Максимальный импульс передаваемый поверхности металла

Обновлено: 22.01.2025

19.1 Найти массу фотона красных лучей света (λ= 700 нм); рентгеновски лучей (25 нм); гамма-лучей (1,24 нм)
РЕШЕНИЕ

19.2 Найти энергию, массу и импульс фотона, если соответствующая ему длина волны λ = 1,6 нм
РЕШЕНИЕ

19.3 Ртутная дуга имеет мощность N = 125 Вт. Какое число фотонов испускается в единицу времени в излучении с длинами волн, равными: 612,1; 579,1; 546,1; 404,7; 365,5; 253,7 нм. Интенсивности этих линий составляют соответственно 2; 4; 4; 2,9; 2,5; 4% интенсивности ртутной дуги. Считать, что 80% мощности дуги идет на излучение
РЕШЕНИЕ

19.4 С какой скоростью должен двигаться электрон, чтобы его кинетическая энергия была равна энергии фотона с длиной волны λ = 521 нм
РЕШЕНИЕ

19.5 С какой скоростью v должен двигаться электрон, чтобы его импульс был равен импульсу фотона с длиной волны 520 нм
РЕШЕНИЕ

19.6 Какую энергию должен иметь фотон, чтобы его масса была равна массе покоя электрона
РЕШЕНИЕ

19.7 Импульс, переносимый монохроматическим пучком фотонов через площадку S = 2 см2 за время t = 0,5 мин, равен p = 3·10-9 кг·м/с. Найти для этого пучка энергию, падающую на единицу площади за единицу времени
РЕШЕНИЕ

19.8 При какой температуре кинетическая энергия молекулы двухатомного газа будет равна энергии фотона с длиной волны λ = 589 нм?
РЕШЕНИЕ

19.9 При высоких энергиях трудно осуществить условия для изменения экспозиционной дозы рентгеновского и гамма-излучений в рентгенах, поэтому допускается применение рентгена как единицы дозы для излучений с энергией квантов до e = 3 МэВ. До какой предельной длины волны рентгеновского излучения можно употреблять рентген
РЕШЕНИЕ

19.10 Найти массу фотона, импульс которого равен импульсу молекулы водорода при температуре t = 20° C. Скорость молекулы считать равной средней квадратичной
РЕШЕНИЕ

19.11 В работе Столетова Актино-электрические исследования впервые были установлены основные законы фотоэффекта. Один из результатов его опытов был сформулирован так: Разряжающим действием обладают лучи самой высокой преломляемости с длиной волны менее 295 нм . Найти работу выхода электрона из металла, с которым работал A. Г. Столетов
РЕШЕНИЕ

19.12 Найти длину волны света, соответствующую красной границе фотоэффекта, для лития, натрия, калия и цезия
РЕШЕНИЕ

19.13 Длина волны света, соответствующая красной границе фотоэффекта, для некоторого металла λ0 = 275 нм. Найти минимальную энергию фотона, вызывающего фотоэффект
РЕШЕНИЕ

19.14 Длина волны света, соответствующая красной границе фотоэффекта, для некоторого металла λ0 = 275 нм. Найти работу выхода электрона из металла, максимальную скорость электронов, вырываемых из металла светом с длиной волны λ = 180 нм, и максимальную кинетическую энергию электронов.
РЕШЕНИЕ

19.15 Найти частоту света, вырывающего из металла электроны, которые полностью задерживаются разностью потенциалов U = 3 B. Фотоэффект сжимается при частоте света λ0 = 6·10^14 Гц. Найти работу выхода электрона из металла
РЕШЕНИЕ

19.16 Найти задерживающую разность потенциалов для электронов, вырываемых при освещении калия светом с длиной волны λ= 330 нм.
РЕШЕНИЕ

19.17 При фотоэффекте с платиновой поверхности электроны полностью задерживаются разностью потенциалов U = 0,8 B. Найти длину волны применяемого облучения и предельную длину волны, при которой еще возможен фотоэффект.
РЕШЕНИЕ

19.18 Фотоны с энергией e = 4,9 эВ вырывают электроны из металла с работой выхода A = 4,5 эВ. Найти максимальный импульс, передаваемый поверхности металла при вылете каждого электрона.
РЕШЕНИЕ

19.19 Найти постоянную Планка h, если известно, что электроны, вырываемые из металла светом с частотой v1 = 2,2·10^5 Гц, полностью задерживаются разностью потенциалов U1 = 6,6 B, а вырываемые с частотой v2= 4,6·10^15 Гц разностью потенциалов U2 = 16,5 B
РЕШЕНИЕ

19.20 Вакуумный фотоэлемент состоит из центрального катода (вольфрамового шарика) и анода (внутренней поверхности посеребренной изнутри колбы). Контактная разность потенциалов между электродами U0 = 0,6 В ускоряет вылетающие электроны. Фотоэлемент освещается светом с длиной волны λ = 230 нм. Какую задерживающую разность потенциалов надо приложить между электродами, чтобы фототок упал до нуля? Какую скорость получат электроны, когда они долетят до анода, если не прикладывать между катодом и анодом разности потенциалов?
РЕШЕНИЕ

19.21 Между электродами фотоэлемента предыдущей задачи приложена задерживающая разность потенциалов U = 1 B. При какой предельной длине волны падающего на катод света начинается фотоэффект
РЕШЕНИЕ

19.22 На рисунке показана часть прибора, с которым Лебедев производил свои опыты по измерению светового давления. Стеклянная крестовина, подвешенная на тонкой нити заключена в откачанный сосуд и имеет на концах два легких кружка из платиновой фольги. Один кружок зачернен, другой оставлен блестящим. Направляя свет на один из кружков и измеряя угол поворота нити (для зеркального отсчета служит зеркальце S), можно определить световое давление. Найти световое давление P и световую энергию E , падающую от дуговой лампы в единицу времени на единицу площади кружков. При освещении блестящего кружка отклонение зайчика a = 76 мм по шкале, удаленной от зеркальца на расстояние b = 1200 мм. Диаметр кружков d = 5 мм. Расстояние от центра кружка до оси вращения l = 9,2 мм. Коэффициент отражения света от блестящего кружка ρ = 0,5. Постоянная момента кручения нити (M = k α ) k = 2,2·10-11 Н·м/рад.
РЕШЕНИЕ

19.23 В одном из опытов Лебедева при падении света на зачерненный кружок (ρ = 0) угол поворота нити был равен α = 10′. Найти световое давление и мощность падающего света. Данные прибора взять из условия задачи 19.22
РЕШЕНИЕ

19.24 В одном из опытов Лебедева мощность падающего на кружки монохроматического света (λ = 560 нм) была равна N = 8,33 мВт. Найти число фотонов I, падающих в единицу времени на единицу площади кружков, и импульс силы FΔt, сообщенный единице площади кружков за единицу времени, для значений ρ, равных: 0; 0,5; 1. Данные прибора взять из условия задачи 19.22
РЕШЕНИЕ

19.25 Русский астроном Бредихин объяснил форму кометных хвостов световым давлением солнечных лучей. Найти световое давление солнечных лучей на абсолютно черное тело, помешенное на таком же расстоянии от Солнца, как и Земля. Какую массу m должна иметь частица в кометном хвосте, помещенная на этом расстоянии, чтобы сила светового давления на нее уравновешивалась силой притяжения частицы Солнцем? Площадь частицы, отражающую все падающие на нее лучи, считать равной S = 0,5·10-12 м2. Солнечная постоянная K = 1,37 кВт/м2.
РЕШЕНИЕ

19.26 Найти световое давление на стенки электрической 100-ваттной лампы. Колба лампы представляет собой сферический сосуд радиусом r = 5 см. Стенки лампы отражают 4% и пропускают 6% падающего на них света. Считать, что вся потребляемая мощность идет на излучение.
РЕШЕНИЕ

19.27 На поверхность площадью S = 0,01 м2 в единицу времени падает световая энергия E = 1,05 Дж/с. Найти световое давление в случаях, когда поверхность полностью отражает и полностью поглощает падающие на нее лучи
РЕШЕНИЕ

19.28 Монохроматический пучок света (λ= 490 нм), падая по нормали к поверхности, производит световое давление P = 4,9 мкПа. Какое число фотонов падает в единицу времени на единицу площади этой поверхности? Коэффициент отражения света ρ= 0,25.
РЕШЕНИЕ

19.29 Рентгеновские лучи с длиной волны λ0 = 70,8 пм испытывают комптоновское рассеяние на парафине. Найти длину волны рентгеновских лучей, рассеянных в направлениях: φ =π/2; φ =π
РЕШЕНИЕ

19.30 Какова была длина волны рентгеновского излучения, если при комптоновском рассеянии этого излучения графитом под углом φ = 60° длина волны рассеянного излучения оказалась равной λ = 25,4 пм
РЕШЕНИЕ

19.31 Рентгеновские лучи с длиной волны λ0 = 20 пм испытывают комптоновское рассеяние под углом φ = 90°. Найти изменение длины волны рентгеновских лучей при рассеянии, а также энергию и импульс электрона отдачи.
РЕШЕНИЕ

19.32 При комптоновском рассеянии энергия падающего фотона распределяется поровну между рассеянным фотоном и электроном отдачи. Угол рассеяния φ =π/2 . Найти энергию и импульс рассеянного фотона.
РЕШЕНИЕ

19.33 Энергия рентгеновских лучей e = 0,6 МэВ. Найти энергию электрона отдачи, если длина волны рентгеновских лучей после комптоновского рассеяния изменилась на 20%.
РЕШЕНИЕ

19.34 Найти длину волны де Бройля для электронов, прошедших разность потенциалов U1 = 1 В и U2 = 100 B.
РЕШЕНИЕ

19.35 Решить предыдущую задачу для пучка протонов.
РЕШЕНИЕ

19.36 Найти длину волны де Бройля для электрона, движущегося со скоростью v = 10^6 м/с; атома водорода, движущегося со средней квадратичной скоростью при температуре T = 300 К; шарика массой m = 1 г, движущегося с v = 1 см/с
РЕШЕНИЕ

19.37 Найти длину волны де Бройля для электрона, имеющего кинетическую энергию W1 = 10 кэВ; W2 = 1 МэВ.
РЕШЕНИЕ

19.38 Заряженная частица, ускоренная разностью потенциалов U = 200 B. имеет длину волны де Бройля λ = 2,02 пм. Найти массу частицы, если ее заряд численно равен заряду электрона.
РЕШЕНИЕ

19.39 Составить таблицу значений длин волн де Бройля для электрона, движущегося со скоростью, равной: 2·10^8; 2,2·10^8; 2,4·10^8; 2,6·10^8; 2,8·10^8 м/с.
РЕШЕНИЕ

19.40 Альфа-частица движется пo окружности радиусом r = 8,3 мм в однородном магнитном поле, напряженность которого H = 18,9 кА/м. Найти длину волны де Бройля для a-частицы.
РЕШЕНИЕ

19.41 Найти длину волны де Бройля для атома водорода, движущегося при температуре T = 293 К с наиболее вероятной скоростью.
РЕШЕНИЕ

Physical Bog Физика с нами - легко

Поиск по сайту

Каталог задач

Механика

Кинематика

Механика жидкостей и газов

Молекулярная физика и термодинамика

Реальные газы

Насыщенные пары и жидкости

Твердые тела

Электричество

Постоянный ток

Магнетизм

Баллистической постоянной гальванометра называется величина, численно равная количеству электричества, которое вызывает отброс по шкале на одно деление.

α (в делениях шкалы)

Гармоническое колебательное движение и волны

Акустика

Электромагнитные колебания и волны

Геометрическая оптика и фотометрия

Построить график зависимости показателя преломления п материала пластинки от длины волны λ.

Волновая оптика

Элементы теории относительности

Тепловое излучение

Излучение считать абсолютно черным.

Квантовая природа света и волновые свойства частиц

Атом Бора. Рентгеновские лучи

Радиоактивность

Ядерные реакции

подвергаются превращению все ядра, находящиеся в массе т= 1 г алюминия? Какую энергию Q2 надо затратить, чтобы осуществить это превращение, если известно, что при бомбардировке ядра алюминия α-частицами с энергией W =8 МэВ только одна α-частица из n = 2·10 6 частиц вызывает превращение?

Какая масса тt водорода в единицу времени должна превращаться в гелий? Солнечная постоянная K = 1,37 кВт/м 2 . Принимая, что масса водорода составляет 35% массы Солнца, подсчитать, на какое время t хватит запаса водорода, если излучение Солнца считать постоянным.

Найти массу т нейтрона, если известно, что энергия γ-квантов W1 = 2,66 МэВ, а энергия вылетающих протонов, измеренная по производимой ими ионизации, оказалась равной W2 = 0,23 МэВ. Энергию нейтрона считать равной энергии протона. Массы дейтона и протона считать известными.

У к а з а н и е. Учесть, что при пороговом значении кинетической энергии бомбардирующей частицы относительная скорость частиц, возникающих в результате реакции, равна, нулю.

В Томском Политехническом Университете проходит уникальный эксперимент, который позволит изучить и улучшить свойство специальных алмазов, которые используются в Большой Адронном Коллайдере для фиксирования и регистрации элементарных частиц.

ЭКСПЕРИМЕНТ: БАК остро нуждается в детекторах для фиксирования элементарных частиц

Учёные из китайского университета электронных наук и технологий совместно с сотрудниками Хьюстонского университета из США провели многоэтапный эксперимент, в котором было показано, что лазерное излучение, действуя на мелкодисперсные наночастицы в жидкости (воде), порождает перепад гидродинамического давления, что приводит к движению потока жидкости.

ГИДРОДИНАМИКА: Эффект рождения гидродинамических потоков от ультразвуковых волн

Обычно пассивные электромагнитные компоненты двунаправленные, это обозначает одинаковое распространение сигналов противоположных друг другу. Циркулярные устройства обладают не равными модулями противоположных сигналов, что позволяет использовать их как хабы в топологии электрических цепей для различного распределения сигналов. До недавнего времени для работ с высокочастотными электромагнитными волнами применялись материалы исключительно из ферромагнетиков, что существенно повышало себестоимость и накладывает определённые неудобства для бытовой техники.

ЭЛЕКТРОНИКА: Создан безмагнитный кремниевый циркуляционный чип для диапазона миллиметровых волн

Физики из Национального института стандартов и технологий (США) добились одновременной квантовой запутанности сразу 219 ионов бериллия (9Be+). Эту систему ученые использовали для имитации магнитных материалов. Авторы отмечают, что максимальное количество ионов, которые удавалось запутать между собой в ранних экспериментах, не превышало 20 штук.

Исследования в физике элементарных частиц требуют больших энергозатрат и тем самым опосредованно влияют на климат. В недавней публикации впервые проводится сравнение пяти проектов будущей хиггсовской фабрики по энергопотреблению и по выбросам парниковых газов в расчете на один рожденный бозон Хиггса. В ближайшие годы стоит ожидать рост публикаций и мероприятий такой направленности.

Климатическая повестка проникает и в физику элементарных частиц

Идея, что в быстро летящем протоне может быть небольшая доля тяжелых «очарованных» кварков, была высказана почти полвека назад, но ее справедливость не удавалось подтвердить. Недавно коллаборация NNPDF, проанализировав огромный объем данных и обновив описание устройства протона, впервые получила указание на то, что очарованные кварки и антикварки действительно присутствуют в протоне.

Впервые получено указание на «внутреннее очарование» в протоне

Исторически концепция хиггсовского механизма восходит к исследованиям в области нерелятивистской физики конденсированных систем, выполненных в конце 1950-х и начале 1960-х годов одним из крупнейших специалистов в этой области Филипом Андерсоном. В день 10-летия с момента объявления об открытии бозона Хиггса вполне уместно подробно рассказать о жизни и работе Андерсона.

Филип Андерсон: добрый и злой гений бозона Хиггса

Десять лет назад на Большом адронном коллайдере был открыт бозон Хиггса — и с этого события можно отсчитывать начало новой эры исследований элементарных частиц. В этом обзоре мы кратко напомним, что за частица хиггсовский бозон, зачем физики его так пристально изучают, что про него уже известно к настоящему моменту и как будет развиваться физика хиггсовского бозона в будущем.

Квантовая природа излучения

201. Определите работу выхода A электронов из вольфрама, если "красная граница" фотоэффекта для него λ0 = 275 нм.

202. Калий освещается монохроматическим светом с длиной волны 400 нм. Определите наименьшее задерживающее напряжение, при котором фототок прекратится. Работа выхода электронов из калия равна 2,2 эВ.

203. Красная граница фотоэффекта для некоторого металла равна 500 нм. Определите: 1) работу выхода электронов из этого металла; 2) максимальную скорость электронов, вырываемых из этого металла светом с длиной волны 400 нм.

204. Выбиваемые светом при фотоэффекте электроны при облучении фотокатода видимым светом полностью задерживаются обратным напряжением U0 = 1,2 В. Специальные измерения показали, что длина волны падающего света λ = 400 нм. Определите красную границу фотоэффекта.

205. Задерживающее напряжение для платиновой пластинки (работа выхода 6,3 эВ) составляет 3,7 В. При тех же условиях для другой пластинки задерживающее напряжение равно 5,3 В. Определите работу выхода электронов из этой пластинки.

206. Определите, до какого потенциала зарядится уединенный серебряный шарик при облучении его ультрафиолетовым светом длиной волны λ = 208 нм. Работа выхода электронов из серебра A = 4,7 эВ.

207. При освещении вакуумного фотоэлемента монохроматическим светом с длиной волны λ1 = 0,4 мкм он заряжается до разности потенциалов φ1 = 2 В. Определите, до какой разности потенциалов зарядится фотоэлемент при освещении его монохроматическим светом с длиной волны λ1 = 0,3 мкм.

208. Плоский серебряный электрод освещается монохроматическим излучением с длиной волны λ = 83 нм. Определите, на какое максимальное расстояние от поверхности электрода может удалиться фотоэлектрон, если вне электрода имеется задерживающее электрическое поле напряженностью E = 10 В/см. Красная граница фотоэффекта для серебра λ0 = 264 нм.

209. Фотоны с энергией ε = 5 эВ вырывают фотоэлектроны из металла с работой выхода A = 4,7 эВ. Определите максимальный импульс, передаваемый поверхности этого металла при вылете электрона.

210. При освещении катода вакуумного фотоэлемента монохроматическим светом с длиной волны λ = 310 нм фототок прекращается при некотором задерживающем напряжении. При увеличении длины волны на 25% задерживающее напряжение оказывается меньше на 0,8 В. Определите по этим экспериментальным данным постоянную Планка.

211. Определите максимальную скорость Vmax фотоэлектронов, вырываемых с поверхности цинка (работа выхода A = 4 эВ), при облучении у -излучением с длиной волны λ = 2,47 пм.

212. Определите для фотона с длиной волны λ = 0,5 мкм: 1) его энергию; 2) импульс; 3) массу.

213. Определите энергию фотона, при которой его эквивалентная масса равна массе покоя электрона. Ответ выразите в электрон-вольтах.

214. Определите, с какой скоростью должен двигаться электрон, чтобы его импульс был равен импульсу фотона, длина волны которого λ = 0,5 мкм.

215. Определите длину волны фотона, импульс которого равен импульсу электрона, прошедшего разность потенциалов U = 9,8 В.

216. Определите температуру, при которой средняя энергия молекул трехатомного газа равна энергии фотонов, соответствующих излучению λ = 600 нм.

217. Определите, с какой скоростью должен двигаться электрон, чтобы его кинетическая энергия была равна энергии фотона, длина волны которого λ = 0,5 мкм.

218. Определите, с какой скоростью должен двигаться электрон, чтобы его импульс был равен импульсу фотона, длина волны которого λ = 2 пм.

220. Давление монохроматического света с длиной волны λ = 500 нм на зачерненную поверхность, расположенную перпендикулярно падающим лучам, равно 0,12 мкПа. Определите число фотонов, падающих ежесекундно на 1 м 2 поверхности.

221. На идеально отражающую поверхность площадью S = 5 см 2 за время t = 3 мин нормально падает монохроматический свет, энергия которого W = 9 Дж. Определите: 1) облученность поверхности; 2) световое давление, оказываемое на поверхность.

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами - загрузи их здесь!

19.1. Найти массу m фотона: а) красных лучей света (λ = 700 нм); б) рентгеновских лучей (λ = 25 нм); в) гамма-лучей (λ = 1,24 нм).

19.2. Найти энергию ε, массу m и импульс p фотона, если соответствующая ему длина волны λ = 1,6 нм.

19.3. Ртутная дуга имеет мощность N = 125 Bt. Какое число фотонов испускается в единицу времени в излучении с длинами волн λ, равными: 612,1; 579,1; 546,1; 404,7; 365,5; 253.7 нм. Интенсивности этих линий составляют соответственно 2; 4; 4; 2,9; 2,5; 4% интенсивности ртутной дуги. Считать, что 80% мощности дуги идет на излучение.

19.4. С какой скоростью v должен двигаться электрон, чтобы его кинетическая энергия была равна энергии фотона с длиной волны λ = 520 нм?

19.5. С какой скоростью v должен двигаться электрон, чтобы его импульс был равен импульсу фотона с длиной волны λ = 520 нм?

19.6. Какую энергию ε должен иметь фотон, чтобы его масса была равна массе покоя электрона?

19.7. Импульс, переносимый монохроматическим пучком фотонов через площадку S = 2 см 2 за время t = 0,5 мин, равен p = 3 * 10 -9 кг*м/с. Найти для этого пучка энергию E , падающую на единицу площади за единицу времени.

19.8. При какой температуре Т кинетическая энергия молекулы двухатомного газа будет равна энергии фотона с длиной волны λ = 589 им?

19.9. При высоких энергиях трудно осуществить условия для изменения экспозиционной дозы рентгеновского и гамма-излучений в рентгенах, поэтому допускается применение рентгена как единицы дозы для излучений с энергией квантов ε = 3 МэВ. До какой предельной длины волны λ рентгеновского излучения можно употреблять рентген?

19.10. Найти массу m фотона, импульс которого равен импульсу молекулы водорода при температуре t = 20° С. Скорость молекулы считать равной средней квадратичной скорости.

19.11. В работе Л. Г. Столетова «Актино-электрические исследования» (1888 г.) впервые были установлены основные законы фотоэффекта. Один из результатов его опытов был сформулирован так: «Разряжающим действием обладают лучи самой высокой преломляемости с длиной волны менее 295 нм». Найти работу выхода A электрона из металла, с которым работал А. Г. Столетов.

19.12. Найти длину волны λ0 света, соответствующую красной границе фотоэффекта, для лития, натрия, калия и цезия.

19.13. Длина волны света, соответствующая красной границе фотоэффекта, для некоторого металла λ0 = 275 нм. Найти минимальную энергию фотона, вызывающего фотоэффект.

19.14. Длина волны света, соответствующая красной границе фотоэффекта, для некоторого металла λ0 = 275 нм. Найти работу выхода A электрона из металла, максимальную скорость v электронов, вырываемых из металла светом с длиной волны λ = 180 нм, и максимальную кинетическую энергию Wmax электронов.

19.15. Найти частоту ν света, вырывающего из металла электроны, которые полностью задерживаются разностью потенциалов U = 3 В. Фотоэффект сжимается при частоте света ν0 = 6*10 14 Гц. Найти работу выхода A электрона из металла.

19.16. Найти задерживающую разность потенциалов U для электронов, вырываемых при освещении калия светом с длиной волны λ = 330 нм.

19.17. При фотоэффекте с платиновой поверхности электроны полностью задерживаются разностью потенциалов U =0,8 В. Найти длину волны λ применяемого облучения и предельную длину волны λ0, при которой еще возможен фотоэффект.

19.18. Фотоны с энергией ε = 4,9 эВ вырывают электроны из металла с работой выхода А = 4,5 эВ. Найти максимальный импульс pmax, передаваемый поверхности металла при вылете каждого электрона.

19.19. Найти постоянную Планка h, если известно, что электроны, вырываемые из металла светом с частотой ν1 = 2,2 * 10 5 Гц, полностью задерживаются разностью потенциалов U1 = 6,6 В, а вырываемые светом с частотой ν2 = 4,6 * 10 15 Гц — разностью потенциалов U2 = 16,5 В.

19.20. Вакуумный фотоэлемент состоит из центрального катода (вольфрамового шарика) и анода (внутренней поверхности посеребренной изнутри колбы). Контактная разность потенциалов между электродами U0 = 0,6 В ускоряет вылетающие электроны. Фотоэлемент освещается светом с длиной волны λ = 230 нм. Какую задерживающую разность потенциалов U надо приложить между электродамп, чтобы фототок упал до нуля? Какую скорость v получат электроны, когда они долетят до анода, если не прикладывать между катодом и анодом разности потенциалов?

Читайте также: