Магний и натрий это металлы

Обновлено: 07.01.2025

14.1. Общая характеристика элементов IA и IIA групп

В IA группу входят литий, натрий, калий, рубидий и цезий. Эти элементы называют щелочными элементами. В эту же группу входит искусственно полученный малоизученный радиоактивный (неустойчивый) элемент франций. Иногда в IA группу включают и водород (см.главу 10). Таким образом, в эту группу входят элементы каждого из 7 периодов.
Во IIA группу входят бериллий, магний, кальций, стронций, барий и радий. Последние четыре элемента имеют групповое название – щелочноземельные элементы.
Говоря о том, сколь часто встречаются природе атомы того, или иного элемента, обычно указывают его распространенность в земной коре. Под земной корой понимают атмосферу, гидросферу и литосферу нашей планеты. Так, в земной коре наиболее распространены четыре из этих тринадцати элементов: Na (w =2,63 %), K (w = 2,41 %), Mg (w = 1,95 %) и Ca (w = 3,38 %). Остальные встречаются значительно реже, а франций вообще не встречается.
Орбитальные радиусы атомов этих элементов (кроме водорода) изменяются от 1,04 А (у бериллия) до 2,52 А (у цезия), то есть у всех атомов превышают 1 ангстрем. Это приводит к тому, что все эти элементы представляют собой элементы, образующие истинные металлы, а бериллий – элемент, образующий амфотерный металл.
Общая валентная электронная формула элементов IA группы – ns 1 , а элементов IIА группы – ns 2 .
Большие размеры атомов и незначительное число валентных электронов приводят к тому, что атомы этих элементов (кроме бериллия) склонны отдавать свои валентные электроны. Наиболее легко отдают свои валентные электроны атомы элементов IA группы (см. приложение 6), при этом из атомов щелочных элементов образуются однозарядные катионы, а из атомов щелочноземельных элементов и магния – двухзарядные катионы. Степени окисления в соединениях у щелочных элементов равна +I, а у элементов IIA группы – +II.
Простые вещества, образуемые атомами этих элементов, – металлы. Литий, натрий, калий, рубидий, цезий и франций называют щелочными металлами, так как их гидроксиды представляют собой щелочи. Кальций, стронций и барий называют щелочноземельными металлами. Химическая активность этих веществ увеличивается по мере увеличения атомного радиуса.
Из химических свойств этих металлов наиболее важны их восстановительные свойства. Щелочные металлы – сильнейшие восстановители. Металлы элементов IIA группы также довольно сильные восстановители.
Все они (кроме бериллия) реагируют с водой (магний при кипячении):
2M + 2H2O = 2M aq + 2OH aq + H2 ,
M + 2H2O = M 2 + 2OH + H2 .

В случае магния, кальция и стронция из-за малой растворимости образующихся гидроксидов реакция сопровождается образованием осадка:

Щелочные металлы реагируют с большинством неметаллов:
2M + H2 = 2MH (при нагревании),
4M + O2 = 2M2O (M – Li),
2M + Cl2 = 2MCl (при обычных условиях),
2M + S = M2S (при нагревании).

Из щелочных металлов, сгорая в кислороде, обычный оксид образует только литий. Остальные щелочные металлы образуют пероксиды (M2O2) или надпероксиды (MO2 – соединения, содержащие надпероксид-ион с формальным зарядом –1 е).
Как и щелочные металлы, металлы элементов IIA группы реагируют со многими неметаллами, но при более жестких условиях:
M + H2 = MH2 (при нагревании; кроме бериллия),
2M + O2 = 2MO (при обычных условиях; Be и Mg – при нагревании),
M + Cl2 = MCl2 (при обычных условиях),
M + S = MS (при нагревании).
В отличие от щелочных металлов с кислородом они образуют обычные оксиды.
С кислотами спокойно реагирует только магний и бериллий, остальные простые вещества очень бурно, часто со взрывом.
Бериллий реагирует с концентрированными растворами щелочей:
Be + 2OH + 2H2O = [Be(OH)4] 2 + H2

В соответствии с положением в ряду напряжений с растворами солей реагируют только бериллий и магний, остальные металлы в этом случае реагируют с водой.
Являясь сильными восстановителями, щелочные и щелочноземельные металлы восстанавливают многие менее активные металлы из их соединений, например, при нагревании протекают реакции:
4Na + MnO2 = 2Na2O + Mn;
2Ca + SnO2 = 2CaO + Sn.
Общий для всех щелочных металлов и металлов IIA группы промышленный способ получения – электролиз расплавов солей.
Кроме бериллия оксиды всех рассматриваемых элементов – основные оксиды, а гидроксиды – сильные основания (у бериллия эти соединения амфотерные, гидроксид магния – слабое основание).
Усиление основных свойств гидроксидов с увеличением порядкового номера элемента в группе легко прослеживается в ряду гидроксидов элементов IIA группы. Be(OH)2 – амфотерный гидроксид, Mg(OH)2 – слабое основание, Ca(OH)2, Sr(OH)2 и Ba(OH)2 сильные основания, но с увеличением порядкового номера растет их растворимость, и Ba(OH)2 уже можно отнести к щелочам.

НАДПЕРОКСИДЫ
1.Составьте сокращенные электронные формулы и энергетические диаграммы атомов элементов IA и IIA групп. Укажите внешние и валентные электроны.
2.По каким причинам водород помещают в IA группу, а по каким – в VIIA группу?
3.Составьте уравнения реакций следующих веществ с избытком кислорода: Li, Na, K, LiH, NaH, Li3N, Na2C2.
4.Кристаллы некоторого вещества состоят из однозарядных ионов. В состав каждого иона входит по 18 электронов. Составьте а) простейшую формулу вещества; б) сокращенные электронные формулы ионов; в) уравнение одной из реакций получения этого вещества; г) два уравнения реакций с участием этого вещества.

Натрий и калий – важнейшие щелочные элементы.
Простые вещества, образуемые этими элементами, – мягкие легкоплавкие серебристые металлы, легко режутся ножом, быстро окисляются на воздухе. Хранят их под слоем керосина. Температура плавления натрия 98 °С, а калия 64 °С.
Оксиды этих элементов типичные основные оксиды. Они очень гигроскопичны: поглощая воду, превращаются в гидроксиды.
Гидроксиды натрия и калия – щелочи. Это твердые бесцветные кристаллические вещества, плавящиеся без разложения. Как и оксиды, они очень гигроскопичны: поглощая воду, превращаются в концентрированные растворы. Как твердые гидроксиды, так и их концентрированные растворы – очень опасные вещества: при попадании на кожу вызывают труднозаживающие язвы, вдыхание их пыли приводит к поражению дыхательных путей. Гидроксид натрия (тривиальные названия – едкий натр, каустическая сода) относится к важнейшим продуктам химической промышленности – с его помощью создается щелочная среда во многих химических производствах. Гидроксид калия (тривиальное название – "едкое кали") используют для производства других соединений калия.
Большинство средних солей натрия и калия термически устойчивые вещества и разлагаются только при очень высоких температурах. При умеренном нагревании разлагаются только соли галогенсодержащих оксокислот, нитраты и некоторые другие соединения:

Кислые соли менее устойчивы, при нагревании все они разлагаются:

Основных солей эти элементы не образуют.

Из солей наибольшее значение имеет хлорид натрия – поваренная соль. Это не только необходимая составная часть пищи, но и сырье для химической промышленности. Из него получают гидроксид натрия, питьевую соду (NaHCO3), соду (Na2CO3) и многие другие соединения натрия. Соли калия – необходимые минеральные удобрения.
Почти все соли натрия и калия растворимы, поэтому доступных качественных реакций на ионы этих элементов не. (Качественными реакциями называют химические реакции, позволяющие обнаружить в соединении атомы или ионы какого-либо химического элемента, доказав при этом, что обнаружен именно эти атомы или ионы, а не какие-нибудь другие, похожие на них по химическим свойствам. Также называют реакции, позволяющие обнаружить какое-либо вещество в смеси) Определить наличие в соединении ионов натрия или калия можно по окрашиванию бесцветного пламени при внесении в него исследуемого образца: в случае натрия пламя окрашивается в желтый цвет, а в случае калия – в фиолетовый.

КАЧЕСТВЕННЫЕ РЕАКЦИИ
Составьте уравнения реакций, характеризующих химические свойства а) натрия, б) гидроксида калия, в) карбоната натрия, г) гидросульфида натрия.
Окрашивание пламени солями натрия и калия

Простые вещества магний и кальций – металлы. Кальций быстро окисляется на воздухе, а магний в этих условиях значительно устойчивее – он окисляется лишь с поверхности. Кальций хранят под слоем керосина. Температуры плавления магния и кальция – 650 и 851 °С соответственно. Магний и кальций значительно более твердые вещества, чем щелочные металлы. Невысокая плотность магния (1,74 г/см 3 ) при значительной прочности дает возможность использовать его сплавы в авиационной промышленности.
И магний, и кальций – сильные восстановители (особенно при нагревании). Их часто используют для восстановления других, менее активных, металлов из их оксидов (магний – в лаборатории, а кальций – в промышленности).
Магний и кальций – одни из немногих металлов реагирующих с азотом. При нагревании они образует с ним нитриды Mg3N2 и Ca3N2. Поэтому, сгорая на воздухе, магний и кальций превращаются в смесь оксидов с нитридами.
Кальций легко реагирует с водой, а магний – только при кипячении. В обоих случаях выделяется водород и образуются малорастворимые гидроксиды.
Оксиды магния и кальция – ионные вещества; по химическому поведению они – основные оксиды. Оксид магния с водой не реагирует, а оксид кальция (тривиальное название – "негашеная известь") реагирует бурно с выделением теплоты. Образующийся гидроксид кальция в промышленности называют "гашеной известью".
Гидроксид магния нерастворим в воде, тем не менее он является основанием. Гидроксид кальция заметно растворим в воде; его насыщенный раствор называют "известковой водой", это щелочной раствор (изменяет окраску индикаторов). Гидроксид кальция в сухом, а особенно во влажном состоянии поглощает углекислый газ из окружающего воздуха и превращается в карбонат кальция. Это свойство гашеной извести много веков использовалось в строительстве: гашеная известь как основной компонент входила в состав строительных известковых растворов, в настоящее время почти полностью замененных цементными. Оба гидроксида при умеренном нагревании, не плавясь, разлагаются.
Соли магния и особенно кальция входят в состав многих породообразующих минералов. Из этих горных пород наиболее известны мел, мрамор и известняк, основным веществом которых является карбонат кальция. Карбонаты кальция и магния при нагревании разлагаются на соответствующие оксиды и углекислый газ. С водой, содержащей растворенный диоксид углерода, эти карбонаты реагируют, образуя растворы гидрокарбонатов, например:

При нагревании, и даже при попытке выделить гидрокарбонаты из раствора, удаляя воду при комнатной температуре, они разлагаются по обратной реакции:

Гидратированный сульфат кальция CaSO4·2H2O представляет собой бесцветное кристаллическое вещество малорастворимое в воде. При нагревании оно частично обезвоживается, переходя в кристаллогидрат состава 2CaSO4·H2O. Тривиальное название двуводного гидрата – гипс, а полуводного – алебастр. При смешивании алебастра с водой он гидратируется, при этом образуется плотная твердая масса гипса. Это свойство алебастра используется в медицине (гипсовые повязки) и строительстве (армированные гипсовые перегородки, заделка дефектов). Скульпторы используют алебастр для изготовления гипсовых моделей и форм.
Карбид (ацетиленид) кальция CaC2. Структурная формула (Ca 2 )( CC ). Получают спеканием негашеной извести с углем:

CaO + 3C = CaC2 + CO

Это ионное вещество не является солью и полностью гидролизуется водой с образованием ацетилена, который долгое время и получали таким способом:

Гидратированный ион магния [Mg(H2O)6] 2 – катионная кислота (см. приложение 13), поэтому растворимые соли магния подвергаются гидролизу. По этой же причине магний может образовывать основные соли, например, Mg(OH)Cl. Гидратированный ион кальция не является катионной кислотой.
Кальций в соединении может быть обнаружен по окрашиванию пламени. Цвет пламени – оранжево-красный. Качественная реакция на ионы Ca 2 , Sr 2 и Ba 2 , не позволяющая однако различить эти ионы между собой – осаждение соответствующих сульфатов разбавленным раствором серной кислоты (или любым раствором сульфата в кислотной среде):

1.Почему магний и кальций не образуют однозарядных ионов?
2.Составьте уравнения всех реакций, приведенных параграфе описательно.
3.Составьте уравнения реакций, характеризующих химические свойства а) кальция, б) оксида кальция, в) гидроксида магния, г) карбоната кальция, д) хлорида магния.
Исследование свойств соединений магния и кальция

Природная вода в той, или иной степени содержит ионы растворимых солей. Если в пресной воде суммарная концентрация ионов Mg 2 и Ca 2 превышает 2 ммоль/л, то такую воду называют жесткой (если не превышает, то – мягкой). В качестве анионов в жесткой воде могут содержаться HCO3 , SO4 2 , Cl и другие ионы.
При нагревании жесткой воды из нее выделяются карбонаты магния и кальция, а при кипячении – еще и сульфаты. Образующийся плотный осадок часто называют "накипью". Именно он появляется на внутренних поверхностях чайников. В промышленности этот осадок образуется на стенках котлов, снижая их теплопроводность, и трубопроводов, уменьшая их внутренний диаметр.
При стирке в жесткой воде с использованием мыла его расход сильно возрастает, а качество стирки снижается, так как из раствора мыла (натриевых солей некоторых органических кислот) выделяются нерастворимые кальциевые и магниевые соли. При использовании синтетических стиральных порошков этот эффект не наблюдается.
Различают временную (карбонатную) жесткость, устраняемую кипячением, и постоянную (некарбонатную), сохраняющуюся после кипячения воды.
Устранение жесткости заключается в удалении из нее ионов Mg 2 и Ca 2 .
Временная жесткость устраняется кипячением.
Для устранения общей жесткости в воду добавляют различные реагенты:
1. Гашеную известь Ca(OH)2.
Ca 2 + HCO2 +OH = CaCO3 + H2O
Mg 2 + 2HCO3 + Ca 2 + 2OH = MgCO3 + CaCO3 + 2H2O
Mg 2 + 2OH = Mg(OH)2

Фосфаты кальция и магния менее растворимы, чем карбонаты. Поэтому применение фосфата натрия приводит к более полному устранению жесткости.
Современный способ устранения жесткости основан на применении ионообменных смол (ионитов). Иониты представляют собой полимерные кислоты RHn (катиониты) и полимерные основания R(OH)n (аниониты).
При пропускании растворов солей через трубки (ионообменники), заполненные зернами ионитов, протекают реакции, называемые реакциями ионного обмена: катиониты как бы обменивают свои атомы водорода на катионы (отсюда и их название), а аниониты – гидроксильные группы на анионы:

RHn + (n/2)M 2 + nH2O = RMn/2 + nH3O ,
R(OH)n + nA = RAn + nOH .

Последовательно пропуская жесткую воду через ионообменник, заполненный катионитом, и ионообменник, заполненный анионитом, жесткость можно устранить полностью.
Таким способом можно очистить не только жесткую, но и морскую воду, что иногда и делается для ее опреснения. В промышленности иониты используют для получения чистой (деионизированной) воды вместо дистиллированной.

ЖЕСТКОСТЬ ВОДЫ,ЖЕСТКАЯ ВОДА,МЯГКАЯ ВОДА, ВРЕМЕННАЯ ЖЕСТКОСТЬ, ПОСТОЯННАЯ ЖЕСТКОСТЬ, ИОНООБМЕННЫЕ СМОЛЫ (ИОНИТЫ), КАТИОНИТ, АНИОНИТ, ИОНООБМЕННИК, РЕАКЦИЯ ИОННОГО ОБМЕНА.
Составьте молекулярные уравнения реакций, ионные уравнения которых приведены в тексте параграфа.

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору

Магний и натрий это металлы

Дайте характеристику по плану химических элементов с порядковым номером: 12 и 19.

напишем строение атома магния и его электронную формулу:

а). Модель атома магния при помощи

б). Модель атома, через электронную

формулу (электронная конфигурация):

электронная формула алюминия ₊₁₂Mg

в).Электронно-графическая модель атома:

4. Простое вещество магний металл, состоит из

одного атома , валентность магния в соединениях равна 2, степень

окисления+2 . Магний –восстановитель.

5. Молекулы атомов в 2 группе, главной подгруппе

одноатомные. С увеличением заряда ядра от бериллия до радия неметаллические свойства уменьшаются, а

6. Молекулы атомов простых веществ в периоде: натрий, магний, алюминий, кремний —

одноатомные; фосфора четырехтомные P₄, серы многоатомные (S)n,хлора двухатомные CI₂. От натрия к хлору меняются

свойства веществ: натрий, магний — металлы, алюминий -амфотерный металл, кремний полуметалл, фосфор, сера, хлор — неметаллы. Также слева направо в периоде меняются окислительно-восстановительные свойства. Натрий, магний, алюминий — восстановители. Кремний, фосфор, сера, хлор — могут быть как восстановителями, так окислителями.

7. Формула высшего оксида: MgO – основной оксид

8. Формула гидроксида: Mg(OH)₂- основание не

растворимое в воде.

9. Летучего соединения с водородом не образует, а соединение магния с водородом — это гидрид алюминия MgH₂ -Представляет собой твёрдое белое нелетучее

1) Название элемента -калий,

химический символ — K, порядковый номер — № 19 ,

атомная масса Ar=39 Группа — 1, подгруппа- главная , 4-й период

Заряд ядра атома калия Z=+19 (в ядре 19 протонов-

p⁺ и 20 нейтронов — n⁰)

Вокруг ядра атома 4 энергетических уровня, на

которых располагаются 19 электронов.

3) Исходя из вышеизложенного

напишем строение атома калия и его электронную формулу:

а). Модель атома калия при помощи

электронная формула калия ₊₁₉K 1s²2s²2p⁶3s²3p⁶4s¹

4. Простое вещество калий щелочной металл, состоит из

одного атома , валентность калия в соединениях равна 1, степень

окисления+1 . Калий –восстановитель.

5. Молекулы атомов в 1 группе, главной подгруппе одноатомные. С увеличением заряда ядра от лития до франция неметаллические свойства уменьшаются, а металлические усиливаются.

6. Молекулы атомов простых веществ в периоде: от калия до криптона меняются от типичных металлов до неметаллов

7. Формула высшего оксида: K₂O – основной оксид

8. Формула гидроксида: KOH- основание растворимое в воде, щелочь

9. Летучего соединения с водородом не образует. Гидрид калия — это неорганическое бинарное химическое соединение белого цвета. Химическая формула KH. Гидрид калия образует бесцветные ионные кристаллы с решеткой типа NaCl. Хорошо растворим в расплавленном калии, не растворяется в органических растворителях. Обладает высокой теплопроводностью. Гидрид калия является ионным соединением K⁺H⁻.

Усиление металлических и неметаллических свойств в таблице

Периодическая таблица Дмитрия Ивановича Менделеева очень удобна и универсальна в своём использовании. По ней можно определить некоторые характеристики элементов, и что самое удивительное, предсказать некоторые свойства ещё неоткрытых, не обнаруженных учёными, химических элементов (например, мы знаем некоторые свойства предполагаемого унбигексия, хотя его ещё не открыли и не синтезировали).

Что такое металлические и неметаллические свойства

Эти свойства зависят от способности элемента отдавать или притягивать к себе электроны. Важно запомнить одно правило, металлы – отдают электроны, а неметаллы – принимают. Соответственно металлические свойства – это способность определённого химического элемента отдавать свои электроны (с внешнего электронного облака) другому химическому элементу. Для неметаллов всё в точности наоборот. Чем легче неметалл принимает электроны, тем выше его неметаллические свойства.

Металлы никогда не примут электроны другого химического элемента. Такое характерно для следующих элементов;

  • натрия;
  • калия;
  • лития;
  • франция и так далее.

С неметаллами дела обстоят похожим образом. Фтор больше всех остальных неметаллов проявляет свои свойства, он может только притянуть к себе частицы другого элемента, но ни при каких условиях не отдаст свои. Он обладает наибольшими неметаллическими свойствами. Кислород (по своим характеристикам) идёт сразу же после фтора. Кислород может образовывать соединение с фтором, отдавая свои электроны, но у других элементов он забирает отрицательные частицы.

Список неметаллов с наиболее выраженными характеристиками:

Неметаллические и металлические свойства объясняются тем, что все химические вещества стремятся завершить свой энергетический уровень. Для этого на последнем электронном уровне должно быть 8 электронов. У атома фтора на последней электронной оболочке 7 электронов, стремясь завершить ее, он притягивает ещё один электрон. У атома натрия на внешней оболочке один электрон, чтобы получить 8, ему проще отдать 1, и на последнем уровне окажется 8 отрицательно заряженных частиц.

Благородные газы не взаимодействуют с другими веществами именно из-за того, что у них завершён энергетический уровень, им не нужно ни притягивать, ни отдавать электроны.

Почему металлические свойства

Как изменяются металлические свойства в периодической системе

Периодическая таблица Менделеева состоит из групп и периодов. Периоды располагаются по горизонтали таким образом, что первый период включает в себя: литий, бериллий, бор, углерод, азот, кислород и так далее. Химические элементы располагаются строго по увеличению порядкового номера.

Группы располагаются по вертикали таким образом, что первая группа включает в себя: литий, натрий, калий, медь, рубидий, серебро и так далее. Номер группы указывает на количество отрицательных частиц на внешнем уровне определённого химического элемента. В то время, как номер периода указывает на количество электронных облаков.

Металлические свойства усиливаются в ряду справа налево или, по-другому, ослабевают в периоде. То есть магний обладает большими металлическими свойствами, чем алюминий, но меньшими, нежели натрий. Это происходит потому, что в периоде количество электронов на внешней оболочке увеличивается, следовательно, химическому элементу сложнее отдавать свои электроны.

В группе все наоборот, металлические свойства усиливаются в ряду сверху вниз. Например, калий проявляется сильнее, чем медь, но слабее, нежели натрий. Объяснение этому очень простое, в группе увеличивается количество электронных оболочек, а чем дальше электрон находится от ядра, тем проще элементу его отдать. Сила притяжения между ядром атома и электроном в первой оболочке больше, чем между ядром и электроном в 4 оболочке.

Сравним два элемента – кальций и барий. Барий в периодической системе стоит ниже, чем кальций. А это значит, что электроны с внешней оболочки кальция расположены ближе к ядру, следовательно, они лучше притягиваются, чем у бария.

Сложнее сравнивать элементы, которые находятся в разных группах и периодах. Возьмём, к примеру, кальций и рубидий. Рубидий будет лучше отдавать отрицательные частицы, чем кальций. Так как он стоит ниже и левее. Но пользуясь только таблицей Менделеева нельзя однозначно ответить на этот вопрос сравнивая магний и скандий (так как один элемент ниже и правее, а другой выше и левее). Для сравнения этих элементов понадобятся специальные таблицы (например, электрохимический ряд напряжений металлов).

Почему металлические свойства

Как изменяются неметаллические свойства в периодической системе

Неметаллические свойства в периодической системе Менделеева изменяются с точностью до наоборот, нежели металлические. По сути, эти два признака являются антагонистами.

Неметаллические свойства усиливаются в периоде (в ряду справа налево). Например, сера способна меньше притягивать к себе электроны, чем хлор, но больше, нежели фосфор. Объяснение этому явлению такое же. Количество отрицательно заряженных частиц на внешнем слое увеличивается, и поэтому элементу легче закончить свой энергетический уровень.

Неметаллические свойства уменьшаются в ряду сверху вниз (в группе). Например, фосфор способен отдавать отрицательно заряженные частицы больше, чем азот, но при этом способен лучше притягивать, нежели мышьяк. Частицы фосфора притягиваются к ядру лучше, чем частицы мышьяка, что даёт ему преимущество окислителя в реакциях на понижение и повышение степени окисления (окислительно-восстановительные реакции).

Сравним, к примеру, серу и мышьяк. Сера находится выше и правее, а это значит, что ей легче завершить свой энергетический уровень. Как и металлы, неметаллы сложно сравнивать, если они находятся в разных группах и периодах. Например, хлор и кислород. Один из этих элементов выше и левее, а другой ниже и правее. Для ответа придётся обратиться к таблице электроотрицательности неметаллов, из которой мы видим, что кислород легче притягивает к себе отрицательные частицы, нежели хлор.

Металлические свойства

Периодическая таблица Менделеева помогает узнать не только количество протонов в атоме, атомную массу и порядковый номер, но и помогает определить свойства элементов.

Видео

Видео поможет вам разобраться в закономерности свойств химических элементов и их соединений по периодам и группам.

Поставь лайк, это важно для наших авторов, подпишись на наш канал в Яндекс.Дзен и вступай в группу Вконтакте

Магний. Характеристика металла магния – его применения, свойства и цена

магний металл

Сегодня даже не каждый взрослый вспомнит почему мы можем однозначно ответить на вопрос: магний металл или неметалл? Магний – относят к щелочноземельным металлам! Вспомнить это поможет беглый взгляд на электронную конфигурацию 1s22s22p63s2 нейтрального атома этого вещества. Учитывая специфику металлов иметь от 1 до 3 свободных электронов на внешнем энергетическом уровне, смотрят на этот параметр и для Mg. Не трудно увидеть, что конфигурация содержит 2 свободных электрона.

Общие металлические свойства магния характерны тем же, что проявляют другие вещества, относящие к данному типу. Обычно они тверды, но пластичны (в отличие от хрупких неметаллов). Имеют специфический блеск. Mg имеет склонность тускнеть на воздухе из-за того, что покрывается защитной кислородной пленкой. Порошок магния легко воспламеняется, достаточно поднести зажженную спичку. Цвет магния, горящего – ярко-белый. Одна из причин, почему этот металл первоначально использовался при фотографировании. Mg наносили на специальную ленту и поджигали ее. При горении образуется MgO, также при протекании процесса на воздухе выделяется нитрид магния с выделением большого количества теплоты.

металл магний

Так выглядит металлический магний

Особенности Mg, как элемента периодической системы

Химические свойства магния во многом лежат где-то между бериллием и кальцием. Прежде всего, это проявляется во взаимодействии с водой. Первый не реагирует с ней вообще, второй же в ней растворяется. Mg слабо взаимодействует с нагретой водой. Но при взаимодействии с водяным паром (от 400 градусов по Цельсию) происходит реакция Mg+ H2O = MgO + H2, в которой металл растворяется при активном выделении водорода.

Видео – химические свойства магния:

Несколько иная реакция происходит с водяным паром: Mg+ 2H2O = Mg(OH)2 +H2. Причем свободный водород в итоге поглощается магнием MgH3. В результате, если плавление металла происходило во влажной среде, по мере его застывания водород практически полностью исчезает.

Свойства магния: взаимодействовать с водой при высоких температурах становится и гореть при присутствии в атмосфере углекислого газа, – затрудняют тушение пожаров с участием Mg. Их нельзя тушить водой. По инструкции используют порошковые огнетушители и песок. Также можно применять оксиды Si, с которыми магний вступает в реакцию, но количество выделяемой теплоты значительно ниже.

магний горит

На фото: горение магния

Также необходимо отметить, что несмотря на фактическую нерастворимость Mg(OH)2 в воде, раствор фенолфталеина в его присутствии окрашивается в розовый цвет.

магний в таблице Менделеева

Магний в таблице Менделеева

Магний металл устойчив к едким щелочам, соде, керосину, бензину, минеральным маслам. Способность этого элемента отнимать кислород и хлор, используют для восстановления чистых веществ. Например, брома или титана.

Для синтезов разных классов органических соединений используется свойство магния взаимодействовать с галогенами. Обычно это Cl, Br, I, с фтором Mg образует защитную пленку, из-за чего их соединение редко используется для синтеза реактивов Гриньяра. Последние наиболее часто формируются на основе формулы RMgHal, где R – это органический радикал, а Hal – один из перечисленных галогенов.

Какие физические свойства имеет металл магний

Видео: Магний – металл, который горит

Легкость элемента отображает плотность, которая составляет 1,74 г/см3. Меньшую имеют только кальций и щелочные металлы. Физические свойства магния можно коротко описать стандартными энциклопедическими параметрами:

  • Т плавления – 651°С;
  • Т кипения – 1107°С;
  • Теплопроводность – 0,376 кал/(см·с·град) достаточно высока, сравнима с тем, что демонстрируют бериллий и вольфрам;
  • Теплоемкость при Т плавления – 0,3 кал/град;
  • Удельная теплоемкость увеличивается до Т плавления и уменьшается по ее достижении;
  • Усадка при смене состояний (жидкость – твердое тело) – 3,97-4,2%;
  • Удельное электросопротивление при комнатной температуре – 0,047 ом·мм2/м.

Этот элемент периодической таблицы Менделеева относят к щелочноземельным металлам. Однако это утверждение не всегда верно, поскольку химические свойства приближают этот элемент к алюминий подобным веществам.

Так выглядит оксид магния

Так выглядит оксид магния

Оксиды MgO относят к белым тугоплавким веществам, их называют жженой магнезией и применяют при изготовлении строительных материалов. Соли магния металла образуются при взаимодействии вещества с кислотами. Наиболее известная из них MgCO3. Используется металлургам для освобождения сплавов от шлаков, называют карбонат магния. Еще одна соль MgSO4 – известна как горькая или английская. Химики ее именуют сульфат магния. Mg и Ca влияют на жесткость воды. Высокая концентрация этих веществ в Н2О не позволяет моющим средствам пениться.

Магниевый сплав МЦр1Н3

Магниевый сплав МЦр1Н3

Чтобы более детально ответить на то, какие физические свойства имеет магний, необходимо рассматривать изменения его состояний и качеств по мере применения к нему различных тепловых эффектов: нагревание и охлаждение. Так, например, плотность снижается на 6% при Т – 600 0 С, расплавившись и вовсе падает до значения 1.58 г/см3.

Характеристики металла магния сильно отличаются при низких и высоких температурах. Некоторые результаты экспериментов требуют объяснения, часть из них дают вполне предвиденные реакции.

Гексагональная решетка элемента имеет следующие параметры:

При нагревании до 6270С эти расстояния увеличиваются, дойдя до температуры плавления связи решетки разрушаются вовсе.

Если говорить о том, какого цвета магний придется отметить, что в целом серебристо-белый металл, может выглядеть как черный обуглившийся с присущим блеском. В последнем случае речь идет о стружке магния. Поэтому определяя «на глаз» тип материала, все-таки лучше обратиться к химическим экспериментам, если под рукой не имеется спектрального анализатора.

Классическая задача для школьников рассматривает ряд натрий – магний –алюминий, металлические свойства которого ослабевает от первого к последнему элементу.

Взаимодействие с различными кислотами

Для краткости, проще рассмотреть несколько экспериментов. Для них берутся такие виды кислот:

  1. Соляная.
  2. Азотная.
  3. Серная (разбавленная и нет).

соляная кислота

В первом случае наблюдается практически мгновенное растворение, сопровождающееся пузырьками белых газов и резким запахом хлора. Емкость, в которой происходила реакция нагревается.

В азотной кислоте кусочек магния не тонет. Бурый газ скапливается над поверхностью жидкости, выделяется тепло. Иногда говорят, что кислота «кипела», окружая кусочки магния.

Третий случай необходимо рассматривать, как два частных. В неразбавленной серной кислоте реакция идет медленно. Если же использовать раствор с небольшим количеством воды, магний также, как с азотной кислотой плавает на поверхности. При этом происходит едва заметная реакция с выделением белых пузырьков газа.

Получение магния и история открытия

Высокая химическая активность препятствует тому, чтобы магний металлический встречался в чистом виде. Источниками материалов для его добычи становятся магниевые руды или соединения солей, содержащихся в водах морей, океанов, а также подземных. Именно асбест, оливин, серпентин, магнезит, доломит, другие минералы известны миру с давних пор. Название вещества имеет те же корни, что и название города в Малой Азии – Магнезия. Только в 1808 году английский химик Г. Дэви методом электролиза получил металлический осадок, который назвал магнием.

Однако это не был чистый металл. Еще 20 лет понадобилось миру ученых, чтобы получить именно Mg в том виде, который представил его в таблице Менделеева. Сделал открытие чистого металла магния французский химик А. Бюсси в 1828 году.

Что такое электролиз

Что такое электролиз

Сам же метод электролиза лег в основу классических способов получения этого элемента в чистом виде. Для производства в основном используют месторождения магний содержащих руд. Наиболее известное гражданам России находится на Урале – Саткинское. Но в Сибири имеется еще ряд месторождений, как и в Индии, Китае, Корее, некоторых странах Европы и Южной Америке.

На производстве для получения металлического магния используют расплав обезвоженных хлоридов: магния, натрия и калия. При применении непрерывного электролиза происходит восстановление по следующей формуле:

MgCl2 (электролиз) = Mg + Cl2.

Возможность реализации процессов, описанных далее, магний металл с ценой за кг остается востребованным. Очищенный металл выбирают из электролизной ванны, вливая на замещение сырье с содержанием магния. Таким способом получают металл практически свободный от примесей. Доля последних составляет не более 0,1%. Если есть необходимость уменьшить этот показатель, еще не застывший металл рафинируют, получая чистоту 99,999% и больше.

Существует еще один способ получения магния – это восстановление оксида MgO с добавлением кокса при высокой температуре. Альтернативно используют доломит, этот метод не требует предварительного отделения кальция. Получаемые в результате реакции оксиды CaO и MgO смешивают с кремнием. На выходе имеют чистейший магний и Ca2SiO4. Для этого метода допустимо использования минералов или морской воды.

Применение магния

Имеет широкий спектр от медицины до самолетостроения. Физические свойства металла магния, а именно его легкость (плотность) делает незаменим этот элемент в сплавах. Чаще это соединения с цинком, цирконием или алюминием. При очевидной легкости таких сплавов наблюдается их прочность.

Еще раз стоит отметить, что активные химические свойства металла магния позволяют использовать в процессах восстановления Ti, U, V, Zr, прочих. Обычно используется способность отбирать кислород или реагирование с фтором. На выходе получают чистые металлы плюс оксиды или фториды Mg.

Использование магния в медицине

Использование магния в медицине

У магния металлические свойства выражены по-особенному: он хорошо режется, благодаря чему легко получают стружку этого элемента. Но в чистом виде элемент практически не используют, как конструкционный металл, однако его сплавы – да.

О свойствах последних уже немного сказано. Но надо отметить, что соединения магния с незначительным количеством Al, Zn, Mn, Be, Ti и редкоземельными элементами имеют лучшие механические качества, чем чистый металл Mg. Они более устойчивы к коррозии, прочнее, устойчивее.

Магний используется для производства некоторых деталей самолета

Магний используется для производства некоторых деталей самолета

Основные области применения магния в сплавах: это конструкционные материалы в строении самолетов, машин, ЖД транспорта. Еще одно направление – синтез органических веществ, рассмотрен ранее.

Магний неметалл больше известен, как фторид Mg и активно применяется в оптике для производства линз. Последние обладают прозрачностью, пластичностью, прочностью. Материалы более известны, как синтетические монокристаллы. В промышленности иногда используют кремний, а также золотое, серебряное напыление.

В сталелитейном производстве лом магния используют за его свойство притягивать кислород. Он выполняет роль раскислителя. Благодаря чему сплавы легированной стали обладают большей коррозийной устойчивостью. Поэтому магний часто участвует и в цветном литье. Из него изготавливают аноды.

Магниевый анод

Особым спросом пользуются и другие «неметаллические» соединения магния, например, его сульфат. Известны растворы для инъекций или суспензий, последние пациент может готовить дома самостоятельно. Прием магния снижает риск заболевания гипертонией у курильщиков.

Используют магний и в земледелии, практически все виды почвы, где имеется растительность содержат этот элемент. Также следует отметить участие Mg в фотосинтезе растений.

Магний металлический цена за килограмм

Не все пункты приема принимают магний. У тех, кто принимает существует лишь одна категория этого металла – кусковой лом магния (точнее это даже не магний в чистом виде, а сплавы, в которых он содержится, но в пунктах обозначается, как лом магния), его стоимость (средняя) составляет:

Лом магния кусковой – 38 рублей за килограмм .

В домашнем обиходе лом магния – это различные вешалки, дверные ручки. Лом магния можно встретить в виде старых блоков цилиндров от двигателей, карсасов авто сидений, панелей приборов, картеров сцепления и коробки передач, педалей, а также поддона картера двигателя, крышки головки блока цилиндров, впускного коллектора.

Так выглядит лом магния

Так выглядит лом магния

Не стоит путать лом магния с ломом ЦАМа.

Широкий спектр применения этого элемента в металлургии, медицине, агропромышленном комплексе делает его интересным, в качестве вторичного сырья.

Однако увидеть объявления с желанием купить магний с ценой за кг лома, приходится довольно редко. Чаще востребованы сплавы и сернокислый порошок Mg. Но это не мешает бирже оценивать магний металл, цена которого зависит от выпуска чистого продукта. Периодически выпуск снижается, тогда таблоиды показывают возрастание стоимости продукта.

В пунктах приема лом магния и цена на него может зависеть от условий, на которых происходит факт купли/продажи – цена может варьироваться незначительно и от его объема.

Интерес к материалу подогревается его высокой огнеупорностью. Благодаря этому свойству Mg участвует в производстве футеровок и тиглей для металлургических печей. Видимо поэтому, объявления: куплю лом магния, не теряют актуальности – см. также лом огнеупоров.

Читайте также: