Макро и микроструктура металла
Строение металлов и сплавов изучают на специальных образцах – макро- и микрошлифах, которые подвергаются специальной подготовке (вырезка, шлифовка, полировка, травление).
Изучение строения металлов при малом увеличении (до 30 раз) или невооруженным глазом называют макроскопическим методом исследования (макроанализом).
При исследовании макроструктуры изучают форму, величину и взаимное расположение сравнительно крупных зерен кристаллов, видимых на поверхности образца, характер расположения волокон в структуре после пластической деформации, выявляют дефекты структуры металла (усадочные раковины, расслоение, заусенцы, трещины, поры, загрязненность сернистыми и другими включениями и пр.), участки с различной температурой обработки и др. Макроанализ выполняют непосредственно на поверхности металла, на макрошлифах и на изломах, сравнивая поверхности образцов с эталонами.
Макроанализу можно подвергнуть большой объем металла: все изделие или его основные части.
Изучение строения металла или сплава при большом увеличении (от 50 до 2000 и более раз) называют микроскопическим методом исследования (микроанализом).
При микроструктурных исследованиях изучают кристаллическую структуру металлов и сплавов, форму и размер зерен, состав сплава по количественному соотношению структурных составляющих, выявляют нарушение сплошности металла в виде микропор, микротрещин, определяют вид и режим термической обработки. Для исследования микрошлифов используются металлографические или электронные микроскопы.
Наряду с макро- и микроскопическими методами исследования строения металлов и сплавов используют рентгеновский, термический и другие методы анализа.
Широко применяют неразрушающие способы контроля качества, основанные на различных физических принципах. К ним относят магнитную, ультразвуковую и рентгеновскую дефектоскопии.
Тема 6. ЧЕРНЫЕ И ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ, ИХ СВОЙСТВА
Основные понятия о металлических сплавах.
В технике в чистом виде металлы практически не применяются, зачастую используют металлические сплавы, под которыми понимаются сложные вещества, состоящие из двух и большего числа компонентов. В состав металлических сплавов, кроме металлов, могут входить и неметаллы – углерод, марганец, кремний, фосфор, сера и др.
Металлические сплавы, как и чистые металлы, имеют характерную кристаллическую решетку, т.е. являются кристаллическими веществами. Однако их свойства (механические, химические, технологические и др.) могут значительно отличаться от свойств чистых (исходных) металлов.
Наиболее распространенным способом получения сплавов является сплавление входящих в него компонентов, в результате чего получают механическую смесь, твердый раствор или химическое соединение.
1. Механическая смесь двух компонентов А и В образуется, когда они не вступают между собой в химическую реакцию и не растворяются друг в друге в твердом состоянии. В этом случае сплав будет состоять из кристаллов вещества А и вещества В, отчетливо выявляемых на микроструктуре слитка (рис. 6.1) (пример: свинец-сурьма).
2. Твердый раствор образуется тогда, когда компоненты сплава обладают взаимной растворимостью друг в друге как в жидком, так и в твердом состоянии. Твердый раствор – однородное кристаллическое тело, имеющее один тип кристаллической решетки.
Различают следующие виды твердых растворов:
2.1. Твердый раствор замещения – когда атомы В растворенного элемента замещают атомы А растворителя в его кристаллической решетке (рис. 6.2,а).
2.2. Твердый раствор внедрения – когда атомы В растворенного элемента размещаются между атомами А растворителя в его кристаллической решетке (рис. 6.2,б).
2.3. Твердый раствор вычитания – образуется на базе химического соединения, когда атомы растворенного элемента замещают атомы растворителя в узлах кристаллической решетки, но отдельные узлы остаются не занятыми (пустыми). Примером может служить коррозия железа.
3. Химическое соединение образуется в том случае, когда составляющие его компоненты (металлы или неметаллы) вступают между собой в химическое взаимодействие (реакцию). В результате образуется сплав, имеющий новый вид кристаллической решетки и обладающий определенными специфическими свойствами, которые в значительной степени отличаются от решеток и свойств исходных компонентов. Пример: Fe-g (ГЦК) + С (гексагональная кристаллическая решетка) = Fe3С (ромбическая кристаллическая решетка).
Анализ макро и микроструктуры
Макроанализ применяют для изучения макроструктуры металлов.
Макроструктурой называется строение металла, видимое невооруженным глазом или через лупу при небольших увеличениях.
При помощи макроанализа можно изучать не только структуру металла, но и дефекты в виде пор, трещин, раковин, неметаллических включений.
Для проведения макроанализа из испытуемого материала вырезается образец. Необходимо выбрать наиболее характерное место вырезки образца и определить, в каком сечении будет изучаться макроструктура (вдоль или поперек направления прокатки).
Поверхность образца, подготовленная для исследования макроструктуры, называется макрошлифом.
1. Поверхность вырезанного образца выравнивают на наждачном круге.
2. Затем шлифуют на наждачной бумаге разных номеров до самых мелких.
3. После шлифования образцы протирают ватой смоченной в спирте, просушивают и травят в специальном реактиве и затем осматривают. В качестве реактива для травления сталей используют концентрированные растворы кислот (соляной или серной) или их смесей. Травление производят погружением образца в реактив, продолжительность травления 5 - 45 минут. Травление на подготовленной поверхности образца происходит неравномерно. Места скопления примесей, дефектные участки, имеющие поры, раковины, трещины травятся сильнее и эти участки кажутся темнее.
Микроанализ применяют для изучения микроструктуры металлов.
Микроструктурой называется внутреннее строение металла, наблюдаемое с помощью микроскопа (при значительных увеличениях от 50 до 2000 раз).
При помощи микроанализа можно
· изучить форму и размер зерен, из которых состоит металл;
· установить, какие изменения внутреннего строения происходят при термообработке, обработке металла давлением, сварке;
· определить структурные составляющие, имеющие разный химический состав;
· обнаружить неметаллические включения;
· определить величину обезуглероженного слоя.
Для проведения микроанализа из испытуемого материала вырезают образец и подготавливают его для исследования под микроскопом.
Поверхность образца, подготовленная для исследования, называется микрошлифом.
Методика подготовки.
Для исследования микроструктуры металла вырезают образец в поперечном или продольном направлении прокатки.
1. С помощью напильника и наждачного круга выравнивают поверхность образца.
2. Полученную плоскую поверхность шлифуют на бумаге различных номеров, при этом переходят от бумаги с боле крупным шлифовальным зерном к более мелкому до самых тонких номеров.
3. После шлифовальной бумаги остаются мелкие риски, которые удаляют полированием на станке с вращающимися кругами, обтянутыми сукном или фетром.
4. Для полирования используют специальные пасты, например, пасту с алмазным порошком. Полирование проводят до появления зеркального блеска на поверхности образца.
5. После полирования образец промывают водой, просушивают. Протирают ватой смоченной спиртом и просушивают фильтрованной бумагой.
6. Полученная после полирования зеркальная поверхность подвергается травлению, для этого образец погружают в реактив. Наиболее распространенным реактивом для травления является 2 - 4% спиртовой раствор азотной кислоты или 4% спиртовой раствор пикриновой кислоты. Продолжительность травления зависит от состава сплава, его структуры, но обычно достаточно выдержать несколько секунд.
7. После травления микрошлиф промывают водой, протирают ваткой смоченной в спирте и просушивают фильтрованной бумагой.
8. При травлении отдельные структурный составляющие растворяются с различной скоростью. Границы между кристаллами, содержат повышенный процент примесей и растворяются быстрее, поэтому на поверхности шлифа образуется рельеф. При освещении микрошлифа падающим светом на микроскопе лучи света будут по-разному отражаться от неодинаково протравившихся участков. Те из них, что протравились слабо, под микроскопом будут казаться светлее, а которые протравились сильно – темнее.
Макроструктура, микроструктура, металловедение, твердость
Макроструктура металла (от макро. и лат. stuctura - строение), строение металла, видимое невооружённым глазом или с помощью лупы, то есть при увеличениях до 25 раз. М. изучают на плоских образцах - темплетах, вырезанных из изделия или заготовки, а также на изломах изделия. Для выявления М. поверхность темплета тщательно шлифуют, затем травят растворами кислот или щелочей. При исследовании М. можно обнаружить нарушения сплошности металла (раковины, рыхлость, газовые пузыри, расслоения, трещины и т.д.), выявить распределение примесей и неметаллических включений, форму и расположение кристаллитов (зёрен) в разных частях изделия, а иногда даже особенности строения отдельных зёрен металла (см. Металлография). Изучение М. позволяет сделать заключение о качестве заготовки и правильности ведения технологического процесса при литье, обработке давлением или сварке изделия. В некоторых случаях качество металла характеризуется видом излома, позволяющим установить, как проходит поверхность разрушения (по телу или по границам зёрен), выяснить причины разрушения и т.д.
Микроструктура металла (от микро. и лат. structura - строение), строение металла, выявляемое с помощью микроскопа (оптического или электронного). Металлы и сплавы состоят из большого числа кристаллов неправильной формы (зёрен), чаще всего неразличимых невооружённым глазом. Зёрна имеют округлую или вытянутую форму, могут быть крупными либо мелкими и располагаться друг относительно друга в определённом порядке или случайно. Форма, размеры и взаимное расположение, а также ориентировка зёрен зависят от условий их образования. Часть микроструктуры металла, имеющая однообразное строение, называемое структурной составляющей (например, избыточные кристаллы, эвтектика, эвтектоид, в частности для железоуглеродистых сплавов аустенит, феррит, цементит, перлит, ледебурит, мартенсит). Количественное соотношение структурных составляющих сплава определяется его химическим составом и условиями нагрева и охлаждения.
Металловедение - научная основа изысканий состава, способов изготовления и обработки металлических материалов с разнообразными механическими, физическими и химическими свойствами. Уже народам древнего мира было известно получение металлических сплавов (бронзы и др.), а также повышение твёрдости и прочности стали посредством закалки. Как самостоятельная наука металловедение возникло и оформилось в 19 веке, вначале под названием металлографии. Термин металловедение введён в 20-х гг.20 в. в Германии, причём было предложено сохранить термин "металлография" только для учения о макро - и микроструктуре металлов и сплавов. Во многих странах металловедение по-прежнему обозначают термином "металлография", а также называют "физической металлургией".
Твердость - сопротивление металлов вдавливанию. Твердость металлов не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности, так и от метода измерения. Т. м. характеризуется числом твёрдости. Наиболее часто для измерения Т. м. пользуются методом вдавливания. При этом величина твёрдости равна нагрузке, отнесённой к поверхности отпечатка, или обратно пропорциональна глубине отпечатка при некоторой фиксированной нагрузке. Отпечаток обычно производят шариком из закалённой стали (методы Бринелля, Роквелла), алмазным конусом (метод Роквелла) или алмазной пирамидой (метод Виккерса, измерение микротвёрдости). Реже пользуются динамическими методами измерения, в которых мерой твёрдости является высота отскакивания стального шарика от поверхности изучаемого металла (например, метод Шора) или время затухания колебания маятника, опорой которого является исследуемый металл (метод Кузнецова - Герберта - Ребиндера). Числа твёрдости указываются в единицах НВ (метод Бринелля), HV (метод Виккерса), HR (метод Роквелла), где Н от английского hardness - твёрдость. Поскольку при определении твёрдости методом Роквелла пользуются как стальным шариком, так и алмазным конусом, часто вводятся дополнительные обозначения - В (шарик), С и А (конус, разные нагрузки). По специальным таблицам или диаграммам можно осуществлять пересчёт чисел твёрдости (например, число твёрдости по Роквеллу можно пересчитать на число твёрдости по Бринеллю). Выбор метода определения твёрдости зависит от исследуемого материала, размеров и формы образца или изделия и др. факторов.
Твёрдость весьма чувствительна к изменению структуры металла. Измерениями микротвёрдости пользуются при изучении механических свойств отдельных зёрен, а также структурных составляющих сложных сплавов.
Для относительной оценки жаропрочности металлических материалов иногда пользуются так называемой длительной твёрдостью (или микротвёрдостью), измерение которой производят при повышенной температуре длительное время (минуты, часы) начертить диаграмму железо – цементит.
Равновесное состояние железоуглеродистых сплавов в зависимости от содержания углерода и температуры описывает диаграмма состояния железо - углерод. На диаграмме состояния железоуглеродистых сплавов (рис.1) на оси ординат отложена температура, на оси абсцисс - содержание в сплавах углерода до 6,67%, то есть до такого количества, при котором образуется цементит Fе3С. По диаграмме состояния системы железо - углерод судят о структуре медленно охлажденных сплавов, а также о возможности изменения их микроструктуры в результате термической обработки, определяющей эксплуатационные свойства. На диаграмме состояния Fe - Fе3С приняты международные обозначения. Сплошными линиями показана диаграмма состояния железо - цементит (метастабильная, так как возможен распад цементита), а пунктирными - диаграмма состояния железо - графит (стабильная).
Рассматриваемую диаграмму правильнее считать не железоуглеродистой (Fe - С), а железоцементитной (Fe - Fе3С), так как свободного углерода в сплавах не содержится. Но так как содержание углерода пропорционально содержанию цементита, то практически удобнее все изменения структуры сплавов связывать с различным содержанием углерода.
Компоненты системы железо и углерод - элементы полиморфные. Основной компонент системы - железо.
Углерод растворим в железе в жидком и твердом состояниях, а также может образовать химическое соединение - цементит Fе3С или присутствовать в сплавах в виде графита.
В системе железо-цементит (Fe - Fе3С) имеются следующие фазы: жидкий раствор. твердые растворы - феррит и аустенит, а также химическое соединение - цементит.
Феррит может иметь две модификации - высоко - и низкотемпературную. Высокотемпературная модификация d-Fe и низкотемпературная - a-Fe представляют собой твердые растворы углерода, соответственно, в d - и a - железе.
Диаграмма состояния Fe-C.
Предельное содержание углерода в a-Fe при 723°С - 0,02%, а при 20°С - 0,006%. Низкотемпературный феррит a-Fe по свойствам близок к чистому железу и имеет довольно низкие механические свойства, например, при 0,06% С:
твердость - 80. 90 НВ.
Аустенит g-Fe - твердый раствор углерода в g-железе. Предельная растворимость углерода в g-железе 2,14%. Он устойчив только при высоких температурах, а с некоторым примесями (Мn, Сг и др.) при обычных (даже низких) температурах. Аустенит обладает высокой пластичностью, низкими пределами текучести и прочности. Твердость аустенита 160. 200 НВ.
Цементит Fе3С - химическое соединение железа с углеродом, содержащее 6,67% углерода. Между атомами железа и углерода в цементите действуют металлическая и ковалентная связи. Температура плавления ~1250°С. Цементит является метастабильной фазой; область его гомогенности очень узкая и на диаграмме состояния он изображается вертикалью. Время его устойчивости уменьшается с повышением температуры: при низких температурах он существует бесконечно долго, а при температурах, превышающих 950°С, за несколько часов распадается на железо и графит. Цементит имеет точку Кюри (210°С) и обладает сравнительно высокими твердостью (800 НВ и выше) и хрупкостью. Прочность его i растяжение очень мала (s =40 МПа).
В системе железо - цементит имеются две тонкие механические смеси фаз - эвтектическая (ледебурит) и эвтектоидная (перлит).
Ледебурит является смесью двух фаз g-Fe + Fе3С, образующихся при 1130°С в сплавах, содержащих от 2,0 до 6,67%С, и наблюдается визуально как структурная составляющая железоуглеродистых сплавов, главным образом, чугунов. Ледебурит обладает достаточно высокими прочностью (НВ>600) и хрупкостью.
Перлит (до 2,0%С) представляет собой смесь a-Fe + Fе3С (в легированных сталях - карбидов), образующуюся при 723°С и содержании углерода 0,83% в процессе распада аустенита, и наблюдается визуально как структурная составляющая железоуглеродистых сплавов. Механические свойства перлита зависят от формы и дисперсности частичек цементита (прочность пластинчатого перлита несколько выше, чем зернистого):
Диаграмма состояния Fe - Fе3С (рис.1) является комбинацией диаграмм простых типов. На ней имеются три горизонтали трехфазных равновесий: перитектического (1496°С), эвтектического (1147°С) и эвтектоидного (727°С).
Все линии на диаграмме состояния соответствуют критическим точкам, то есть температурам, при которых происходят фазовые и структурные превращения в железоуглеродистых сплавах.
Линия ABCD - линия начала кристаллизации сплава (ликвидус), линия AHJECF - линия конца кристаллизации сплава (солидус).
В области диаграммы HJCE находится смесь двух фаз: жидкого раствора и аустенита, а в области CFD - жидкого раствора и цементита. В точке С при содержании 4,3%С и температуре 1130°С происходит одновременная кристаллизация аустенита и цементита и образуется их тонкая механическая смесь - ледебурит. Ледебурит присутствует во всех сплавах, содержащих от 2,0 до 6,67%С (чугуны).
Точка Е соответствует предельному насыщению железа углеродом (2,0%С).
В области диаграммы AGSF находится аустенит. При охлаждении сплавов аустенит распадается с выделением по линии GS феррита, а по линии SE - вторичного цементита. Линии GS и PS имеют большое практическое значение для установления режимов термической обработки сталей. Линию GS называют линией верхних критических точек, а линию PS - нижних критических точек.
В области диаграммы GSP находится смесь двух фаз - феррита и распадающегося аустенита, а в области диаграммы SEE' - смесь вторичного цементита и распадающегося аустенита.
В точке S при содержании 0,8%С и при температуре 723°С весь аустенит распадается и одновременно кристаллизуется тонкая механическая смесь феррита и цементита - перлит.
Линия PSK соответствует окончательному распаду аустенита и образованию перлита. В области ниже линии PSK никаких изменений структуры не происходит.
Структурные превращения в сплавах, находящихся в твердом состоянии, вызваны следующими причинами: изменением растворимости углерода в железе в зависимости от температуры сплава (QP и SE), полиморфизмом железа (PSK) и влиянием содержания растворенного углерода на температуру полиморфных превращений (растворение углерода в железе способствует расширению температурной области существования аустенита и сужению области феррита).
Диаграмма стабильного равновесия Fe - Fе3С, обозначенная на рис.1 пунктиром, отображает возможность образования высокоуглеродистой фазы - графита - на всех этапах структурообразования в сплавах с повышенным содержанием углерода. Диаграмма состояния стабильной системы железо - графит отличается от метастабильной системы железо-цементит только в той части, где в фазовых равновесиях участвует высокоуглеродистая фаза (графит или цементит).
На диаграмме состояния различают две области: стали и чугуны. Условия принятого разграничения - возможность образования ледебурита (предельная растворимость углерода в аустените):
• стали - до 2,14% С, не содержат ледебурита;
• чугуны - более 2,14% С, содержат ледебурит.
В зависимости от содержания углерода (%) железоуглеродистые сплавы получили следующие названия:
• менее 0,83 - доэвтектоидные стали;
• 0,83 - эвтектоидные стали;
• 0,83. 2 - заэвтектоидные стали;
• 2. 4,3 - доэвтектические чугуны;
• 4,3. 6,67 - заэвтектические чугуны.
3 Для заданных материалов приведите состав, свойства и примеры применения:
Макро и микроскопическое исследование сплавов
Ознакомиться с методами исследования металлических сплавов, приготовлением образцов для металлографического исследования.
ПРИБОРЫ И МАТЕРИАЛЫ
При макроскопическом анализе строение металлического сплава исследуют невооруженным глазом или с помощью лупы. Обычно он является предварительным видом исследования.
Макростроение сплава изучают на образцах или деталях, в изломе или на предварительно подготовленной поверхности, заключающейся в шлифовании и травлении. Такой образец называют макрошлифом. Если макрошлиф изготовлен в поперечном сечении детали, то его называют темплетом. Макроанализ находит широкое применение в промышленности, так как дает возможность выявлять раковины, шлаковые включения, трещины и другие дефекты строения сплава, химическую и структурную неоднородность.
Непосредственно по виду излома можно провести макроскопический анализ и установить многие особенности строения материалов, а в ряде случаев и причины их разрушения. Излом может быть хрупким и вязким.
По форме различают излом ровный или блестящий и с выступами, или чашечный. Первый вид излома характерен для хрупкого состояния, когда разрушение в условиях растяжения или ударного изгиба произошло без видимой пластической деформации, а второй – для вязкого излома. Хрупкий излом имеет кристаллическое строение, происходит практически без предварительной пластической деформации, в нем можно различить форму и размер зерен металла. Хрупкий излом может проходить по границам зерен (межкристаллический) и по зернам металла (транскристаллический). В сталях хрупкий излом иногда называют нафталинистым, если он транскристаллический и имеет избирательный блеск.
При крупнозернистом строении сплава хрупкий межкристаллический излом называют камневидным.
Вязкий излом имеет волокнистое строение, форма и размер зерен сильно искажены. Ему предшествует, как правило, значительная пластическая деформация.
Под действием знакопеременных нагрузок возможно возникновение усталостного излома (рис. 3.2). Он состоит из очага разрушения 1 (места образования микротрещин) и двух зон – усталости 2 и долома 3. Очаг разрушения примыкает к поверхности и имеет небольшие размеры. Зону усталости формирует последовательное развитие трещины усталости. В этой зоне видны характерные бороздки, которые имеют конфигурацию колец, что свидетельствует о скачкообразном продвижении трещины усталости. Последнюю стадию разрушения характеризует зона долома.
Рис. 3.2. Схематическое строение усталостного излома
Макроструктурный анализ проводится на макрошлифах. Макрошлифы подвергают:
- глубокому травлению в концентрированных горячих кислотах для выявления волокнистого строения сплава, что важно для определения анизотропии свойств, различных внутренних дефектов металла;
- поверхностному травлению для определения химической неоднородности сплава (ликвации).
Чаще всего определяют общую химическую неоднородность сплава по сечению детали.
Конкретно для сталей распределение C, P, S зависит от количества этих элементов, процесса кристаллизации и обработки давлением. Для определения общей ликвации свежеприготовленный макрошлиф погружают на 2 мин. в 10 % раствор двойной медно-аммиачной соли соляной кислоты (CuNH4Cl2).
При травлении медь замещает железо и оседает на участках поверхности, обедненных S, P, C, защищает их от дальнейшего растравления. Места, обогащенные примесями, оказываются сильно протравленными. Затем макрошлиф промывают под струей проточной воды и осторожно снимают медь с поверхности ватным тампоном. Полученную картину зарисовывают или фотографируют.
Микроструктурный анализ проводится с целью исследования структуры металлов и сплавов под микроскопом на специально подготовленных образцах. Методами микроанализа определяют форму и размеры кристаллических зерен, обнаруживают изменения внутреннего строения сплава под влиянием термической обработки или механического воздействия на сплав, микротрещины и многое другое.
Микроструктурный анализ проводится на микрошлифах при приготовлении которых необходимо учитывать что:
- шлиф должен иметь минимальный деформированный слой;
- на поверхности шлифа не должно быть царапин и ямок;
- шлиф должен быть плоским (без «завалов»), чтобы его можно было рассматривать при больших увеличениях.
Шлиф, т.е. образец с плоской отполированной поверхностью, механическим методом готовят следующим образом. Вначале производят обработку образца на плоскость (заторцовку) с помощью круга. По краям следует снять фаску, чтобы при последующих операциях не порвать полировальное сукно. Затем производят шлифовку на специальной бумаге с разной величиной зерна абразива, уложенной на стекло. При переходе к следующему номеру бумаги образец разворачивают на 90º и шлифуют до тех пор, пока не исчезнут риски от предыдущей обработки. После шлифования на последней бумаге шлиф промывают в воде, чтобы частички абразива не попали на полировальный круг. После шлифовки производят полировку. Шлиф слегка прижимают к вращающемуся кругу, на который натянуто сукно. Полировальный круг все время смачивается суспензией – взвесью тонкого абразива в воде. Абразивами для полировки служат окись алюминия (белого цвета), окись хрома (зеленого цвета) или другие окислы. Для полировки твердых материалов применяют пасту с алмазным порошком или алмазные круги. Полировку производят до получения зеркальной поверхности. После полировки шлиф промывают в воде или спирте, сушат полированную поверхность фильтровальной бумагой. Ее следует прикладывать к зеркалу шлифа, а не водить по нему.
После полировки микроструктура, как правило, не бывает видна. Исключением являются сплавы, структурные составляющие которых сильно различаются по составу и твердости, в результате чего одни участки шлифа сполировываются больше, другие меньше, и на поверхности образуется рельеф.
Для выявления микроструктуры шлиф подвергают травлению кратковременному действию реактива. Травитель и время травления подбирают опытным путем.
Механизм выявления структуры сплава довольно сложен. Те участки шлифа, которые сильно растравлены, кажутся под микроскопом более темными т.к., чем сильнее растравлена поверхность, тем больше она рассеивает свет и меньше света отражает в объектив.
В образце с однофазной структурой границы между зернами растравливаются сильнее, чем тело зерна, и под микроскопом видны канавки в виде темной сетки (рис. 3.3) Разные зерна одной фазы попадают в сечение шлифа различными кристаллографическими плоскостями, которые травятся по-разному. Поэтому зерна одной фазы могут иметь различные оттенки.
Рис. 3.3. Выявление микроструктуры сплава
В многофазном сплаве различные фазы и структурные составляющие травятся по разному. Смесь фаз подвергается не только простому химическому действию реактивов, но и электрохимическому травлению, т.к. смесь фаз является совокупностью микро гальванических элементов. Растворяются частички, являющиеся микроанодами по отношению к другим частицам – микрокатодам.
В результате такого сложного действия травителя выявляется микростроение образца. После травления шлиф промывают водой, сушат фильтровальной бумагой и ставят на столик микроскопа.
Устройство и работа микроскопа
Разрешающая способность глаза ограничена и составляет 0,2 мм. Разрешающая способность характеризуется разрешающим расстоянием, т.е. тем минимальным расстоянием между двумя соседними частицами, при котором они еще видны раздельно. Чтобы увеличить разрешающую способность, используется микроскоп. Разрешаемое расстояние определяется соотношением:
где λ – длина волны света;
n – показатель преломления среды, находящейся между объективом и объектом;
α –угловая апертура, равная половине угла раскрытия входящая в объектив пучка лучей, дающих изображение.
Произведение n sinα =A называют числовой апертурой объектива. Эта важнейшая характеристика объектива выгравирована на его оправе. В большинстве исследований применяют сухие объективы, работающие в воздушной среде (n = 1). Объектив дает увеличенное промежуточное изображение объектива, которое рассматривают в окуляр, как в лупу. Окуляр увеличивает промежуточное изображение объектива и не может повысить разрешающей способности микроскопа.
Общее увеличение микроскопа равно произведению увеличений объектива и окуляра. Рекомендуется начинать микроанализ с использованием слабого объектива, чтобы вначале оценить общий характер структуры на большой площади. После просмотра структуры при малых увеличениях микроскопа используют объектив с такой разрешающей способностью, чтобы увидеть необходимые мелкие детали структуры.
Окуляр выбирают так, чтобы четко были видны детали структуры, увеличенные объективом. Собственное увеличение окуляра выгравировано на его оправе (например, 7×).
В металлографии микроанализу подвергаются непрозрачные для световых лучей объективы – микрошлифы, которые рассматривают в микроскоп в отраженном свете. Наводку на резкость осуществляют грубо, вращением макровинта. Тонкую наводку на резкость – вращением микровинта, который перемещает объектив по отношению к неподвижному предметному столику.
Для рассмотрения разных участков шлифа предметный столик вместе со шлифом перемещают винтами относительно неподвижного объектива в двух взаимно перпендикулярных направлениях.
Определение величины зерна
Величина зерна оказывает существенное влияние на свойства сплава. По методу «секущей» подсчет числа зерен на выделенной площади заменяется подсчетом стыков (границ) плоских зерен.
Для определения диаметра зерна d при данном увеличении микроскопа (100×) необходимо, используя окуляр (7×), имеющий измерительную линейку, посчитать на контрольном образце количество пересечений границ с осью шкалы окуляра «секущей». Аналогичный расчет проводится в двух других полях зрения. При подсчете определяют среднее арифметическое значение числа пересечений. Диаметр зерна определяют по формуле:
где dз – диаметр зерна, мм;
l – длина секущей, мм;
m – цена деления секущей при данном увеличении микроскопа;
nср – среднее количество пересечений.
Рисунок излома контрольного образца и заключение о его характере.
Рисунок выявленной микроструктуры с описанием ее характера.
Расчет величины зерна выявленной микроструктуры.
КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
При каких увеличениях проводят макроанализ?
Что такое макрошлиф?
Какие задачи можно решить методами макроанализа?
Какие виды хрупкого излома возможны?
Какие участки можно различить в усталостном изломе?
Для чего проводят глубокое и поверхностное травление?
Каким образом определяют общую химическую неоднородность?
Какие задачи можно решать с помощью микроанализа?
Как приготовить микрошлиф?
В чем заключается механизм выявления структуры при травлении?
Что такое разрешающая способность микроскопа?
Какое изображение дает объектив и окуляр?
В чем заключается метод «секущей»? Что определяют с помощью этого метода?
. Макро– и микроструктура металлов и сплавов
Свойства металлов и сплавов в основном определяются их внутренним строением – структурой. Различия в свойствах металлов обуславливаются природой атомов. Так, атомы железа не сходны с атомами алюминия или меди и др. элементов, поэтому каждый металл имеет свои индивидуальные свойства. Но не только природой атомов определяются свойства металлов. Они зависят еще и от того, как атомы связаны между собой, каково расстояние между ними, каков порядок их расположения. Если изменить расстояние между атомами или их размещение, то изменятся и свойства металла.
В твердых телах атомы могут располагаться либо беспорядочно (аморфные тела), либо в определенном порядке (кристаллические тела). Атомы кристаллических тел размещаются в строгом, геометрически правильном порядке. Все металлы и их сплавы являются кристаллическими телами.
Любой металл состоит из огромного количества кристаллов, плотно примыкающих друг к другу. На свойства металлов влияют не только порядок расположения атомов внутри кристалла, но и форма отдельных кристаллов, их размеры и границы соприкосновения. Эти факторы оказывают большое влияние на механические свойства металлов.
Если порядок расположения атомов – природное свойство металла, то форма кристаллов и их размеры определяются процессом перехода металла из жидкого состояния в твердое. В результате затвердения образуется структура, состоящая из различных по величине зерен. Структура металлов и сплавов может быть очень сложной и состоять из смеси чистых металлов, твердого раствора различных элементов в металле и химических соединений компонентов, входящих в сплав.
Величина и форма кристаллов, образовавшихся при затвердевании, не остаются постоянными. При нагревании или деформировании металлов и сплавов (ковка, прокатка, штамповка и др.) структура их меняется. Этим пользуются для получения металлов и сплавов с необходимыми свойствами.
Кристаллическое строение можно наблюдать при рассмотрении поверхности излома какого-либо металлического изделия. Например, у литой стали в изломе видна крупнозернистая структура, а после термической обработки она становится мелкозернистой. Более полное представление о кристаллической структуре металла получается при рассмотрении шлифованной и полированной его поверхности после обработки (протравливания) специальными химическими реактивами.
Различают макро- и микроструктуру металла. Макроструктурой называют строение металла, различимое на полированной и протравленной поверхности макрошлифа при увеличении его под микроскопом (лупой) до 10 раз. При этом выявляются структурные пороки – наличие посторонних включений, газовых пузырьков, рыхлости и др. Микроструктура - строение металла, видимое на полированной и протравленной поверхности микрошлифа при увеличении в 100…300 и более раз. Микроструктура дает представление о границах между зернами, позволяет судить об их очертаниях и размерах и определять количество, форму и расположение структурных составляющих.
Материалы, имеющие один и тот же химический состав, могут иметь различную структуру. Например, серый и белый чугун могут иметь одинаковое количество углерода, но в первом он находится в виде графита, а во втором в виде химического соединения железа с углеродом – цементита. В результате этого имеется большое отличие в свойствах, так белый чугун хрупкий, склонен к трещинообразованию, поэтому в конструкциях можно использовать только серый чугун.
Читайте также: