Лекции по металлическим конструкциям

Обновлено: 07.01.2025

Металлические конструкции применяются в инженерных сооружениях в виде стержневых или сплошных систем: в одноэтажных и многоэтажных производственных зданиях; большепролетных покрытиях различных систем зданий и сооружений (спортивные сооружения, крытые рынки, театры, выставочные павильоны, ангары, судостроительные эллинги, авиасборочные цехи и др.); мостах и эстакадах; высотных сооружениях (телевизионные башни, мачты, опоры воздушных линий электропередачи, вытяжные башни, нефтяные вышки, дымовые и вентиляционные трубы, промышленные этажерки, геодезические вышки, надшахтные копры и многие другие сооружения); каркасах гражданских многоэтажных зданий; крановых и других подвижных конструкциях (мостовые, башенные и козловые краны, краны-перегружатели, крупные экскаваторы, затворы и ворота гидротехнических сооружений); листовых конструкциях (резервуары различного назначения, газгольдеры, бункеры, силосы, трубопроводы большого диаметра, конструкции доменного и химического производств); конструкции уникального назначения (радиотелескопы, антенны космической связи).

Такой широкий диапазон применения металлических конструкций, воспринимающих большие нагрузки от собственного веса и оборудования, имеющие большие пролеты и высоту (для листовых конструкций необходимость обеспечения плотности), обусловлен рядом их достоинств и, в первую очередь, надежностью, высокой прочностью и легкостью (рис. 1.1).

Рекомендуемые материалы

Надежность металлических конструкций обеспечивается близким совпадением их действительной работы (распределение напряжений и деформаций) с теоретическими расчетными предпосылками об упругой и упруго-пластической работе материала, обоснованными основными положениями сопротивления материалов и теории упругости и пластичности. Сталь – изотропный материал, имеет мелкозернистую структуру с одинаковыми механическими свойствами во всех направлениях.

Легкость. Из всех изготовляемых в настоящее время несущих конструкций металлические конструкции являются относительно наиболее легкими, несмотря на высокую плотность стали (ρ = 7850 кг/м 3 ) по сравнению с бетоном (ρ = 2400 кг/м 3 ) и даже древесиной (ρ = 500 кг/м 3 ).

За показатель легкости с принимают отношение плотности материала ρ к его прочности Ry. Чем меньше значение с, тем относительно легче конструкция.

Конструкции из алюминиевых сплавов, обладающих прочностью близкой к прочности малоуглеродистой стали, а также плотностью, примерно в три раза меньшей, чем сталь (r =2700 кг/м 3 ), имеют наименьшее значение показателя с.


Рис. 1.1. Достоинства и недостатки металлических конструкций

На рис. 1.2 приведена сравнительная легкость конструкции из различных материалов (коэффициент с для алюминиевого сплава Д16Т принят за единицу).

Индустриальность. Металлические конструкции в основной своей массе изготавливаются на заводах, оснащенных современным специальным оборудованием, а механизированный монтаж на месте возведения сооружения ускоряет ввод его в эксплуатацию. Все это исключает или до минимума сокращает тяжелый ручной труд.

Непроницаемость. Металлы облают не только значительной прочностью, но и высокой плотностью – непроницаемостью для газов и жидкостей. Плотность металла и его соединений, осуществляемых с помощью сварки, является необходимым условием для изготовления листовых конструкций.

Ремонтопригодность. Применительно к стальным конструкциям наиболее просто решаются вопросы усиления, технического перевооружения и реконструкции. Хорошая приспособленность для крепления различных коммуникаций, нового технологического оборудования к элементам существующего каркаса с помощью сварки.

Сохранность металлического фонда – возможность использования металлоконструкций, отслуживших свой срок в результате физического и морального старения (возврат в отрасли хозяйства в виде металлического лома).

c = ρ/Ry


Рис. 1.2. Относительная легкость конструкции

из различных материалов

Лучшая приспособленность металлоконструкций для тяжелых условий работы (высокая температура до +200ºС, динамические и циклические нагружения, большие нагрузки).

Меньшая подверженность механическим повреждениям в процессе перевозки, монтажа и эксплуатации.

Меньшая зависимость себестоимости от серийности, благодаря сравнительно малой стоимости вспомогательных приспособлений при изготовлении и монтаже. Возможность быстро переналаживать оснастку изготовления.

Высокие эстетические свойства, возможность создания самых различных форм.

Металлические конструкции имеют и недостатки, для нейтрализации которых необходимы специальные меры.

Коррозия – разрушение металла вследствие химического или электрохимического взаимодействия с внешней средой. Металлические конструкции обладают сравнительно слабой коррозийной стойкостью, особенно в агрессивных условиях. Сталь, не защищенная от контакта с влагой в сочетании с вредными газами, солями, пылью, окисляется и становится непригодной к эксплуатации.

Значительно выше коррозийная стойкость у алюминиевых сплавов, применяемых в строительстве, благодаря образованию на поверхности прочной оксидной пленки. Хорошо сопротивляется коррозии чугун.

Повышение коррозийной стойкости металлических конструкций достигается включением в сталь специальных легирующих элементов (относительно дорогой способ), периодическим нанесением на поверхность изделий защитных лакокрасочных покрытий (принятый у нас основной способ), а также выбором при проектировании рациональной конструктивной формы элементов, удобной для очистки и защиты (без щелей и пазух, где могут скапливаться влага и пыль).

Небольшая огнестойкость. Металлические конструкции имеют сравнительно низкий предел огнестойкости, оцениваемый временем, в течение которого конструкция сохраняет свою несущую способность.

У стали при температуре t = 200ºC начинает уменьшаться модуль упругости Е, а при t = 600ºC (алюминиевые сплавы при t = 300ºC) она полностью переходит в пластическое состояние, деформируется и теряет свою несущую способность. Поэтому металлические конструкции зданий, опасные в пожарном отношении (склады с горючими и легковоспламеняющимися материалами, жилые и общественные здания и т.п.) должны быть защищены путем устранения непосредственного контакта конструкций с открытым огнем или сильно нагретыми частями оборудования (устройство подвесных потолков, огнестойких облицовок, обмазка специальными составами, в отдельных случаях – устройство огнезащитных экранов).

Основные требования, предъявляемые к металлическим конструкциям

Блок основных требований, предъявляемых к металлическим конструкциям, представлен на рис. 1.3. Большинству требованиям строительные конструкции должны соответствовать на стадиях проектирования, изготовления, транспортирования, монтажа и эксплуатации.

Главное требование, не только к металлическим конструкциям, – это соответствие эксплуатационному назначению, т.е. обслуживанию того технологического процесса, который должен протекать в проектируемом здании или сооружении. При этом должны быть обеспечены удобство и безопасность с наименьшими затратами для поддержания конструкций в надежном состоянии. Это требование в основном определяет систему, конструктивную форму сооружения и выбор материала для него, Выполнению этого требования подчинены все задачи проектирования.

Технические требования сводятся к обеспечению прочности, устойчивости, жесткости. Эти требования определяются СНиП на проектирование металлоконструкций. Сюда же относится и требование надежности, которое заключается в том, что конструкция должна безотказно работать в течение заданного расчетного периода эксплуатации, и долговечности конструкции, определяемой сроками ее физического и морального износа.

Рис. 1.3. Основные требования к металлическим конструкциям

Физический износ металлических конструкций связан с коррозией и с накоплением других эксплуатационных повреждений. Моральный – с изменением требований и условий эксплуатации (реконструкция производства, модернизация оборудования, изменение санитарных норм и т.п.).

Экономичность определяется затратами на металл и другие материалы, необходимые для изготовления конструкций, стоимостью изготовления, транспортирования и монтажа.

Экономия металла – одно из важнейших требований при проектировании металлических конструкций, так как стоимость металла составляет более половины стоимости конструкций. К тому же сталь является дифицитным материалом, широко применяемым в других областях промышленности.

Экономия металла достигается на основе реализации следующих основных направлений: совершенствование применяемых в строительстве металлоконструкций (практикой наработано большое количество различных видов конструкций); создание и внедрение в строительстве современных эффективных конструктивных форм и систем (пространственные, предварительно напряженные, висячие, структурные и т.п.); совершенствование методов расчета и изыскание оптимальных конструктивных решений с использованием электронно-вычислительной техники.

Совершенствование существующих конструкций, в первую очередь, обеспечивается применением сталей повышенной и высокой прочности, использованием наиболее экономичных прокатных и гнутых профилей.

Стали повышенной и высокой прочности получают путем легирования и термической обработки, что увеличивает их стоимость. Однако увеличение стоимости отстает от роста прочности металла.

В растянутых элементах и системах повышение прочности реализуется прямым путем (чем выше прочность, тем меньше размеры сечения элемента, воспринимающего одно и то же усилие): требуемая площадь A = N/Ry.

Для сжатых элементов, для которых основным предельным состояниям является потеря устойчивости, повышение прочности стали вступает в противоречие с гибкостью элемента: требуемая площадь A = N/(φRy).

При увеличении прочности размеры сечения элемента A, воспринимающие усилие N, должны уменьшаться, и, как следствие, уменьшаться радиус инерции i. При этом гибкость λ = lef/i увеличивается, а коэффициент продольного изгиба φ, принимаемый по гибкости, уменьшается, что, в свою очередь, приводит к увеличению требуемой площади сечения.

Наибольший эффект от применения высокопрочных сталей может быть получен в сжатых элементах с ограниченной гибкостью до 50 – 60. Особенно целесообразно применение этих сталей в большепролетных и тяжелонагруженных конструкциях, так как для восприятия больших усилий требуются сечения элементов значительных размеров, обладающих большой жесткостью.

Следует отметить, что снижение веса конструкций косвенно сказывается на уменьшении размеров нижерасположенных конструкций (стены, колонны, фундаменты и т.п.), воспринимающих нагрузку от собственного веса, а также при транспортировании и монтаже наиболее легких конструкций.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Мерой эффективности профиля для изгибаемых элементов является ядровое расстояние , а для сжатых – удельный радиус инерции .

Чем выше характеристики момента сопротивления W и радиуса инерции i при одинаковом расходе металла (площадь сечения A одинакова для всех сечений), тем выгоднее сечение балки как конструкции, работающей на изгиб, а колонны, работающей на сжатие.

Для получения высоких характеристик ρ и i материал по сечению необходимо располагать на максимальном удалении от центра тяжести (табл.1.1).

Наиболее эффективным сечением для балок, изгибаемых в одной плоскости (относительно x-x) является двутавровое сечение, а для элементов, работающих на осевое сжатие, – трубы круглого, квадратного и прямоугольного сечений.

Одним из видов эффективных гнутых профилей в кровлях применяяется профилированный настил, обладающий значительной поперечной жесткостью, в то же время у стального листа толщиной до 1 мм, из которого выполнен настил, жесткость для работы на поперечный изгиб практически отсутствует.

Сравнительная оценка жесткости изгибаемого элемента

при различной компоновке сечения

(условно стенка в двутавре исключена)

Wx ≈ 2 /a

Конструкции должны быть наименее трудоемки при изготовлении, что достигается простой формой, минимальным количеством деталей, возможностью механизированной обработки, простотой и удобством сборки и сварки.

Типизация, проводимая на ее основе унификация и стандартизация обеспечивают большую повторяемость, серийность изготовления конструктивных элементов и их деталей на заводах. Следовательно, они способствуют повышению производительности труда, сокращению сроков изготовления на основе эффективного использования более совершенного оборудования и специальных технологических приспособлений, создают благоприятные условия для разработки и внедрения особенно эффективного поточного метода изготовления и монтажа металлических конструкций.

Транспортабельность конструкций. В связи с изготовлением металлических конструкций на заводе с последующей перевозкой их к месту монтажа должно быть предусмотрено разделение конструкций на отправочные элементы, соответствующие транспортным средствам по массе и габаритам.

Основным способом доставки конструкций является транспортирование их по железной дороге, поэтому отправочный элемент должен вписываться в железнодорожный габарит.

Скоростной монтаж определяется соответствием конструкции возможностям ее сборки в наименьшие сроки при меньшей трудоемкости с использованием современного монтажного оборудования. Быстрый ввод здания или сооружения в эксплуатацию позволяет получить дополнительную прибыль, тем самым компенсировать часть затрат на строительство.

Ведущим принципом скоростного монтажа является предварительная сборка конструкций в крупные блоки на земле с последующим подъемом и установкой их в проектное положение при минимальном объеме монтажных работ наверху.

Эстетичность. Конструкции независимо от их назначения должны обладать гармоничными формами, иметь приятный внешний вид, что особенно важно для общественных зданий и сооружений, отражать национальные особенности и традиции.

Курс лекций по дисциплине «Металлические конструкции, включая сварку» Часть I. Глава 1. Морозова Д.В.

Задачи изучения дисциплины для будущего инженера сводятся к следующему: выработать понимание основ работы металлических конструкций зданий и сооружений; овладеть принципами рационального проектирования металлических конструкций с учетом требований изготовления, монтажа и надежности в эксплуатации на основе технико-экономического анализа; сформировать навыки конструирования и расчета для решения конкретных инженерных задач с использованием норм проектирования стандартов справочников средств автоматического проектирования.

(Металлические конструкции. Программа дисциплины Ю.И. Кудишин и др. М.,1998 г.)

Курс «Металлические конструкции» является первой частью общего курса «Строительные конструкции». Он состоит из нескольких разделов, которые содержат все основные вопросы теоретического, прикладного и практического характера.

Состав дисциплины (часть I): свойства и работа строительных сталей и аллюминиевых сплавов; работа элементов металлических конструкций и основы расчета их надежности; соединение конструкций; основы проектировния, изготовление и монтаж конструкций; балочные конструкции; центральносжатые колонны и стойки; классификация основных видов сварки; типы сварных швов и соединений; напряжение и деформация сварных соединений; строение и свойства сварных соединений; основные сведения по технологии сварочных работ.

Трудоемкость по Госстандарту по I части дисциплины – 100 часов (32 – лекции; 22 – практические занятия; 8 – лабораторные работы; 38 — самостоятельная работа).

Полученные знания с помощью данного учебного пособия могут быть использованны будущим инженером в реальном проектировании строительных конструкций.

Основные понятия и термины.

А – площадь сечения брутто;

Аbn – площадь сечения болта нетто;

Аf – площадь сечения пояса (полки) балки;

Аw – площадь сечения стенки;

Аn – площадь сечения нетто;

Аwf – площадь сечения по металлу углового шва;

Аwz – площадь сечения по металлу границы сплавления;

Е – модуль упругости;

G – модуль сдвига;

Ix, Iy – моменты инерции сечения брутто относительно осей, соответственно (х – х) и (у – у) проходящих через центр тяжести сечения;

Ixn, Yyn – то же, сечения нетто;

М – изгибающий момент;

Мх, Му – моменты относительно осей соответственно (х – х), (у – у);

N – продольная сила;

Q – поперечная сила;

Rbp – расчетное сопротивление смятию одноболтового соединения;

Rbs – расчетное сопротивление срезу одноболтового соединения;

Rbt – расчетное сопротивление растяжению одноболтового соединения;

RP – расчетное сопротивление стали смятию торцевой поверхности (при наличии пригонки);

Ru – расчетное сопротивление стали растяжению, сжатию, изгибу по временному сопротивлению;

Run – временное нормативное сопротивление стали разрыву;

Ry – расчетное сопротивление стали растяжению, сжатию, изгибу по пределу текучести;

Ryn – предел текучести стали, принимаемый равным значению предела текучести – по государственным стандартам и техническим условием на сталь;

Rwf – расчетное сопротивление угловых швов срезу по металлу шва;

Rwz – расчетное сопротивление угловых швов срезу по металлу границы сплавления;

Rwy – расчетное сопротивление стыковых, сварных соединений сжатию, растяжению, изгибу по пределу текучести;

S – статический момент сдвигаемой части сечения;

Wx,Wy – моменты сопротивления сечения брутто относительно осей, соответственно (х – х), (у – у);

bef – расчетная ширина;

bf – ширина полки (пояса) балки;

bh – ширина выступающей части ребра за стенку;

сху – коэффициенты для расчета на прочность с учетом развития пластических деформаций при изгибе относительно осей, соответственно (х – х), (у – у);

е – эксцентриситет приложения силы относительно центра тяжести сечения;

hef – расчетная высота стенки;

hw – высота стенки;

ix,iy – радиусы инерции сечения относительно осей, соответственно (х – х),(у-у);

kf – катет углового шва;

lef – расчетная длина;

lw – длина сварного шва;

lx,ly – расчетные длины элемента в плоскостях, соответственно (х – х), (у – у);

m = (eA/W) – относительный эксцентриситет;

mef = mη – приведенный относительный эксцентриситет;

tw – толщина стенки;

tf – толщина полки (пояса);

βfz – коэффициенты для расчета углового шва, соответственно по металлу шва и металлу границы сплавления;

γb – коэффициент условий работы болтового соединения;

γс – коэффициент условий работы всей конструкции;

γn – коэффициент надежности по назначению конструкции;

γm – коэффициент надежности по материалу;

η – коэффициент влияния формы сечения;

— условная гибкость (λ = λ);

λеf – приведенная гибкость стержня сквозного сечения;

ef – условная приведенная гибкость стержня сквозного сечения;

λf – условная гибкость поясного листа;

λх, λу – расчетные гибкости элемента в плоскостях (х – х), (у – у);

υ – коэффициент поперечной деформации стали (Пуассона);

σloc – местное напряжение;

σх, σу – нормальные напряжения, параллельные осям, соответственно (х–х)(у-у);

τху – касательные напряжения;

fх,у – коэффициент продольного изгиба при центральном сжатии;

φb – коэффициент устойчивости при изгибе;

φе – коэффициент устойчивости при сжатии с изгибом;

φеху – коэффициент устойчивости при сжатии с изгибом в двух плоскостях;

Глава 1. Основные понятия о металлических конструкциях

1.1. Общие сведения о металлических конструкциях

Металлические конструкции применяются во всех областях строительства при возведении зданий и сооружений благодаря своим универсальным качествам — высокой прочности (несущей способности); надежности работы при различных видах напряженного состояния, в тяжелых и агрессивных условиях эксплуатации; эффективностью изготовления и монтажа; относительно малый собственный вес при восприятии значительных нагрузок. Кроме того, металлы обладают высокой плотностью — непроницаемостью для газа и жидкости.

К недостаткам стальных конструкций можно отнести сравнительно малую огнестойкость и подверженность коррозии от контакта с влагой, агрессивными средами. При высоких температурах (для стали более 600 0 С) конструкции теряют свою несущую способность.

В зависимости от вида конструкции различают стержневые и сплошные системы стальных конструкций. Стержневые системы состоят из балок, колонн, ферм (каркасы зданий; мосты; арки и фермы, купола, стойки ЛЭП, мачты, башни, эстакады, краны и др. конструкции). Сплошные системы состоят из различных видов листовых конструкций (резервуары, газгольдеры, трубы, бункеры, конструкции металлургических заводов, нефтяных и химических предприятий и т.п.).

1.2. Материалы для металлических конструкций

Материалом для металлических конструкций служит, в основном, сталь. В зависимости от степени ответственности конструкций зданий и сооружений, а также от условий их эксплуатации применяют стали различных марок. При выборе марки стали учитывают климатический район строительства и группу конструкций зданий и сооружений по СНиП II.23-81*. Характеристики некоторых видов сталей приведены ниже.

По способу изготовления сталь бывает мартеновской и кислородно-конверторной (их изготовляют кипящими, спокойными и полуспокойными). Кипящую сталь сразу разливают из ковша в изложницы. Она содержит значительное количество растворенных газов. Спокойная сталь — это сталь, выдержанная некоторое время в ковшах вместе с раскислителями (кремний, алюминий), которые, соединяясь с растворенным кислородом, уменьшают его вредное влияние; она имеет лучший состав и более однородную структуру, но дороже кипящей на 10…15%. Полуспокойная сталь занимает промежуточное положение между спокойной и кипящей.

Для строительных конструкций применяются следующие марки сталей.

Сталь малоуглеродистая обыкновенного качества марки Ст3. Металлургические заводы поставляют малоуглеродистые стали с гарантией: механических свойств (группа А), химического состава (группа Б), механических свойств и химического состава (группа В). Степень раскисления обозначается индексами “кп” — кипящая, “пс” — полуспокойная и “сп” — спокойная, например ВСт3пс. В зависимости от нормируемых показателей (химического состава, механических свойств и ударной вязкости) сталь делят на категории, например ВСт3сп5, а для каждой из категорий установлены, кроме того, группы прочности 1 и 2, например ВСт3сп5-1 и ВСт3сп5-2.

Сталь низколегированная марок 09Г2, 09Г2С, 10Г2С1, 1412, 15ХСНД и др. низколегированные стали всегда поставляют по группе В, поэтому обозначение начинается сразу с цифр; первые две цифры указывают на содержание углерода в сотых долях процента; буквами обозначают легирующие элементы (Г — марганец, С — кремний, Х — хром, Н — никель, Д — медь, А — азот, Ф — ванадий); цифра после буквы указывает содержание этого легирующего элемента в процентах, если оно превышает 1%. Например, 15ХСНД — сталь, содержащая 0,15% углерода и легирующие добавки хрома, кремния, никеля, меди, причем содержание каждой добавки не превышает 1%.

Основные физические свойства стали: плотность ρ= 7850 кг/м 3 , модуль продольной упругости Е = 206 ГПа (1 ГПа = 100 МПа), модуль сдвига G = 78 ГПа, коэффициент линейного расширения α = 0,000012 град -1 .

До напряжений, близких к пределу текучести, зависимость между напряжениями и деформациями определяется законом Гука:

В СНиП II-23-81* даны механические характеристики и указания по применению различных марок сталей для стальных конструкций зданий и сооружений в зависимости от вида конструкций, условий их эксплуатации (группы I…IX) и расчетной отрицательной температуры.

Сортамент листовой и профильной стали. Стальные конструкции изготовляют из элементов, получаемых прокаткой (листы и фасонная, профильная сталь). В строительстве применяют следующие виды проката:основные типы прокатных профилей

· толстолистовой — толщиной 4…160 мм, для изготовления листовых конструкций (резервуаров, газгольдеров и др.), стенок балок, фасонок ферм и др. (ГОСТ 19903-74);

· тонколистовой — толщиной 0,5…4 мм, для изготовления гнутых профилей, устройства покрытий и т.п. (ГОСТ 19904-74 с изм.);

· сталь полосовая — толщиной 4…60 мм при ширине до 200 мм, для изготовления ребер жесткости диафрагм (ГОСТ 103-76);

· широкополосный — для изготовления сварных балок и колонн (ГОСТ 8200-70);

· уголковые профили — равнополочные и неравнополочные, применяются для изготовления ферм и других решетчатых конструкций (ГОСТ 8509-93; 8510-86);

· швеллеры и двутавры применяются для изготовления балок и колонн (ГОСТ 8240-93; 8239-89);

· гнутые профили, получаемые холодным способом из листов толщиной 3…10 мм, предназначенные для изготовления легких конструкций различной формы, эффективность гнутых профилей по сравнению с прокатными — их большая жесткость и легкость (ГОСТ 8282-83*, 25577-83*, ТУ36-2287-80 с изм.);

· электросварные трубы применяются для изготовления ферм (ГОСТ 10704-91).

Основными физико-механическими свойствами стали являются прочность, упругость, пластичность, которые определяются испытаниями на растяжение специально изготовленных образов. По результатам испытаний строят диаграмму испытуемого образца в координатах нагрузка (напряжения) — относительные деформации. (Рис 1.1).

а) Вид опытного образца для испытания стали на растяжение.

б) Сравнительные диаграммы растяжения сталей разных марок:

I – обыкновенного качества; II — повышенной прочности; III – V – высокой прочности; VI – IX – высокопрочные для канатов.

Для условий растяжения эта зависимость записывается

δ = N/А ε = ( )100%, (1.1)

где N — нагрузка, А — первоначальная площадь поперечного сечения, l0 — первоначальная длина базовой (рабочей) части образца, Δl — абсолютное удлинение.

В соответствии с рис. 1.1 основными прочностными характеристиками стали являются временное сопротивление δu и предел текучести δт=Rу. (рис 2.2 а)

Временное сопротивление — это предельная нагрузка, при которой происходит разрушение, отнесенная к первоначальной площадке поперечного сечения испытуемого образца.

Предел текучести Wт — наименьшее напряжение, при котором деформация происходит без заметного увеличения нагрузки, а остаточная деформация достигает 0,2% (остаточное относительное удлинение после разгрузки). В низкоуглеродистых сталях процесс нарастания деформаций идет по существу без изменения внешней нагрузки — металл “течет”. Для сталей повышенной прочности, не имеющих ярко выраженной площадки текучести, вводят понятие условного предела текучести W0,2.

Деформативные свойства стали измеряются на образцах различной базы. Показателем пластических свойств стали является относительное остаточное удлинение при растяжении δ5 (%) стандартных плоских образцов с рабочей длиной l = 5,65 , и условная ударная вязкость.

Упругие свойства стали характеризуются начальным модулем упругости Е = tgα (где α- угол наклона прямолинейного участка диаграммы к оси абсцисс), пределом упругости δс и пределом пропорциональности δр.

Wр — предел пропорциональности, т.е. напряжение, до которого материал работает по закону Гука, имея линейную диаграмму растяжения W=Е·ε (1.2)

Wс — предел упругости, выражен напряжением (или нагрузкой), после снятия которого нет остаточных деформаций.

Значения физико-механических характеристик сталей даны в ГОСТ и ТУ.

Новая классификация строительных сталей приведена в приложении 18 в соответствии с СНиП II – 23 — 81 * .

Контрольные вопросы к главе 1

1. Что изучает наука о МК?

2. Как связаны МК с другими строительными конструкциями?

3. Какие основные требования предъявляются к МК?

4. Достоинства и недостатки МК.

5. Область применения МК.

6. Общие принципы проектирования МК.

7. Какими нормативными документами надлежит пользоваться при разработке МК?

8. Разновидности строительных сталей.

9. Какие виды разрушения присущи сталям и от чего это зависит?

10. Механические и прочностные свойства сталей.

11. Что такое сортамент металлических профилей и что он содержит?

Резюме к главе 1

В главе 1 приведены общие сведения о металлических конструкциях, их достоинства и недостатки, область применения. Даны характеристики некоторых видов сталей.

Приведены ГОСТы сортамента листовой и профильной сталей, основные физико-механические свойства сталей.

Курс лекций по дисциплине «Металлические конструкции, включая сварку» Часть I. Глава 2. Морозова Д.В.

Элементы металлических конструкций являются составной частью зданий и сооружений, которые, в свою очередь, служат различному назначению и работают в различных климатических, погодных и эксплуатационных условиях.

Здания и сооружения по степени ответственности делятся на три класса (СНиП 2.01.07-85 * Нагрузки и воздействия, М., 1996).

Класс I. Здания и сооружения, имеющие особо важное хозяйственное или социальное значение АЭС, ТЭС, телевизионные башни, резервуары нефти и нефтепродуктов вместимостью более 10 тыс.м 3 , крытые спортивные сооружения, театры, кинотеатры, больницы, родильные дома и т.д.

Класс II. Здания и сооружения, имеющие ограниченное хозяйственное и общественное значение — объекты промышленного, сельскохозяйственного и жилищно-гражданского назначения, не вошедшие в I и III классы.

Класс III. Здания и сооружения, имеющие ограниченное народно-хозяйственное и социальное значение, например, склады для хранения сельхозпродуктов, удобрений, химикатов и т.д., одноэтажные дома, парники, временные здания, ограды и т.п.

При расчетах учет класса ответственности зданий и сооружений определяется коэффициентом надежности по назначению n, умноженному на значения нагрузок.

Принцип расчета стальных конструкций по предельным состояниям первой группы. Для предельных состояний первой группы общее условие прочности записывается так же, как и для железобетонных конструкций. Вид усилия в рассчитываемом элементе определяется внешней нагрузкой; при растяжении это продольная сила N, при изгибе — изгибающий момент М и т.д.

Геометрический фактор S связан с характером распределения напряжений по поперечному сечению элемента; при равномерном распределении (осевое сжатие, осевое растяжение) — это площадь А, при линейном законе распределения (изгиб) — момент сопротивления W и т.п. При проверке общей устойчивости или выносливости расчетное сопротивление дополнительно умножают на понижающий коэффициент, величина которого зависит от характера работы элемента: при центральном сжатии применяется φ (коэффициент продольного изгиба), при внецентренном — φe, при расчете общей устойчивости балки — φb, при расчете элементов с учетом хрупкого разрушения стали — β. Так же, как и для железобетона, для стальных конструкций и их соединений учитывают следующие коэффициенты: γn — коэффициент надежности по назначению (см. гл. 3); γu — коэффициент надежности по материалу для элементов, рассчитываемых на прочность по временному сопротивлению, γu = 1,3; коэффициенты условий работы γс, принимаемые γс = 0,75…1,1 в зависимости от вида конструкции и вида проводимого расчета, например для сплошных балок при расчете на общую устойчивость γс = 0,95 (СНиП II-23-81*).

Нормативное сопротивление прокатной стали при растяжении, сжатии и изгибе. В качестве нормативного сопротивления при растяжении, сжатии и изгибе для сталей обычной и повышенной прочности в СНиП II-23 — 81* принят предел текучести Rу и соответствующее нормативное сопротивление — Ryn. В особых случаях (когда допустимо развитие больших пластических деформаций) для этих сталей в качестве нормативного сопротивления используется временное сопротивление (предел прочности) Run. В этом случае расчетное сопротивление обозначают Ru. Величины нормативных сопротивлений устанавливают с обеспеченностью не менее 0,95, т.е. чтобы вероятность проявления в материале участков с пониженными (против нормативного сопротивления) характеристиками была не менее 5%. Значения предела текучести и временного сопротивления по ГОСТу находятся в заданных пределах: 0,95…0,995. Поэтому за нормативное сопротивление и приняты значения предела текучести или временного сопротивления, установленные в ГОСТах на металлы. Такой подход удобен также и потому, что значения δу и δu являются браковочными, т.е. контролируются при производстве и приемке проката.

Расчетные сопротивления. Предел текучести стали на металлургических заводах контролируют выборочным путем, поэтому в конструкции может попасть материал с худшими свойствами, чем это установлено ГОСТом, что учитывается при назначении расчетных сопротивлений Rу, Ru. Для прокатной стали они равны нормативным Rуn, Run, деленным на коэффициент надежности по материалу γm; принимают γm = 1,025…1,15. Расчетные сопротивления сдвигу и смятию получают, умножая базовое расчетное сопротивление (при растяжении, сжатии и изгибе) на коэффициент перехода, равный 0,58 для сдвига, для смятия торцовой поверхности (при наличии пригонки) — 1,0, для местного смятия (при плотном касании) — 0,5, причем для сдвига в качестве базового используют расчетное сопротивление Rу, а для смятия — расчетное сопротивление Ru.

Значения нормативных и расчетных сопротивлений проката для стальных конструкций приведены в табл. 2.1.

Курс лекций по дисциплине «Металлические конструкции, включая сварку» Часть I. Глава 3. Морозова Д.В.

Соединения стальных конструкций выполняют на сварке, на болтах или заклепках. Выбор вида соединения зависит от назначения конструкции, т.е. ответственности; вида нагружения (величины и характера), формы соединяемых элементов и их условий работы в конструкции.

Наиболее распространенными соединениями являются сварные, так как требует меньше времени и материала. Кроме того, сварка обеспечивает достаточно высокую прочность, высокое качество сварного шва, автоматизацию работ в заводских и полевых условиях.

Болтовые соединения применяются в монтажных и рабочих соединениях; они отличаются простотой и надежностью соединения. Используя высокопрочные болты, можно существенно повысить их деформативность, но при этом повышается трудоемкость работ.

Заклепочные соединения — наиболее редко применяемые соединения по сравнению со сваркой и болтами. Они трудоемки, дорогостоящи, однако при вибрационных и динамических нагрузках они бывают выгодны и незаменимы (железнодорожные мосты, промышленные предприятия и др.).

3.1 Сварные соединения

При изготовлении сварных конструкций наибольшее применение нашла электродуговая сварка: ручная, автоматическая, полуавтоматическая и электрошлаковая. Применение контактной и газовой сварки ограничено.

Ручная сварка выполняется при помощи электродов, тип и марка которых зависит от марки стали свариваемых элементов, рода сварочного тока и пространственного положения шва (ГОСТ 9467-75*).

Преимущество ручной электродуговой сварки заключается в ее универсальности. Она может выполняться в нижнем, вертикальном, горизонтальном и потолочном положениях (рис. 3.1), а также в труднодоступных местах. Это обусловило ее широкое распространение на монтаже, где затруднено применение механизированных способов сварки. Однако ручная сварка обладает рядом недостатков — малой глубиной проплавления основного металла, малой производительностью по сравнению с автоматической сваркой под флюсом. Для компенсации этих недостатков применяют тугоплавкие обмазки, которые повышают производительность сварки и увеличивают глубину проплавления шва (сварка с глубоким проплавлением).

Основные типы электродов для сваривания стальных конструкций:

— с пределом текучести до 500 МПа: Э-42, Э-42А, Э-46, Э-46А, Э-50, Э-50А (А — металл шва имеет повышенные пластические свойства);

— с пределом текучести более 500 МПа: Э-60, Э-70, Э-85.

Автоматическая сварка выполняется под слоем флюса, который, расплавляясь в процессе нагревания, надежно защищает расплавленный металл от соприкосновения с воздухом; сам металл остывает несколько медленнее, освобождается от пузырьков газа, шлака и различных примесей. Большая сила тока, допустимая при автоматической сварке, и лучшая теплозащита шва обеспечивают глубокое проплавление свариваемых элементов и большую скорость сварки. Этот вид сварки затруднителен для вертикальных и потолочных швов.

Рис. 3.1. Положение швов в пространстве:

1 — потолочный угловой шов; 2 — нижний угловой шов;

3 — горизонтальный стыковой шов; 4 — вертикальный угловой шов.

Электрошлаковая сварка (разновидность автоматической сварки) удобна для вертикальных стыковых швов металла толщиной от 20 мм и более. Она осуществляется под слоем расплавленного шлака; сварочная ванна защищена с боков медными ползунами, охлаждаемыми проточной водой. Сварка в среде углекислого газа не требует приспособлений для удержания флюса, может выполняться в любом пространственном положении, обеспечивает получение высококачественных сварных соединений, хотя при этой сварке поверхность шва получается менее гладкой, чем при сварке под флюсом; к недостаткам относятся также необходимость защищать рабочих от излучения дуги и от скопления газа.

Сварка порошковой проволокой, выполняемая автоматическим способом, марок ПП-АН8 и ПП-АН3 (ГОСТ 26271-84) устраняет недостатки ручной сварки. Порошковая проволока состоит из металлической оболочки толщиной 0,2…0,5 мм, которая заполнена шихтой специального состава.

Кроме указанных видов сварки, применяется контактная сварка, осуществляемая путем нагрева и пластического деформирования элементов. Она может быть точечной, шовной и стыковой.

Сварные швы. По своей форме сварные швы подразделяются на стыковые и угловые (валиковые). Стыковые швы служат для стыкования элементов, лежащих в одной плоскости. Они весьма эффективны, так как дают наименьшую концентрацию напряжений, хотя и требуют дополнительной разделки кромок. По форме разделки кромок стыковые швы бывают U-образными. Для U- и V-, V- и K-образных швов, завариваемых с одной стороны, обязательна подварка корня шва с другой стороны — для устранения возможных непроваров (рис. 3.2, а, поз. 1), являющихся источником концентрации напряжений. Различные варианты стыковых швов показаны на рис. 3.2, б. Валиковые (угловые) швы навариваются в угол, образованный элементами, расположенными в разных плоскостях. Создаваемый при этом шов имеет форму валика (рис. 3.2, в).

Сварные швы по положению в пространстве при их выполнении могут быть вертикальными, горизонтальными и потолочными (см. рис 3.1). Наиболее легко поддается механизации и дает лучшее качество шва сварка нижних швов. Вертикальные, горизонтальные и потолочные швы трудно механизировать, а при выполнении их вручную качество шва относительно невысоко, поэтому применения этих швов следует по возможности избегать.

Рис. 3.2. Типы сварных швов и соединений:

1 — непровар; 2 — лобовой шов;

3 — фланговый шов; 4 — подкладки (выводные планки);

tmin — минимальная толщина соединяемых элементов

Сварные соединения. Существуют следующие виды сварных соединений: стыковые, внахлестку, угловые и тавровые (впритык). (Табл 3.1) В стыковых соединениях элементы соединяются торцами или кромками, т.е. один элемент как бы является продолжением другого (рис.3.2, г). Стыковые соединения дают наименьшую концентрацию напряжений при передаче усилий; они экономичны, могут быть наиболее надежно проконтролированы. Толщина свариваемых элементов в соединениях такого вида практически не ограничена. Стыковые соединения применяются в основном для листового металла и могут быть выполнены прямым или косым швом (соответственно слева и справа на рис. 3.2, г) и табл 3.1.

В соединениях внахлестку поверхности свариваемых листов частично находят друг друга (рис. 3.2, д). Их широко применяют при сварке листовых конструкций из стали небольшой толщины (3…6 мм), в решетчатых и некоторых других видах конструкций. К соединениям внахлестку относятся также соединения с накладками (рис. 3.2, г, е), применяемые для соединения элементов из профильного металла и для усиления стыков. Соединения внахлестку и с накладками отличаются простотой, хотя вызывают резкую концентрацию напряжений, что ограничивает их применение при действии динамических нагрузок или низких температур; кроме того, они более металлоемки, чем стыковые.

В сварных соединениях расчетную длину сварного шва lw принимают равной его полной длине l, уменьшенной с учетом возможного непровара по концам: lw = l — 2t, где t — наименьшая толщина соединяемых элементов; в случае вывода концов шва за пределы стыка на временные подкладки 4 (рис. 3.2, ж), которые затем отрезаются, расчетная длина шва lw принимается равной его полной длине. Прочность сварных швов характеризуется их расчетными сопротивлениями (табл. 3.2).

Читайте также: