Легкий но прочный металл
Много разных. В порядке уменьшения плотности (и для сплавов - одновременно прочности) перечислю применяемые конструкционные металлы и сплавы:
1.Титан и титановые сплавы.
2.Алюминий и алюминиевые сплавы.
3.Магниево-алюминиевые сплавы.
4.Бериллий, бериллиевые сплавы.
Отл. особо выс. жесткостью (в ~2 раза выше, чем у стали), ядовитостью, оч. выс. ценой.
5.Магний, магниевые сплавы.
6.Литиевые сплавы
Бериллий и его сплавы применяются только в спецтехнике (в т. ч. ядерной). Литиевые тоже, но сфера применения шире. Алюминий применяется в строительстве и машиностроении. Остальные - в машиностроении (т, т. с. - в осн. авиационном).
Рискну предположить, что сталь, например хромоникелевая, закалённая, является рекордсменом прочности, если изделие должно иметь минимальные размеры. То есть прочность на единицу объёма ( а не веса) . Ножи из стали пока ещё незаменимы ничем. Керамика твёрже но ломается запросто.
Важно не только из ЧЕГО делать. но и КАК делать.
Для начала запомни, что условия формирования вещества определяют свойства этого вещества. Например процесс намагничивания. Можно образец поместить просто в катушку и сделать разряд конденсатора, тогда образец "запомнит" и станет магнитом. Можешь "добавить" в процесс намагничивания иные параметры. Например переменный ток с частотой, давление или например вращать образец в процессе намагничивания. Или например в процессе заморозки воды ты можешь включить разную музыку и после заморозки рассмотреть структуру в мелкоскоп и узреть там разные структуры. Опыты Эмото. От молитвы от сердца структуры стремятся к сотовости, а от негативных эмоций к безобразию и уродству. То же самое относится и к производству всяких веществ, например расплавили олово и по мере того как оно остывает "добавили" туда некие параметры, которые отразятся на олове после его остывания. Скажем поместили остывающее олово в вакуум. Фуллерен это одно из агрегатных (аллотропных) состояний углерода. Фуллерен производят также как и технический алмаз, по сути фуллерен это и есть алмаз. Т. е. берут кусок графита помещают его в камеру и создают высокое давление и одновременно увеличивают температуру. Получится тот же самый технический алмаз. Его называют альфа алмазом. Т. е. изменение условий при которых готовят вещество главным образом определяют его свойства. Ранее мы выяснили и подтвердили фразу Шаубергера о том, что "температура наинизшая форма электричества". Мы выразили это аксиомой.. 1 вольт напряжения изменяют состояние системы также, каки 10 градусов по цельсию".. Наопмним проделанный опыт. Мы визуализировали частицы электромагнитного поля и наблюдали за изменением их состояния от действия на них различных возмущений. Воздействуя на систему температурой мы видели как структура конуса ооочень медленно, еле живая, начинает шевелиться. Увеличивая температуру дальше конуса начинали двигаться и вращаться все быстрее и быстрее, имитируя то что называют "при увеличении температуры увеличивается скорость и движение частиц". Далее мы привели систему в исходное состояние и сообщили системе электричество. В результате мы заметили, что состояние движения и вращения эфиронов изменилось от 1 вольта также, как если бы мы сообщили температуру в 10 градусов Цельсия. Иными словами температура и электричество это мера изменения структуры. Влияние температуры или электричества на изменение системы отличаются также, как и одна частота разных октав. (гармоники). Теперь вспомним что такое закалка металла. и каким образом она достигается. В древней Руси делали мечи, которыми рубили каких то тевтонских рыцарей, которые имели неосторожность сунуться в сии Земли, таким образом. Плавили железо в тигле, затем придавали ему форму, а затем резко остужали его, затем снова нагревали, снова остужали. и чем резче процесс охлаждения и нагревания, тем крепче и легче была сталь, позже ее назвали "Булатом".. по имени кузнеца, который лично делал оружие для Александра Невского. И чем больше частота "остывания нагревания" тем крепче клинок. Теперь мы знаем, что изменение частоты направления тока это то же самое, что и изменение состояния нагревание\охлаждение. По сути процесс "остывание -нагревание" заменяется переменным током. Таким образом, процесс закалки металла может быть осуществлен помещением расплава в электромагнитное поле (переменное магнитном поле). Далее идут более сложные (изощренные) методы изменения конфигурации этого поля, которые вносят свои изменения в расплав подверженный изменению (или намагничиванию)..
Какой сплав металла самый лёгкий и прочный? и сколько стоит? =)))
СО сплавом можно играть как хочеш как залить в форму так и вугнцть, Карбон это Композитный матерьял состоящий из углеродного волокна а также пилимерных смол и прочих связующий частей имеющийе свойста клея тоесть склеивание скрепление волокна между собой сам процес при изготовлениие композитных матерьялов достотаточно кропотливая работа и форму ему можно предать на начальных стадиях в дальнейшем оказать незначительные изменнения под пресом и высокой температуры иначе он просто лопается в отличии от сплава.
титан сам по счебе безполезен его добовляют в другие металы в расплавы как лигируещий компонетс для создания определенх визических эфектов допустим увелчение прочости метала силно много метал расколется как стекло но структура отанется нетронутой силно мало недаст некаих положительных эфектов допустим в железо добовляют хром чтобы зделать его более жоще и он мнеии ржавело так как малекулы хрома и железа тесно свяханы из за этого окислениее проиходит с хрома образуя зеленовато черный оклсид после чего только эелехо начнет окислятся отсавляя рыжий цвет
чем ниже листаю тем больше бредовые ответы какая группа победитова))))))) победит это опятьже сплав с обпределенной хакалкай его) а не метал и не как негруппа) имеется група металы неметалы щелочные маталы щелочно земельные галогены но не как не победитывые ) строители херовы) услышали про сверла с победитовым наконечником созданые для бедот им сказали что самый крепки) и все сразу хуню морозить как старые холодильники
МОлибден
С одной стороны да но он используется в качестве легируюющих добавок для повышение температуры плавлениея стали а также порог о кисления при определенных тмпературах на саму прочность элостичность и хрупкость невлияяет)
По удельной прочности (отношение прочности к удельному весу) титановые сплавы типа ВТ15 самые прочные.
Еще удельную прочность хорошо через километры измерять. Так называемая разрывная длина Т. е. какую длину трос (стержень) сам себя выдержит.
Для титановых сплавов - 30 км.
По абсолютной прочности - сталь впереди.
Там, где нужен минимальный вес и максимальная прочность и наплевать на стоимость, используют сплавы на основе бериллия. Они легче даже магниевых, а по прочности приближаются к титану. Эти сплавы, кроме неподъемной цены, еще и очень сложны и капризны в обработке, а пыль бериллия - ядовита!
пенопласт э то органическое соединение для начало вопрс был задан про сплав нахуя писать ересь всякую легкий а прочныйли пенопласт) ребят на вопросы если знаете отвечате конкретно не то что в голову пришло (
Уверен, что даже название такого сплава является Государственной тайной, тем более состав и цена. Слышал, что очень легкие и прочные сплавы на основе аллюминия используют для производства центрифуг для обогащения урана. Поищите по военно-техническим сайтам - может чего и просочилось.
каждый сплав имеет свое названиее был бы секрет смысл называть из таогда допустм латунЬ сплав цинка и медли бронза спалав олова и меди нержваейка сплав железа и магния в некотрох случиях никеля поэтому отлично блестит нержавеет имет достаточню массу по соотношению к эжелезу а также гораздо прочнее и элостичней делеза один из самых выдающихся сплавов по моему мнению используется в медецине жлектрнике бытоыой технике и приборах в техже кастрюляХ) несилно дорогой прочный но к сожелению тяжолый и тугоплавкией так как из за магния или никеля температура зашкаливает за 1650 грпдусов по целсию (
Титан это не сплав а металл. Обычно самыми легкими и довольно прочными сплавами является алюминиевые сплавы . Сталь очень прочный, но дорогой и скоро станет довольно редким . Я сам знаю прочный и легкий сплав - дюралюминний .Но по моему лучше использовать не сплавы а металлы вроде титана, ванадия, хрома, никеля, иридия, осмия и самого прочного-Вольфрама.
Самые прочные металлы в мире: топ-10
Можете ли вы представить, что произошло, если бы наши предки не обнаружили важные металлы, такие как серебро, золото, медь и железо? Наверное, мы бы до сих пор жили в хижинах, используя камень в качестве основного инструмента. Именно крепость металла сыграла важную роль в формировании нашего прошлого и теперь работают как основа, на которой мы строим будущее.
Некоторые из них очень мягкие и буквально тают в руках, как самый активный металл в мире. Другие - настолько твердые, что их невозможно согнуть, поцарапать или сломать без применения спецсредств.
А если вам интересно, какие металлы самые твердые и прочные в мире, мы ответим на этот вопрос, учитывая различные оценки относительной твердости материалов (шкала Мооса, метод Бринелля), а также такие параметры как:
- Модуль Юнга: учитывает эластичность элемента при растяжении, то есть способность объекта к сопротивлению при упругой деформации.
- Предел текучести: определяет максимальный предел прочности материала, после которого он начинает проявлять пластичное поведение.
- Предел прочности при растяжении: предельное механическое напряжение, после которого материал начинает разрушаться.
10. Тантал
У этого металла сразу три достоинства: он прочный, плотный и очень устойчив к коррозии. Кроме того, этот элемент относится к группе тугоплавких металлов, таких как вольфрам. Чтобы расплавить тантал вам придется развести огонь температурой 3 017 °C.
Тантал в основном используется в секторе электроники для производства долговечных, сверхмощных конденсаторов для телефонов, домашних компьютеров, камер и даже для электронных устройств в автомобилях.
9. Бериллий
А вот к этому металлическому красавцу лучше не приближаться без средств защиты. Потому что бериллий высокотоксичен, и обладает канцерогенным и аллергическим действием. Если вдыхать воздух, содержащий пыль или пары бериллия, то возникнет заболевание бериллиоз, поражающее легкие.
Однако бериллий несет не только вред, но и благо. Например, добавьте всего 0,5 % бериллия в сталь и получите пружины, которые будут упругими даже если довести их до температуры красного каления. Они выдерживают миллиарды циклов нагрузки.
Бериллий применяют в аэрокосмической промышленности для создания тепловых экранов и систем наведения, для создания огнеупорных материалов. И даже вакуумная труба Большого Адронного Коллайдера сделана из бериллия.
8. Уран
Это естественное радиоактивное вещество очень широко распространено в земной коре, но сконцентрировано в определенных твердых скальных образованиях.
Один из самых твердых металлов в мире имеет два коммерчески значимых применения - ядерное оружие и ядерные реакторы. Таким образом, конечной продукцией урановой промышленности являются бомбы и радиоактивные отходы.
7. Железо и сталь
Как чистое вещество железо не такое твердое по сравнению с другими участниками рейтинга. Но из-за минимальных затрат на добычу оно часто комбинируется с другими элементами для производства стали.
Сталь - это очень прочный сплав из железа и других элементов, таких как углерод. Это наиболее часто используемый материал в строительстве, машиностроении и других отраслях промышленности. И даже если вы не имеете к ним никакого отношения, то все равно используете сталь каждый раз, когда режете продукты ножом (если он, конечно, не керамический).
6. Титан
Титан - это практически синоним прочности. Он обладает впечатляющей удельной прочностью (30-35 км), что почти вдвое выше, чем аналогичная характеристика легированных сталей.
Будучи тугоплавким металлом, титан обладает высокой устойчивостью к нагреву и истиранию, поэтому является одним из самых популярным сплавов. Например, он может быть легирован железом и углеродом.
Если вам нужна очень твердая и при этом очень легкая конструкция, то лучше чем титан металла не найти. Это делает его выбором номер один для создания различных деталей в авиа- и ракетостроении и судостроении.
5. Рений
Это очень редкий и дорогой металл, который хотя и встречается в природе в чистом виде, обычно идет «довеском»-примесью к молибдениту.
Если бы костюм Железного человека был сделан из рения, он мог бы выдержать температуру в 2000 ° C без потери прочности. О том, что стало бы с самим Железным человеком внутри костюма после такого «фаер-шоу» мы умолчим.
Россия - третья страна в мире по природным запасам рения. Этот металл используется в нефтехимической промышленности, электронике и электротехнике, а также для создания двигателей самолетов и ракет.
4. Хром
По шкале Мооса, которая измеряет устойчивость химических элементов к царапинам, хром находится в пятерке лучших, уступая лишь бору, алмазу и вольфраму.
Хром ценится за высокую коррозионную стойкость и твердость. С ним легче обращаться, чем с металлами платиновой группы, к тому же он более распространен, поэтому хром является популярным элементом, используемым в сплавах, таких, как нержавеющая сталь.
А еще один из прочнейших металлов на Земле используется при создании диетических добавок. Конечно, вы будете принимать внутрь не чистый хром, а его пищевое соединение с другими веществами (например, пиколинат хрома).
3. Иридий
Как и его «собрат» осмий, иридий относится к металлам платиновой группы, и по внешнему виду напоминает платину. Он очень твердый и тугоплавкий. Чтобы расплавить иридий, вам придется развести костер температурой выше 2000 °C.
Иридий считается одним из самых тяжелых металлов на Земле, а также одним из самых устойчивых к коррозии элементов.
2. Осмий
Этот «крепкий орешек» в мире металлов относится к платиновой группе и обладает высокой плотностью. Фактически это самый плотный природный элемент на Земле (22,61 г/см3). По этой же причине осмий не плавится до 3033 ° C.
Когда он легирован другими металлами платиновой группы (такими как иридий, платина и палладий), он может использоваться во многих различных областях, где необходимы твердость и долговечность. Например, для создания емкостей для хранения ядерных отходов.
1. Вольфрам
Самый прочный металл, который только есть в природе. Этот редкий химический элемент также самый тугоплавкий из металлов (3422 ° C).
Впервые он был обнаружен в форме кислоты (триоксида вольфрама) в 1781 году шведским химиком Карлом Шееле. Дальнейшие исследования привели двух испанских ученых - Хуана Хосе и Фаусто д'Эльхуяра - к открытию кислоты из минерала вольфрамита, из которого они впоследствии изолировали вольфрам с помощью древесного угля.
Помимо широкого применения в лампах накаливания, способность вольфрама работать в условиях сильной жары делает его одним из наиболее привлекательных элементов для оружейной промышленности. Во время Второй мировой войны этот металл сыграл важную роль в инициировании экономических и политических отношений между европейскими странами.
Вольфрам также используется для изготовления твердых сплавов, а в аэрокосмической промышленности - для изготовления ракетных сопел.
Таблица предела прочности металлов
Металл | Обозначение | Предел прочности, МПа |
---|---|---|
Свинец | Pb | 18 |
Олово | Sn | 20 |
Кадмий | Cd | 62 |
Алюминий | Al | 80 |
Бериллий | Be | 140 |
Магний | Mg | 170 |
Медь | Cu | 220 |
Кобальт | Co | 240 |
Железо | Fe | 250 |
Ниобий | Nb | 340 |
Никель | Ni | 400 |
Титан | Ti | 600 |
Молибден | Mo | 700 |
Цирконий | Zr | 950 |
Вольфрам | W | 1200 |
Сплавы против металлов
Сплавы представляют собой комбинации металлов, и основной причиной их создания является получение более прочного материала. Наиболее важным сплавом является сталь, которая представляет собой комбинацию железа и углерода.
Чем выше прочность сплава - тем лучше. И обычная сталь тут не является «чемпионом». Особенно перспективными представляются металлургам сплавы на основе ванадиевой стали: несколько компаний выпускают варианты с пределом прочности до 5205 МПа.
А самым прочным и твердым из биосовместимых материалов на данный момент является сплав титана с золотом β-Ti3Au.
10 самых тяжелых металлов в мире по плотности
Мы все любим металлы. Машины, велосипеды, кухонная техника, банки для напитков и множество других вещей - все они состоят из металла. Металл - краеугольный камень нашей жизни. Но иногда он бывает очень тяжелым.
Когда мы говорим о тяжести того или иного метала, то обычно имеем в виде его плотность, то есть соотношение массы к занимаемому объёму.
Еще одним способом измерения «веса» металлов является их относительная атомная масса. Самыми тяжелыми металлами по относительной атомной массе являются плутоний и уран.
Если вы хотите узнать, какой металл самый тяжелый, если рассматривать его плотность, то мы рады вам помочь. Вот топ-10 самых тяжелых металлов на Земле с указанием их плотности на кубический см.
10. Тантал - 16,67 г/см³
Десятую строчку в рейтинге занимает синевато-серый, очень твердый металл со сверхвысокой температурой плавления. Несмотря на свою твердость он пластичен, как золото.
Тантал является важным компонентом во многих современных технологиях. В частности, он используется для производства конденсаторов, которые применяются в компьютерной технике и мобильных телефонах.
9. Уран - 19,05 г/см³
Это самый тяжелый элемент на Земле, если учитывать его атомную массу - 238,0289 г/моль. В чистом виде уран представляет собой серебристо-коричневый тяжелый металл, который почти вдвое плотнее свинца.
Как и плутоний, уран служит необходимым компонентом для создания ядерного оружия.
8. Вольфрам - 19,29 г/см³
Считается одним из самых плотных элементов в мире. В дополнение к своим исключительным свойствам (высокая теплопроводность и электропроводность, очень высокая стойкость к воздействию кислот и истиранию) вольфрам также отличается тремя уникальными свойствами:
- После углерода он имеет самую высокую температуру плавления - плюс 3422 ° C. А его температура кипения - плюс 5555 ° C, эта температура примерно сопоставима с температурой поверхности Солнца.
- Сопровождает оловянные руды, однако препятствует выплавке олова, переводя его в пену шлаков. За это и получил свое название, которое в переводе с немецкого означает «волчьи сливки».
- Вольфрам имеет самый низкий коэффициент линейного расширения при нагревании из всех металлов.
7. Золото - 19,29 г/см³
С давних времен люди покупают, продают и даже убивают за этот драгоценный металл. Да что люди, целые страны занимаются скупкой золота. Лидером государств с самыми крупными запасами золота на данный момент является Америка. И вряд ли наступит пора, когда в золоте не будет нужды.
Говорят, что деньги не растут на деревьях, но золото - растет! Небольшое количество золота можно найти в листьях эвкалипта, если тот находится на золотоносной почве.
6. Плутоний - 19,80 г/см³
Шестой самый тяжелый металл в мире - один из самых нужных компонентов для ядерных держав мира. А еще он - настоящий хамелеон в мире элементов. Плутоний демонстрирует красочное состояние окисления в водных растворах, при этом их цвет варьируется от светло-фиолетового и шоколадного до светло-оранжевого и зеленого. Цвет зависит от степени окисления плутония и солей кислот.
5. Нептуний - 20,47 г/см³
Этот металл с серебристым блеском, названный в честь планеты Нептун, был открыт химиком Эдвином Макмилланом и геохимиком Филиппом Абельсоном в 1940 году. Он используется для получения шестого номера в нашем списке, плутония.
4. Рений - 21,01 г/см³
Слово «Рений» происходит от латинского Rhenus, что означает «Рейн». Нетрудно догадаться, что этот металл был обнаружен в Германии. Честь его открытия принадлежит немецким химикам Иде и Вальтеру Ноддакам. Это последний из открытых элементов, у которого есть стабильный изотоп.
Из-за очень высокой температуры плавления рений (в виде сплавов с молибденом, вольфрамом и другими металлами) применяется для создания компонентов ракетной техники и авиации.
3. Платина - 21,40 г/см³
Один из самых драгоценных металлов в этом списке (кроме Осмия и Калифорния-252) используется в самых разных областях - от ювелирного дела до химической промышленности и космической техники. В России лидером по добыче платинового металла является ГМК «Норильский никель». В год в стране добывается около 25 тонн платины.
2. Осмий - 22,61 г/см³
Хрупкий и при этом крайне твердый металл редко используется в чистом виде. В основном его смешивают с другими плотными металлами, такими как платина, для создания очень сложного и дорогого хирургического оборудования.
Название «осмий» происходит от древнегреческого слова «запах». При растворении щелочного сплава осмиридия в жидкости появляется резкое амбре, похожее на запах хлора или подгнившей редьки.
И осмий и иридий (первое место рейтинга) весят примерно в два раза больше свинца (11,34 г/см³).
1. Иридий - 22,65 г/см³ – самый тяжелый металл
Этот металл с полным правом может претендовать на звание элемента с наибольшей плотностью. Однако споры о том, какой же металл тяжелее - иридий или осмий, все-таки ведутся. А все дело в том, что любая примесь может снизить плотность этих металлов, а их получение в чистом виде - очень тяжелая задача.
Теоретическая расчетная плотность иридия составляет 22,65 г/см³. Он почти втрое тяжелее, чем железо (7,8 г/см³). И почти вдвое тяжелее, чем самый тяжелый жидкий металл - ртуть (13,6 г/см³).
Как и осмий, иридий был открыт английским химиком Смитсоном Теннантом в начале 19 века. Любопытно, что Теннант нашел иридий вовсе не целенаправленно, а случайно. Он был обнаружен в примеси, оставшейся после растворения платины.
Иридий в основном используется в качестве отвердителя платиновых сплавов для оборудования, которое должно выдерживать высокие температуры. Он перерабатывается из платиновой руды и является побочным продуктом при добыче никеля.
Название «иридий» переводится с древнегреческого как «радуга». Это объясняется наличием в металле солей разнообразной окраски.
Самый тяжелый металл в периодической таблице Менделеева очень редко встречается в земных веществах. Поэтому его высокая концентрация в образцах породы - маркер их метеоритного происхождения. За год во всем мире добывают около 10 тысяч килограмм иридия. Крупнейший его поставщик - Южная Африка.
12 самых прочных металлов на планете
Природа
Свинец
Свинец относительно мягкий, но его низкая температура плавления и высокая коррозионная стойкость делают его очень востребованным элементом во всех отраслях промышленности.
Свинец входит в ряд наиболее часто встречающихся элементов на планете. В настоящее время историки вместе с археологами доказали, что свинец был известен людям ещё в VI тысячелетии до нашей эры, и, предположительно, использовался для плавки.
Чаще всего свинец используют для производства разнообразных типов сплавов. Используют его в качестве красителя, окислителя в пластмассах, свечах, стекле и полупроводниках. Ещё в период Средневековья из него стали изготавливать пули.
Олово
Физически олово характеризуется как мягкий серебристо-белый металл, который одновременно пластичен и податлив. В условиях комнатной температуры он практически не окисляется и не поддаётся коррозии.
Олово наиболее широко используют в сплавах. Это мягкие припои олово-свинец, которые обычно состоят из 60% или более олова. Из-за своей низкой токсичности лужёные металлические банки популярны в пищевой промышленности.
По распространённости на Земле этот важный для жизни природный элемент обосновался на 49 месте.
Алюминий
Этот металл обладает особыми качествами, которые делают его незаменимым в производстве и жизни современного общества. Это один из наиболее широко используемых цветных металлов в мире.
Около 8% земной коры состоит из алюминия, а его концентрация в Солнечной системе составляет 3,15 части на миллион. Из-за своей низкой плотности и устойчивости к коррозии, алюминий является ключевым элементом в аэрокосмической и инфраструктурной промышленности.
Примечательно, что чистый алюминий имеет предел текучести около 15–120 МПа, его сплавы намного прочнее и имеют предел текучести от 200 до 600 МПа.
Золото
Один из самых ценных и востребованных минералов на Земле. Он одновременно очень пластичный и податливый. Высокая цена на золото обусловлена его редкостью.
Металл широко используется в ювелирном деле, электронике и медицине. Исторически золото использовалось для изготовления денег. Около 10% мирового производства золота идёт в электронную промышленность, где оно используется для изготовления коррозионно-стойких компонентов.
Геологи считают, что в недрах нашей планеты скрыто около 80% от общего запаса золота.
Серебро
Драгоценный металл, имеющий огромное значение для многих высокотехнологичных отраслей промышленности. Из всех металлов у серебра самые высокие показатели электрической и теплопроводности. По этой характеристике он превосходит медь.
Из-за высокой стоимости металл используется только в нескольких отраслях, например, в электронике. Серебряное покрытие различных схем и полупроводниковых устройств необходимо для их правильного функционирования. Помимо электроники и создания ювелирных шедевров, серебро широко используется в качестве антибиотического покрытия в медицинских инструментах и приборах.
Это великолепный катализатор для большинства процессов окисления. В годы Второй мировой войны почти 13 000 тонн серебра было использовано для обогащения урана.
Титан
Титан входит в десятку самых распространённых металлов земной коры и содержится в большинстве магматических пород в виде оксидов. Имеет высокое отношение прочности к массе.
Среди других характеристик следует отметить высокую температуру плавления и относительно низкую электропроводность по сравнению с большинством других металлов. Титан используется в качестве легирующего элемента в различных типах сплавов для достижения большей прочности.
Благодаря своей высокой коррозионной стойкости и прочности на разрыв титан стал основным материалом в аэрокосмической и судостроительной отрасли.
Твёрдый блестящий хром имеет одну из самых высоких температур плавления среди всех металлов. Хром известен своими необычными магнитными свойствами.
Он проявляет антиферромагнитные свойства при комнатной температуре, но при температуре выше 38°C превращается в парамагнитный металл. Хром занимает 22 место по распространённости элементом на Земле и в основном добывается из минералов, таких как кимберлит.
Почти 85% добытого хрома приходится на производство металлических сплавов, а остальное используется для окрашивания, нанесения покрытий, производства тугоплавких материалов, а также в качестве катализатора для обработки углеводородов.
Один из немногих элементов, которые встречаются в природе в пригодной для использования металлической форме, которую не нужно извлекать из какой-либо минеральной руды.
Благодаря этой особенности люди могли использовать медь ещё до 7 000 году до нашей эры. В 3 500 году до нашей эры медь сплавили с оловом для получения бронзы. Впервые в истории человечества один металл был сплавлен с другим. Сейчас основная часть мирового производства меди используется в кабельных проводах и электрических цепях. Используют в производстве сантехники, кровле.
В человеке находится от 1,4 до 2,1 мг меди на 1 кг своего веса. Чрезмерное накопление меди в печени может привести к серьёзному повреждению органа и нервно-психическим симптомам. Это состояние известно как болезнь Вильсона.
Никель
Никель — переходный элемент, жизненно важен для производства сплавов, так как почти 68% от общего объёма производства никеля в мире используется для производства нержавеющей стали. Другие области применения никеля включают гальванику, производство аккумуляторных батарей и чеканку монет.
В природе никель встречается в основном в минералах с большим содержанием мышьяка или серы, таких как никелин, пентландит и миллерит. Индонезия является крупнейшим производителем никеля в мире, за ней следуют Филиппины и Россия.
Никель также играет важную биологическую роль в организме человека и микроорганизмов. Исследование, проведённое в 2014 году, показало, что пациенты, страдающие диабетом 2 типа, имеют высокую концентрацию никеля в крови по сравнению с теми, у кого этого заболевания нет.
Тантал
Помимо того, что тантал — прочный металл, он также выступает одним из самых плотных материалов на Земле. Тантал известен своей способностью противостоять коррозии настолько, что он может выдерживать очень агрессивную царскую водку при температуре ниже 150°C.
Этот элемент принадлежит к особой группе металлов, которые чрезвычайно устойчивы к нагреванию и известны как тугоплавкие металлы. Они хоть и в небольших количествах, но применяются в производстве всевозможных сплавов.
Тантал широко используется в секторе электроники для производства прочных сверхмощных конденсаторов для телефонов, планшетов, компьютеров, фотоаппаратов и высокоточных устройств для автомобилей.
Железо
Удивительный металл, который составляет большую часть ядра Земли и является четвёртым по распространённости элементом земной коры.
Элемент в чистом виде является пластичным, но легко комбинируется с другими элементами для получения сплавов железа, таких как чугун и сталь. Широко используется в промышленности из-за прочности и относительно малой стоимости.
Современные стали можно разделить на четыре разновидности. Это углеродистая сталь, низколегированная, высокопрочная низколегированная и легированная сталь. В то время как углеродистая сталь состоит в основном из железа и углерода. Другие типы содержат различные количества других элементов, таких как молибден, марганец, хром или никель.
Сталь наиболее широко применяют в производстве тяжёлого оборудования машиностроения и в строительной индустрии. Несмотря на появление алюминия, сталь остаётся жизненно важной для производства автомобильных кузовов. Предел текучести сплавов с железом может достигать более 2 000 МПа.
Вольфрам
Известен вольфрам своей высочайшей температурой плавления и беспрецедентной прочностью. Впервые он был открыт в виде кислоты в 1781 году шведским химиком Карлом Шееле. Исследования испанских учёных Фаусто и Хосе Эльхуяра позволили сделать открытие. Они выделили такую же кислоту из минерала вольфрамита, из которого позже выделили вольфрам с помощью древесного угля.
Помимо широкого использования в лампах накаливания, способность вольфрама функционировать при экстремальных температурах делает его востребованным элементом в военной промышленности.
Во время Второй мировой войны вольфрам играл важную роль в проведении экономических и политических сделок между европейскими странами. Большие его запасы были сосредоточены в Португалии, что подняло международный авторитет страны.
В заключение
Человечество давно пришло к выводу, что без металлов существование цивилизации на планете было бы невозможно. Все минералы или металлы, обнаруженные на Земле, ценны для человека, но только несколько из них имеют чрезвычайное значение. Чистые металлы мягкие или слабые, но включение в их сплав других металлов и примесей делает их намного прочнее. Редакция TheBiggest будет рада вашим комментариям по теме статьи. напишите какие прочные металлы вы часто используете в жизни.
Читайте также: