Легко обрабатываемый редкий металл
В «металлическом» сегменте таблицы Менделеева эта группа считается элитой. Список редких металлов невелик, но каждая позиция драгоценна. Их стоимость на мировом рынке подтверждает пословицу: «Что редко – дорого».
История
Понятие «редкие металлы» вошло в обиход с середины 1920-х годов. Тогда так называли элементы без собственных месторождений, рассеянные в массиве других руд.
Иногда отождествляются термины «редкий металл» и «редкий элемент». Это ошибка:
- Редкие элементы – более широкое понятие.
- Оно подразумевает металлы, неметаллы, инертные газы.
- Из шести десятков позиций списка редких элементов на металлы приходится 50.
Второе наименование этой группы – менее обычные (привычные) металлы.
Что считается «менее обычным» материалом
К редким металлам относится элемент, соответствующий хотя бы одному критерию:
- Малая распространенность в литосфере, рассеянность без коренных месторождений.
- Сложная технология извлечения из руды, получения чистого вещества.
- Новизна, неосвоенность материала для практического применения.
Последнее условие – самое мобильное. Развитие технологий, появление новых сфер использования, масштабирование производства переводят элемент в привычные.
Классификация
Материал распределяется по нескольким основаниям. Первая основа деления – по происхождению. Различают природный (натуральный) и созданный человеком.
Природные металлы
За основу принадлежности к группе берут свойство, более других влияющее на кондиции элемента либо благодаря которому он востребован.
По базовому признаку различают пять видов редких металлов:
Классификация однобока: многие элементы подпадают под разные группы:
- Рубидий с цезием – легкие рассеянные.
- Легкий тугоплав – титан.
- Рассеянные тугоплавы – рений, гафний, вольфрам.
Есть деление по субъективному признаку. Редкими благородными металлами признаны золото, платина, родий. (Их второе название – драгоценные). А также платиноид осмий, плотность которого наивысшая среди веществ Земли.
Платина
Самые редкие цветные металлы, созданные природой, – осмий, галлий, тантал, рений.
Искусственные
Элементы, созданные на ядерных реакторах: технеций, нептуний, плутоний, прочие трансурановые.
Они причислены к радиоактивной группе.
Самый редкий металл на Земле – калифорний-282.
Ежегодный объем синтезирования калифорния – менее грамма. Глобальный резерв – пять граммов.
А слышали про металл туллий? Смотрите видео:
Где и как добываются
Источник редкостного материала – природные руды:
- Почти всегда это конгломерат компонентов.
- Доля металлов исчисляется тысячными либо меньше долями процента.
- Стандартный способ добычи – закрытый (шахтный), реже – открытый карьерный.
Главный поставщик сырья на мировой рынок – Китай. Он диктует расклад, номенклатуру, цены. Главный потребитель – США.
Российский источник редкого сырья номер один – Кольский полуостров. На его руды, содержащие титан, приходится 40% разведанных запасов страны.
Стержень, состоящий из титановых кристаллов высокой чистоты
Технология получения
Редкие металлы вычленяют из отходов металлургического производства.
- Обогащение сырья.
- Выделение, разделение компонентов.
- Очистка.
- Восстановление.
Используется металлотермия, электролиз, плавка.
На тугоплавкую группу воздействуют методами порошковой металлургии.
Редкоземельные металлы « разлучают » экстракцией. Катализаторами выступают ионообменные процессы и органические растворители.
Где используются
В отличие от других сегментов промышленности, металлургия «менее привычных» элементов кризисы переносит спокойно. Это закономерно: материал добывается ограниченными партиями, дорогой, всегда востребован.
В чистом виде не используется: слишком накладно. Только как компонент сплавов либо легирующая добавка.
Традиционные сферы
Области использования редкостного материала:
- Ядерная энергетика. Уран и торий – топливо для атомных станций. Сегодня это самый экологичный вид энергии.
Это также сплавы для нужд космического и оборонного комплекса (орудия, снаряды), взрывчатые вещества.
Новые направления
В новом тысячелетии на первый план вышло использование лития как материала компактных мощных батарей-аккумулятров и магнитов:
- Батареями-аккумуляторами снабжают электромобили, смартфоны, планшеты, другие гаджеты.
- Магниты присутствуют в объектах «зеленой» энергетики (солнечные панели, ветряки), автомобилях с гибридным двигателем, мониторах.
Материал поколения 2.0 – магнитопласт. Из него делают мини-динамики, гибкие панели, рекламную «инфраструктуру».
Калифорний-282 востребован геологами, физиками-ядерщиками, медициной.
Стоимость
Цены редких элементов различны, но всегда высоки.
Так, самый дорогой химический элемент – калифорний-282. Грамм оценивают в $250 млн.
Легкие металлы – перечень, свойства и польза элементов
Официально такой группы химических элементов не существует. Неофициально в нее занесены вещества с малой плотностью. Легкие металлы востребованы промышленным, оборонным комплексом, медициной, сферой красоты.
Что представляют собой
В номенклатуре IUPAC – уважаемой в мире международной организации, курирующей теорию и практику в сфере химии, термин « легкие металлы » отсутствует.
Неофициально к легким металлам относятся вещества с плотностью менее 5 граммов на кубический сантиметр.
Разные списки включают пять – десять позиций.
Самое распространенное деление – по используемости:
- На этом основании выделяют пять главных: алюминий, бериллий, магний, титан, литий.
- Их дополняет «экзотика»: галлий, индий, висмут, таллий, кадмий.
Вторая группа причисляется к редким металлам.
Редкими эти элементы названы потому, что на практике используются недавно и не так широко, как традиционные материалы.
Физико-химические характеристики
Общие характеристики легких металлов:
- Малая плотность.
- Металлический блеск.
- Серебристо-белый цвет.
Самый легкий элемент в группе – литий. Кубик из него ребром в 1 см весит полграмма (то есть плотность лития 0,533 г/см3).
Другие базовые свойства элементов разнятся. Например, алюминий – самый мягкий, титан и бериллий – самые прочные. Индий – самый блестящий.
Каждый представитель «легкой» группы относится еще к какому-нибудь сообществу.
Основанием становится не плотность, а другие физико-химические характеристики:
- Щелочные элементы – литий.
- Щелочноземельные – бериллий, магний.
- Цветные металлы – алюминий, титан, магний.
- Легкоплавкие – висмут, галлий, кадмий, таллий, индий.
- Тугоплавкие – титан, магний.
Каждый химический элемент наделен специфическими свойствами, присущими своей группе.
Как представлены в природе
На легкий металлический сегмент приходится пятая часть литосферы (по массе).
Чаще они входят в состав руды либо минерала. Особенно химически сверхактивные элементы, например, литий. Этот самый легкий металл в природе представлен собственными минералами – лепидолитовой слюдой и сподуменом.
Сподумен
Способы получения
Технологию выплавки легких металлов отработали к середине 19 века.
Для их получения в металлургии используется три способа:
- Электролиз расплава солей. То есть аккумуляция на электродах компонентов растворенных либо других веществ. Реакцию запускает электрический ток, пропускаемый через раствор либо расплав электролита.
- Металлотермия. Восстановление из их соединений другими, более активными металлами. Процесс проходит при повышенных температурах.
- Электротермия. Материал нагревается, затем расплавляется теплом, полученным из электрического тока.
Производство легких элементов – весьма энергоемкий процесс. Поэтому металлургические комбинаты располагают поближе к источникам энергии.
В отличие от тяжелых металлов: их базовые предприятия привязывают к месторождению.
Ценностью легких, особенно цветных металлов, обусловлен второй способ получения – переработка лома.
Сферы использования
Главная миссия легких элементов – уменьшать массу конечного продукта. Недаром металлурги используют их и самостоятельно, и как добавку к сплавам из более тяжелого материала:
Этот щелочной элемент – материал третьего тысячелетия, поскольку незаменим при производстве электромобилей, смартфонов, других гаджетов.
- Без прочных элементов не обходится военно-промышленный, сегмент, атомная сфера.
Свойства элементов оценила медицина:
- Биологически совместимый с организмом человека титан – материал зубных и костных протезов.
- Психиатры используют соединения лития как седатив для пациентов с нестабильной психикой.
Серебряно-белый титан любят ювелиры.
Часы из титанового сплава
С титаном экспериментируют мастера высшего уровня, например, уроженка Тайваня Синди Чао и гонконгский «волшебник» Уоллес Чан.
Из пластичного, очень легкого металла серебристого цвета ими создаются шедевры музейной ценности.
Редкие металлы
Редкие металлы – группа цветных металлов, характеризующихся отсутствием собственных рудных месторождений и малой распространенностью в земной коре, трудностью их извлечения из сырья, небольшими масштабами производства.
Все редкие металлы являются цветными металлами.
Редкие металлы и их виды (подгруппы):
Все редкие металлы являются цветными металлами .
Группа редких металлов насчитывает свыше 60 металлов.
Редкие металлы условно подразделяют на следующие подгруппы: тугоплавкие, легкие, рассеянные, радиоактивные, редкоземельные. Некоторые металлы могут быть отнесены к нескольких подгруппам.
Редкие тугоплавкие металлы – подгруппа редких металлов, отличающихся высокой температурой плавления, прочностью и коррозионной устойчивостью.
К подгруппе редких тугоплавких металлов относят: цирконий , гафний , ванадий , ниобий , тантал , молибден , вольфрам , титан.
Редкие легкие металлы – подгруппа редких легких металлов, имеющих малую плотность (менее 2000 кг/м 3 ) и отличающихся высокой химической активностью.
К подгруппе редких легких металлов относят: литий , рубидий , цезий , бериллий .
Редкие рассеянные металлы – подгруппа редких металлов общим признаком которых является рассеянность в земной коре и нахождение их в виде изоморфной примеси в решетках ряда минералов цветных металлов. Рассеянные редкие металлы извлекают попутно при производстве цветных металлов и в некоторых других производствах, в т.ч. при переработке отходов.
К подгруппе редких рассеянных металлов относят: галлий , индий , таллий , германий , скандий , гафний , селен , теллур , рений , рубидий . В стандартных условиях температуры и давления селен и теллур проявляют свойства неметаллов. Гафний может быть отнесен как к рассеянным, так и к тугоплавким редким металлам, рубидий – как к рассеянным металлам, так и к легким редким металлам, скандий – как к рассеянным редким, так и к редкоземельным металлам.
Редкие радиоактивные металлы – подгруппа редких металлов, изотопы которых радиоактивны, т.е. самопроизвольно излучают поток элементарных частиц.
К естественным радиоактивным металлам относят: полоний , радий , торий , актиний , уран , протактиний . К искусственно получаемым радиоактивным металлам относят: технеций , прометий , астат , франций , в том числе трансурановые элементы.
Редкоземельные металлы – подгруппа редких металлов, редко встречающихся в земной коре, образующих нерастворимые окислы и являющихся химически активными. В рудном сырье эти металлы сопутствуют друг другу и сложно подвергаются разделению. Для разделения используют метод экстракции органическими растворителями и ионообменные процессы.
К редкоземельным металлам относят: скандий , иттрий , лантан и лантаноиды ( церий , празеодим , неодим , прометий , самарий , европий , гадолиний , тербий , диспрозий , гольмий , эрбий , тулий , иттербий , лютеций ).
Легко обрабатываемый редкий металл
Редкие металлы принято подразделять на пять групп по некоторым общим признакам: близости физико-химических свойств, совместному нахождению в рудном сырье и сходству методов выделения из сырья.
Ниже дана характеристика каждой из групп технической классификации, приведенной в табл. 5.
Металлы этой группы расположены в I и II группах периодической системы Менделеева, обладают малым удельным весом (литий — 0,53; бериллий — 1,85; рубидий — 1,55; цезий — 1,87) и отличаются высокой химической активностью. Их химические соединения, окислы, хлориды обладают высокой химической прочностью и с трудом восстанавливаются до металла. По этому признаку они близки к легким цветным металлам, алюминию, магнию, кальцию и натрию.
Подобно легким цветным металлам легкие редкие металлы получаются в свободном состоянии либо электролизом расплавленных солей, либо металлотермическими методами.
Тугоплавкие редкие металлы относятся к числу переходных элементов IV, V и VI групп периодической системы, у которых при переходе одного элемента к соседнему происходит достройка внутренних электронных уровней (так называемых d-уровней).
Эта особенность строения атомов определяет высокую прочность кристаллической решетки рассматриваемых металлов, что сказывается на их повышенной твердости, высоких температурах плавления (от 1660° для титана до 3400° для вольфрама, являющегося самым тугоплавким из всех металлов), высокой антикоррозионной устойчивости и переменной валентности, обусловливающей многообразие химических соединений этих элементов.
Все металлы рассматриваемой группы образуют весьма тугоплавкие, твердые и химически, устойчивые соединения с рядом металлоидов, обладающих малыми атомными радиусами (так называемых «фаз внедрения»). К ним относятся карбиды, нитриды, силициды и бориды, имеющие важное практическое применение.
Тугоплавкие редкие металлы взаимодействуют со многими другими металлами периодической системы, образуя твердые растворы и различные интерметаллические соединения, что широко используется в технике при производстве различных сплавов и высококачественных сталей.
В связи с высокими температурами плавления тугоплавких металлов в технологии их производства широко используется метод порошковой металлургии, заключающийся в получении металла в форме порошка с последующим его превращением в компактный металл путем прессования и спекания.
Близость свойств тугоплавких металлов определяет общность многих областей их применения. Так, кроме использования этих металлов в качестве легирующих добавок к сталям, многие из них применяются в виде тугоплавких твердых карбидов в составе твердых сплавов, а в чистом виде используются в электротехнике и электровакуумной технике.
Общим признаком этой группы является отсутствие или редкая распространенность собственных минералов этих металлов.
Металлы данной группы встречаются обычно в виде изоморфных примесей в ничтожных концентрациях в кристаллах других минералов. Поэтому рентабельное извлечение рассеянных редких металлов возможно только из отходов производств основных металлов.
Так, галлий, встречающийся в бокситах, извлекается из промежуточных продуктов и отходов алюминиевого производства. Галлий вместе с индием, таллием и германием часто встречается в цинковых и свинцовых рудах, и поэтому соединения этих металлов извлекаются из промежуточных продуктов и отходов цинкового и свинцового производств.
Германий часто встречается в углях и извлекается из отходов, получаемых при их переработке.
Селен и теллур, рассеянные в различных сульфидных минералах, извлекаются либо при металлургической переработке этого сырья, либо из отходов сернокислотного производства.
Рений как спутник молибдена извлекается попутно при переработке молибденового сырья.
Гафний, содержащийся в виде примеси в циркониевых минералах, извлекается при производстве циркония или его соединений.
Таким образом, сырьевые источники производства рассеянных редких металлов весьма разнообразны. К ним относятся отходы газовых заводов, шламы медерафинирующих заводов, пыли обжиговых и плавильных печей, отходы цинкового, свинцового и алюминиевого производств и т. д.
Рений и гафний, являющиеся спутниками соответственно молибдена и циркония, по свойствам близки к тугоплавким металлам и могут также рассматриваться в составе этой группы.
К этой группе относятся лантан и следующие за лантаном 14 элементов (от церия 58 до лутеция 71).
Близость физико-химических свойств лантаноидов объясняется одинаковым строением внешних электронных уровней их атомов, так как при переходе одного элемента к другому у лантаноидов происходит заполнение глубоко лежащих недостроенных (4f) электронных уровней.
Близко примыкают к лантаноидам скандий и иттрий.
В рудном сырье редкоземельные металлы всегда сопутствуют друг другу. На первых стадиях переработки сырья они обычно выделяются в виде смеси окислов или других соединений. Дальнейшее разделение соединений редкоземельных элементов представляет большие технологические трудности.
К этой группе относятся естественные радиоактивные элементы: полоний, радий, актиний и актиноиды (торий, протактиний, уран) и искусственно полученные заурановые элементы; нептуний, плутоний, америций, кюрий, берклий, калифорний, атений и центурий.
Радиоактивные свойства металлов этой группы в значительной степени определяют особенности их технологии, приемы работы с ними, а также области их использования.
Актиноиды, так же как и редкоземельные элементы, характеризуются тем, что переход от одного элемента к другому осуществляется путем достройки глубоко расположенных 5f электронных уровней и в этом отношении группа актиноидов аналогична лантаноидам.
В рудном сырье естественные радиоактивные элементы встречаются совместно. Часто им сопутствуют редкоземельные металлы.
Как известно, естественные и некоторые искусственно полученные металлы группы актиноидов играют важнейшую роль в производстве атомной энергии.
Хрупкие металлы – перечень, особенности обработки и использования
Металл ассоциируется с надежностью, прочностью, твердостью. Хрупкость – это атрибут стекла и подобных материалов. Однако и в металлическом сегменте есть «стекло».
Хрупкими могут стать изначально пластичные элементы.
Хрупкость – антипод пластичности. Это свойство вещества разрушаться без визуально различимых деформаций. То есть на изломе, например, цинковой проволоки цвет, блеск, структура не изменятся.
Хрупкие металлы подразделяются на две группы:
- Наделенные этим свойством от природы.
- Ставшие таковыми в результате обработки.
Ко второй группе причисляются также сплавы.
Причины уязвимости
Склонность к разрушению у металлов, других простых веществ, сплавов обусловлена следующими причинами:
- Структура. Например, у сурьмы это крупные зерна. У стали – доминирование в структуре а-фазы.
Переход металла в хрупкое состояние происходит при разных температурах.
- Скорость нагрузки. Чем быстрее возрастает нагрузка на материал, тем быстрее он разрушится. Резкие удары способны погубить даже пластичные структуры (малоуглеродистую сталь).
Сплавы становятся хрупкими из-за примесей:
- Самый «вредный» химический элемент – углерод. Он делает сплавы железа (чугун, сталь) хрупче в разы.
- Сталь с фосфором обретает хладноломкость.
- При малейшем «загрязнении» пластичный хром становится неподатливым к обработке.
«Стеклянными» сплавы делают фосфор, сера, мышьяк, сурьма, вольфрам.
Этот изъян не устранили даже создатели материалов поколения 2.0. Например, «супервещества» алюминид титана. Этот титаново-алюминиевый серебристый конгломерат термо-, коррозиестоек, но перед кувалдой бессилен.
Список
К металлам с изначальной хрупкостью относятся природные и технологичные материалы.
- Щелочноземельные – бериллий.
- Легкоплавкие – олово, висмут.
- Тяжелые элементы – цинк, марганец, хром, сурьма, кобальт.
В списке присутствуют уникумы:
- Вольфрам. Самый прочный на растяжение среди металлов. . Твердый хрупкий платиноид голубовато-серебристого цвета, второй по плотности среди простых веществ, тугоплавкий. . Мягкий хрупкий белый металл.
Самый хрупкий металл – сурьма. Ее легко сделать порошком вручную.
Материалы, полученные в результате технологических процессов: бронза, белый чугун, сталь с высоким содержанием углерода.
Особенности обработки
Материалы, наделенные хрупкостью, разрушаются при попытке их удлинить даже на пару процентов.
Поэтому их обработка специфична:
- Перед работой материал подогревают, чтобы нейтрализовать хладноломкость.
- Исключено воздействие давлением. Например, чугун (нагретый либо холодный) после такой операции сохранит форму, но внутренне разрушится.
- Болванки из хрупких сплавов (чугунные, бронзовые) рубят от края к центру.
Неоднозначно воздействие закалки. В отличие от подогрева, при такой обработке кратно увеличивается прочность стали, других материалов, но в ущерб пластичности. То есть порог хрупкости понижается.
Хрупкие металлы легче разрушить растяжением, чем сжатием.
Малопластичные вещества используют там, где исключено резкое механическое воздействие:
- Производство катализаторов.
- Электроника.
- Лаки, краски.
- Аптечные препараты.
- Косметические средства.
Алюминид титана задействуют в космических технологиях и медицине.
Читайте также: