно распространен, проблем с ее наличием никогда не возникало, в том числе и по ударной вязкости, поэтому такие разговоры я думаю либо от плохой организованности процесса строительства (все делается второпях), либо из-за ленивости/привязанности снабженцев к одному поставщику;
в-третьих безопасность эксплуатации здания это самое главное, нормы это юридический документ, он не должен за вас решать какие-либо вопросы, он просто задает вам рамки, в пределах которых вы должны проектировать, итоговое решение должно быть за вами — если ваш опыт работы, зарубежный опыт, другие знания говорят вам решение более правильное, вы должны следовать ему (естественно не нарушая норм), например в СП 16.13330.2011 в формулах появилось требование учитывать бимомент, в СНиП его нет, но в некоторых случаях это может привести к повреждению конструкции.
Я спрашивала о возможности применения для подкрановых балок сталь 10Г2 ПБЮ в указанных таблицах ее нет. Как быть?
По прочности 10Г2 вроде аналогичен 09Г2. Посмотрите по ударной вязкости если данная сталь подходит (таблица В.3 Сп 16.13330.2011), то думаю можно применить.
Марки сталей
Главным компонентом в производственном цикле предприятий черной металлургии является железо. Черные металлы отличаются высокой температурой, необходимой для плавления, большим удельным весом и достаточно высокой твердостью. Крупные металлургические предприятия успешно занимаются выпуском различных материалов, производя выработку чугуна, стали и всевозможных сплавов, широко используемых во всех областях народного хозяйства. Эти материалы содержат железо и широкий перечень химических элементов, значительно улучшающих качества ферросплавов. Добавление химических примесей способствует получению важнейших характеристик, играющих ключевую роль в процессе эксплуатации – прочность, упругость, нечувствительность к коррозийным процессам.
Типы и виды марок сталей
Продукция металлургической промышленности классифицируется на основании предназначения и способу производства, с учетом применяемой технологии. Основными типами металлопроката являются сортовой и листовой. Первый тип предполагает создание полос, листов, которые укладываются в рулоны. При сортовом – создаются изделия в форме арматуры, фрагментов в виде квадратов, кругов и полос. Продукция, которая сходит с линий предприятий черной металлургии, нашла широкое применение во всех областях народного хозяйства. Она успешно используется в машиностроении, создании огромного перечня высокоточного оборудования и инструментов.
Принцип классификации
В классификации стали и сплавов использованы следующие критерии:
- назначение;
- показатели качества;
- наличие химических элементов;
- структура.
Улучшить свойства стали помогает процедура легирования – введения строго дозированных примесей хрома, молибдена, вольфрама и других элементов. В большинстве случаев значительное расширение технологических показателей достигается комплексными технологическими приемами.
Разделение легированных сталей по критерию состава химических элементов происходит на основании общего процента введенных элементом. Так, в низколегированных сталях находится до 2,5 % легирующих примесей, в среднелегированных – от 2,5 % до 10 %, в высоком сегменте - 10 % и более.
Маркировка и назначение
Марка однозначно расшифровывается и дает представление о компонентах, входящих в состав.
Стоящие первыми в маркировке показатели показывают средний уровень наличия углерода в составе: одно число – в десятых частях процента, два – в сотых. Отсутствие цифр впереди марки говорит о том, что содержание углерода равно либо превышает 1 %. Далее следуют буквенные обозначения химических элементов, входящих в примеси, и их процентное содержание. Конечная «А» указывает, что данная марка стали обладает высоким качеством.
Различные марки сталей группируются в классы согласно их назначению и области применения:
- строительные;
- процесса холодной технологии: листовой тип из углеродистых сталей;
- в производстве холодным способом;
- продукция литейного производства;
- стали пружинного типа, которые характеризуются высокими показателями упругости и устойчивости к внешним воздействиям;
- класс подшипниковых, включающий высокоуглеродные стали, содержащие хром.
В отдельный ряд выделяются автоматные, износостойкие и стали, которые успешно применяются в производстве современного оборудования и инструментов высокого качества и точности.
Популярные марки стали и их применение
Сталями принято называть сплавы железа с углеродом, содержащие до 2,14% углерода. В зависимости от химического состава различают стали углеродистые (ГОСТ 380-71, ГОСТ 1050-75) и легированные (ГОСТ 4543-71, ГОСТ 5632-72, ГОСТ 14959-79).
Основные стандарты производства сталей:
Химический состав углеродистых конструкционных сталей обыкновенного качества
Наиболее популярные марки стали
Ст 0 – неответственные строительные конструкции, прокладки, шайбы, кожухи.
Ст 1 – малонагруженные детали металлоконструкций. Свариваемость хорошая.
Ст 2 – детали металлоконструкций – рамы, оси, ключи, валики, цементируемые детали. Свариваемость хорошая.
Ст 3 — детали металлоконструкций, рамы тележек, крюки кранов, цементируемые детали с высокой твердостью поверхности и невысокая прочность сердцевины.
Ст 4 – валы, тяги, крюки, оси, болты (невысокие требования к прочности).
Ст 5 – звездочки, зубчатые колеса, валы, оси (повышенные требования прочности).
Ст 6 – шпиндели, муфты, валы (высокая прочность).
08КП, 10 – детали, изготавливаемые холодной штамповкой и холодной высадкой, крепеж, цементируемые детали.
15, 20 – малонагруженные детали (пальцы, упоры, оси, шестерни) работающие на износ.
30, 35 – траверсы, тяги, рычаги, диски, звездочки, валы.
40, 45 – детали повышенной прочности, подвергаемые термообработке (коленчатые валы, шатуны, зубчатые венцы, храповики, муфты, плунжеры).
50, 55 – зубчатые колеса, прокатные валки, шпиндели, бандажи, малонагруженные пружины и рессоры.
60 – детали с высокими прочностными свойствами (прокатные валки, пружинные кольца, пружины и диски сцепления, пружины амортизаторов).
09Г2С – для паровых котлов, аппаратов и емкостей, работающих под давлением при температуре -70…+450*С, для ответственных листовых сварных конструкций, в химическом и нефтяном машиностроении, судостроении.
10ХСНД – для сварных конструкций и фасонных профилей в судостроении, вагоностроении, химического машиностроения.
15ХСНД – детали вагонов, строительных свай, профили судостроения. Обладает повышенной коррозионной стойкостью.
40Х – детали, работающие на средних скоростях при средних давлениях (зубчатые колеса, валы шлицевые).
18ХГТ – детали, работающие на больших скоростях при высоких давлениях и ударных нагрузках (зубчатые колеса, кулачковые муфты, втулки).
30ХГСА – высокопрочные детали, ответственные сварные конструкции.
08Х18Н10 – детали, работающие в агрессивной среде при повышенных температурах.
08Х18Н10Т – для сварных конструкций в разных отраслях промышленности.
65…80, 65Г, 50ХФА, 60С2А – рессоры, пружины.
У8А – накатные ролики, зенковки, стамески.
У10А – метчики, надфили, калибры гладкие.
ХГС – валки холодной прокатки, матрицы, пуансоны.
ХВГ – измерительный, режущий инструмент.
Х12, Х12ВМ – для холодных штампов.
4ХС – штампы горячей высадки.
А12, А20 – сложнопрофильные мелкие детали (шестерни, шпильки, кольца, винты).
А30, А40Г – труднообрабатываемые детали, работающие при высоких нагрузках.
ШХ15 – шарики диаметром до 150мм, ролики диаметром до 23мм, плунжеры.
Механические свойства стали
Механические свойства стали во многом определяют то, в каких сферах она применяется. Именно поэтому мы можем отнести их к наиболее важным. Такие качества, как высокая прочность и способность значительно изменять форму, дают возможность применять металл практически везде: от изготовления хирургических инструментов до космической отрасли.
Для определения данных параметров применяются различные методы. Кроме того, они учитывают механические свойства не только сталей, но и их сплавов, благодаря чему данные металлы можно с уверенностью назвать универсальными и удобными в работе. О том, какие параметры данных материалов позволяют применять их в самых разнообразных сферах, поговорим далее.
Состав стали
Основными компонентами стали являются железо и углерод, на долю последнего приходится до 2,14 %. Все существующие на данный момент подобные сплавы классифицируют, исходя из их химического состава.
В производстве используются два вида стали:
- Углеродистая, в состав которой, помимо основных составляющих, входят фосфор, сера, марганец, кремний. Сырье может относиться к высоко-, средне- и низколегированным маркам в соответствии с долей углерода в материале. Такой металл подходит для любых нужд, в том числе для изготовления инструмента, эксплуатируемого в условиях высоких нагрузок под постоянным напряжением.
- Легированная содержит в себе железо, углерод в сочетании с легирующими элементами (такими как кремний, бор, азот, хром, цирконий, ниобий, вольфрам, титан). От состава легированной стали зависят ее механические и иные свойства, цена, качество продукции, сферы возможного применения. Сегодня можно найти жаропрочные, цементуемые, улучшаемые стали. По структуре специалисты выделяют сырье доэвтектоидного, ледебуритного, эвтектоидного и заэвтектоидного типа.
Определить химические и механические свойства стали, а также область ее использования позволяет марка.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
В процессе производства в сталь вносят примеси. На основании их доли в составе сплава выделяются два типа продукции:
- Обыкновенного качества, что предполагает наличие до 0,6 % углерода и соответствие металла ГОСТ 14637 и ГОСТ 380-94. Для маркировки подобной продукции используются буквы «Ст» – данное сокращение говорит о том, что сталь имеет стандартное качество. Такое сырье входит в число наиболее доступных по цене.
- Качественная сталь, то есть легированная и углеродистая, которая производится по ГОСТ 1577. Маркировка обязательно содержит в себе особенности состава, количество углерода в сотых долях. Данный материал более дорогой, чем аналог обыкновенного качества, его ценят за высокую пластичность, способность противостоять механическому воздействию. Кроме того, подобный металл можно без труда варить.
Физические, химические и технологические свойства стали
Физические свойства:
- Плотность, которая определяется как масса металла на единицу объема. Высокий данный показатель стальных изделий, в том числе арматуры а500с, позволяет активно использовать их для строительных нужд.
- Теплопроводность, то есть способность стали обеспечивать распространение теплоты от более нагретых частей к менее нагретым.
- Электропроводность – способность материала пропускать электрический ток.
Химические свойства:
- Окисляемость, что предполагает возможность соединения металла кислородом. Данное свойство усиливается при нагревании стали. На сплавах, имеющих малую долю углерода, в процессе окисления под действием воды, влажного воздуха формируется ржавчина, то есть оксиды железа.
- Стойкость к коррозии – способность металла не вступать в химические реакции, не окисляться.
- Жаростойкость представляет собой отсутствие окислительных процессов на сплаве под воздействием высокой температуры, а также способность не образовывать окалину.
- Жаропрочность – сохранение сталью прочности в условиях высокой температуры.
Технологические свойства:
- Ковкость, то есть способность материала принимать заданную форму под действием внешних сил.
- Обрабатываемость резанием – важное свойство стали, которое упрощает производство металлопроката, так как данный металл хорошо поддается обработке режущим инструментом.
- Жидкотекучесть – способность расплава проникать в узкие зазоры, заполнять пространство.
- Свариваемость – позволяет осуществлять эффективные сварочные работы, формируя надежное неразъемное соединение, лишенное дефектов.
Механические свойства стали по ГОСТу
Прочность
От данной характеристики зависит, сможет ли металл не разрушиться под действием больших внешних нагрузок. Это механическое свойство стали измеряется количественно при помощи предела текучести и прочности:
- Пределом прочности называют максимальное механическое напряжение, при превышении которого происходит разрушение сплава.
- Предел текучести, то есть степень механического напряжения. Превышение данного показателя вызывает дальнейшее растяжение металла без дополнительной нагрузки.
Так, при небольших деформациях металлический стержень сохраняет упругость, возвращаясь к исходной длине после снятия приложенного напряжения. Если же напряжение оказывается выше предела текучести, наблюдается пластическая деформация изделия. Иными словами – происходит необратимое удлинение стержня, после которого он не способен вернуться к исходной длине.
Растяжение стержня до разрыва позволяет установить максимальное напряжение, то есть предел прочности материала на разрыв.
Пластичность
Данное механическое свойство стали позволяет ей под действием внешней нагрузки менять форму и потом сохранять ее. Для количественной оценки этого показателя измеряют удлинение при растяжении и угол изгиба. Если во время простого испытания на изгиб металл разрушается при большом пластическом прогибе, его признают пластичным. В противном случае речь идет о хрупком сплаве.
Хорошая пластичность проявляется при испытании растяжением в виде значительного удлинения заготовки либо ее сжатия. Под удлинением понимают увеличения длины в процентном выражении после разрушения до первоначальной длины. А сужение в процентах – это сокращение площади изделия в сравнении с исходным объемом.
Вязкость
Еще одно важное механическое свойство стали, которое подразумевает способность материала справляться с динамическими нагрузками. Его оценивают количественно как отношение работы, необходимой для разрушения образца, к площади его поперечного сечения. Чаще всего понятием «вязкость» обозначают уровень, при котором происходит нехрупкое разрушение металла.
Характер разрушения может быть хрупким или пластичным – разница между этими явлениями наиболее ярко прослеживается на примере ферритных стальных сплавов. Ферритные стали и все металлы, обладающие объемно-центрированной кубической атомной решеткой, имеют общую особенность: при низких температурах им свойственен хрупкий характер разрушения, а при высоких – пластичный. Температуру перехода из одного состояния в другое специалисты обозначают как температуру вязко-хрупкого перехода.
Маркировка сталей
В машиностроении высоко ценятся механические свойства конструкционной, то есть углеродистой и легированной стали, а также высоколегированных нержавеющих сталей. При обозначении марок конструкционной легированной стали (ГОСТ 4543) первые две цифры свидетельствуют о среднем содержании углерода, которое указывается в сотых долях процента.
Буквы в маркировке имеют такую расшифровку:
- Р – бор;
- Ю – алюминий;
- С – кремний;
- Т – титан;
- Ф – ванадий;
- Х – хром;
- Г – марганец;
- Н – никель;
- М – молибден;
- В – вольфрам.
После буквы идут цифры, которые обозначают примерное содержание легирующего элемента в целых единицах процента. Если цифр нет, то доля конкретного вещества в металле не превышает 1,5 %. Буква «А» в конце маркировки является признаком высококачественной стали. Показателем особенно высококачественной стали является буква «Ш» через три тире.
Механические свойства нержавеющих высоколегированных сталей (ГОСТ 5632) зависят от перечисленных далее компонентов. При маркировке они обозначаются таким образом:
- А – азот;
- В – вольфрам;
- Д – медь;
- М – молибден;
- Р – бор;
- Т – титан;
- Ю – алюминий;
- Х – хром;
- Б – ниобий;
- Г – марганец;
- Е – селен;
- Н – никель;
- С – кремний;
- Ф – ванадий;
- К – кобальт;
- Ц – цирконий.
После букв идут цифры, отражающие долю легирующего элемента в составе сплава в процентах.
Для фиксации основных механических свойств сталей применяют следующие обозначения:
- E – модуль упругости. Представляет собой коэффициент пропорциональности между нормальным напряжением и относительным удлинением.
- G – модуль сдвига, также известный как модуль касательной упругости. Это коэффициент пропорциональности между касательным напряжением и относительным сдвигом.
- μ – коэффициент Пуассона. Является абсолютным значением отношения поперечной к продольной деформации в упругой области.
- σт – условный предел текучести, то есть напряжение, при котором после снятия нагрузки остаточная деформация находится на уровне 0,2 %.
- σв – временное сопротивление, известное как предел прочности. Представляет собой такое механическое свойство металла, в том числе углеродистой стали, как прочность на разрыв.
- δ – относительное удлинение. Это отношение абсолютного остаточного удлинения образца после разрыва к начальной расчетной длине.
- HB, HRC, HV – твердость.
Таблица механических свойств сталей разных марок
Далее представлены механические свойства стали после термической обработки.
E = 200. 210 ГПа, G = 77. 81 ГПа, коэффициент Пуассона μ = 0,28. 0,31.
Наименование
Параметры термической обработки
Предел прочности σв, МПа
Предел текучести σт, МПа
Калибровка после отжига и отпуска
После отжига и отпуска
Пруток, закалка +860 °C, отпуск +500 °C в воде, масле
Пруток, закалка и отпуск
Пруток, закалка +1020…+1 100 °C на воздухе, в масле, воде
Влияние углерода на механические свойства стали
Механические свойства углеродистой стали определяются в первую очередь количеством углерода в составе сплава. При увеличении его доли возрастает объем цементита, сокращается величина феррита. Иными словами, повышаются прочность и твердость, снижается пластичность.
Стоит оговориться, что прочность становится выше при доле углерода в пределах 1 %, а при переходе этой отметки показатель уменьшается. Данная особенность объясняется тем, что по границам зерен в заэвтектоидных сталях образуется сетка вторичного цементита, которая негативно отражается на прочности материала.
Рост доли углерода приводит к увеличению количества цементита, а он является очень твердой и хрупкой фазой. Превосходит феррит по твердости примерно в 10 раз, имея показатель 800HB против 80HB. Вот почему увеличение содержания углерода позволяет повысить такие механические свойства стали, как прочность и твердость, и снизить пластичность, вязкость.
Когда количество углерода доходит до 0,8 %, возрастает доля перлита в сплаве от 0 % до 100 %, вызывая повышение твердости, прочности. Однако не стоит забывать, что последующий рост количества углерода вызывает образование вторичного цементита по границам перлитных зерен. Это явление мало влияет на твердость, но негативно сказывается на прочности, так как цементитная сетка очень хрупкая.
Повышение доли углерода отражается не только на механических, но и на физических свойствах стали. Снижается плотность, теплопроводность, магнитная проницаемость, тогда как удельное электросопротивление, коэрцитивная сила увеличиваются.
С ростом количества углерода происходит повышение порога хладноломкости, а именно: каждая десятая доля процента повышает t50 примерно на 20є. Поэтому сталь с долей углерода в 0,4 % при нулевой температуре становится хрупкой, из-за чего считается недостаточно надежной.
В железоуглеродистом сплаве содержится преимущественно связанный углерод в форме цементита. Тогда как в чугунах он присутствует в свободном состоянии в виде графита. Увеличение доли данного компонента приводит к изменению свойств металла: возрастает твердость, прочность, снижается пластичность.
Рекомендуем статьи
Количество углерода влияет как на механические, так и на технологические свойства стали. Чем выше содержание данного вещества, тем тяжелее металл режется, сваривается и деформируется. Последняя характеристика наиболее ярко проявляется в холодном состоянии.
От механических и химических свойств стали зависит сфера применения материала – ее можно узнать по маркировке. Металл, обладающий высокой жаропрочностью, подходит для использования при постоянных высоких температурах. Это же правило распространяется на марки стали с хорошей свариваемостью и стойкостью к образованию ржавчины.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Читайте также: