Легкие сплавы цветных металлов
Ценные свойства цветных металлов обусловили их широкое применение в различных машинах современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники.
1. Медь и ее сплавы
В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, радио- и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Большое количество меди идет на производство бронзы, латуни и других медных, а также алюминиевых и железных сплавов.
Обладая замечательными свойствами, медь в то же время как конструкционный материал не удовлетворяет требованиям машиностроения, поэтому ее легируют, т.е. вводят в ее состав такие металлы, как цинк, олово, алюминий, никель и др., за счет чего улучшаются ее механические и технологические свойства.
По химическому составу медные сплавы подразделяют на латуни, бронзы и медноникелевые, по технологическому назначению — на деформируемые, используемые для производства полуфабрикатов (проволоки, листа, полос, профиля), и литейные, применяемые для литья деталей.
2. Латунь
Латунь — сплав меди с цинком и другими компонентами. Латуни, содержащие кроме цинка другие легирующие элементы, называются сложными, или специальными, и именуются по вводимым, кроме цинка, легирующим компонентам. Например: железомарганцовая (ЛЖМц59-1-1), алюминиевоникелькремнистомарганцовая (ЛАНКМц75-2-2,5-0,5-0,5) и др.
В обозначении марок латуней принята буквенно-цифровая система. Первая буква означает «латунь», остальные буквы соответствуют условным обозначениям химических элементов, входящих в латунь; первая цифра указывает на содержание меди, остальные цифры — на содержание других легирующих элементов. Содержание цинка в обозначении марки не указывается. Для того чтобы определить содержание цинка в латуни, необходимо от 100% вычесть процентное содержание меди и других химических элементов, входящих в данную латунь. Например: томпак Л90 — это латунь, содержащая 90% меди, остальное — цинк; латунь алюминиевая ЛА77-2 – 77% меди, 2% алюминия, остальное — цинк; латунь алюминиевоникелькремнистомарганцовая ЛАНКМц75-2-2,5-0,5-0,5 – 75% меди, 2% алюминия, 2,5% никеля, 0,5% кремния, 0,5% марганца, остальное – цинк.
Детали получают литьем, давлением и резанием. Латуни, обрабатываемые давлением, нормируются ГОСТ 15527-2004. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, прутки, фольгу, поковки, штамповки), медали и значки, художественные изделия, музыкальные инструменты, сильфоны, гибкие шланги, застежки-молнии, подшипники скольжения и разную фурнитуру.
3. Бронза
Бронза — сплав на основе меди, в котором в качестве добавок используются олово, алюминий, бериллий, кремний, свинец, хром и другие элементы. Как и латуни, бронзы подразделяются на литейные и деформируемые. В обозначении марок бронз принята та же система, что и у латуней, только в начале проставляются буквы Бр, означающие — «бронза».
Основные составы сплавов бронз, применяемых в качестве исходного материала для изготовления деталей:
Безоловянные литейные бронзы
- БрА9Мц2Л, БрА10Мц2Л – антифрикционные детали и арматура, работающая в пресной воде, жидком топливе и паре при температурах до 250о С; и др.
Оловянные литейные бронзы
- БрОЗЦ12С5 – арматура общего назначения;
- БрОЗЦ7С5Н1 – детали, работающие в масле, паре и в пресной воде;
- БрО4Ц7С5 – арматура и антифрикционные детали и др.
- БрА5 – деформируется в холодном и горячем состояниях, коррозионностойкая, жаропрочная, стойкая к истиранию; предназначена для изготовления монет, деталей машин, работающих в морской воде и в химических средах;
- БрА7 – деформируется в холодном состоянии, жаропрочная, стойкая к истиранию, коррозионностойкая к серной и уксусной кислотам; применяется для изготовления деталей химического машиностроения и скользящих контактов;
- БрАЖМц10-3-1,5, БрАЖН10-4-4, БрАЖНМц9-4-4-1 – деформируются в горячем состоянии, обладают высокой прочностью при повышенных температурах, хорошей эрозионной, кавитационной и коррозионной стойкостью; из этих бронз производят трубные доски конденсаторов и детали химической аппаратуры; БрАМц9-2 – характеризуется высоким сопротивлением при знакопеременной нагрузке; рекомендуется для изготовления износостойких деталей, винтов, валов, деталей гидравлических установок и трубных досок конденсаторов;
- БрАМц10-2 – имеет высокое сопротивление при знакопеременной нагрузке; пригодна для выполнения заготовок и фасонного литья в судостроении;
- БрАЖ9-4 – обладает высокими механическими и антифрикционными свойствами, коррозионностойкая; рекомендуется для производства шестерен, втулок и седел клапанов для авиапромышленности, отливки массивных деталей для машиностроения.
- БрБ2 ,БрБНТ1,7, БрБНТ1,9, БрБНТ1,9Мг – обладают высокой прочностью и износостойкостью, хорошими пружинящими и антифрикционными свойствами, средней электропроводностью и теплопроводностью, деформируются в закаленном состоянии. Из этих бронз изготовляют пружины и пружинящие детали ответственного назначения, износостойкие детали всех видов, неискрящий инструмент.
- БрКМц3-1 — коррозионностойкая, жаропрочная, имеет высокое сопротивление сжатию, пригодна для сварки; применяется для изготовления деталей для химических аппаратов, пружин и пружинящих деталей, сварных конструкций и деталей для судостроения;
- БрКШ-3 – обладает высокими механическими, технологическими и антифрикционными свойствами, коррозионностойкая; предназначена для производства ответственных деталей в моторостроении, а также направляющих втулок.
- БрМц6 – имеет высокие механические свойства, хорошо деформируется в горячем и холодном состояниях, коррозионностойкая, жаропрочная. Из этой бронзы изготовляют детали, работающие при повышенных температурах.
Кадмиевая и магниевая бронзы
- БрКд1 и БрМг0,3 – отличаются высокой электропроводностью и жаропрочностью. Их используют при производстве коллекторов электродвигателей и деталей машин контактной сварки.
- БрСр0,1 – предназначена для изготовления коммутаторов, коллекторных колец и обмотки роторов турбогенераторов.
- CuCrl – предназначена для производства сварочных электродов, электродеталей и оборудования сварочных машин.
- CuFeP – выполняют детали, обрабатываемые на автоматах, элементы телетехнических, радиотехнических, электротехнических и электронных устройств.
4. Алюминий и его сплавы
Алюминий по распространенности в природе занимает третье место после кислорода и кремния и первое место среди металлов. По использованию в технике он занимает второе место после железа.
Алюминий представляет собой серебристо-белый пластичный металл. В воздушной среде он быстро покрывается окисной пленкой, которая надежно защищает его от коррозии. Алюминий химически стоек против азотной и органических кислот, но разрушается щелочами, а также соляной и серной кислотами. Важнейшее свойство алюминия — небольшая плотность — 2,7 г/см3, т.е. он в три раза легче железа. Температура плавления его 660°С, теплоемкость — 0,222 кал/г, теплопроводность при 20°С – 0,52 кал/(см·с·оС), удельное электрическое сопротивление при 0°С – 0,286 Ом/(мм2·м). Механические свойства алюминия невысоки: сопротивление на разрыв – 50– 90 МПа (5–9 кгс/мм2), относительное удлинение – 25–45%, твердость – 13–28 НВ. Высокая пластичность (максимальная пластичность достигается отжигом при температурах 350–410°С) этого металла позволяет прокатывать его в очень тонкие листы (фольга имеет толщину до 0,005 мм). Алюминий хорошо сваривается, однако трудно обрабатывается резанием, имеет большую линейную усадку – 1,8%. Для повышения прочности в алюминий вводят кремний, марганец, медь и другие компоненты. Кристаллическая решетка алюминия — куб с центрированными гранями, а=0,404 Нм (4,04 А).
Алюминий и его сплавы необходимы для самолето- и машиностроения, строительства зданий, линий электропередач, подвижного состава железных дорог. В металлургии алюминий служит для получения чистых и редких металлов, а также для раскисления стали. Из него изготовляют различные емкости и арматуру для химической промышленности. В пищевой промышленности применяется упаковочная фольга из алюминия и его сплавов (для обертки кондитерских и молочных изделий). Широкое применение получила алюминиевая посуда. Алюминий хорошо подвергается различным тонким покрытиям и окраске, поэтому его используют как декоративный материал.
Исходным материалом для получения алюминиевых сплавов является первичный алюминий. Марки первичного алюминия: особой чистоты — А999, высокой чистоты — А995, А99, А97, А95, технической чистоты — А85, А8, А7, А7Е, А6, А5 ,А5Е, А0.
Механические свойства сплавов зависят от их химического состава и способов получения. Химический состав основных компонентов, входящих в сплав, можно определить по марке. Например: сплав АК7М2п – 7% кремния, 2% меди, остальное – алюминий, АК21М2,5Н2,5 – 21% кремния, 2,5% меди, 2,5% никеля, остальное – алюминий.
Для изготовления фасонных отливок предусмотрено пять групп алюминиевых литейных сплавов:
- на основе алюминий — кремний — АЛ2, АЛ4, АЛ4-1, АЛ9, АЛ9- 1, АЛ34, АК9, АК7;
- на основе алюминий — кремний — медь — АЛЗ, АЛ5, АЛ5-1, АЛ6, АЛ32, АК5М2, АК5М7, АК7М2, АК4М4;
- на основе алюминий — медь — АЛ7, АЛ19,АЛЗЗ;
- на основе алюминий — магний — АЛ8, АЛ13, АЛ22, АЛ23, АЛ23- 1, АЛ27, АЛ27-1, АЛ28;
- на основе алюминий — прочие компоненты — АЛ1, АЛ11, АЛ21, АЛ24, АЛ25, АЛЗ0, АК21М2,5Н2,5, АК4М2Ц6.
Сплав алюминия с кремнием — силумин (в чушках), используемый для производства литейных и обрабатываемых давлением алюминиевых сплавов.
Силумин изготовляется четырех марок — СИЛ-00, СИЛ-0, СИЛ-1 и СИЛ-2. Увеличение номера в обозначении марки сплава указывает на рост примесей в нем.
На поверхность чушек силумина несмываемой и невыцветаемой цветной краской наносится буква С, цвет которой соответствует определенной марке: синий – СИЛ-00, белый – СИЛ-0, красный – СИЛ-1, черный – СИЛ-2.
Алюминий и алюминиевые деформируемые сплавы, предназначенные для изготовления полуфабрикатов (листов, лент, полос, плит, профилей, панелей, прутков, труб, проволоки, штамповок и поковок) методом горячей и холодной деформации, а также слитков и слябов.
Алюминиевые антифрикционные сплавы, применяемые для изготовления монометаллических и биметаллических подшипников методом литья, а также монометаллических и биметаллических лент и полос путем прокатки с последующей штамповкой из них вкладышей, нормируются ГОСТ 14113-78. В зависимости от химического состава стандартом предусмотрены следующие марки этих сплавов с указанием назначения каждого сплава:
- АОЗ-7, АО9-2 – отливки монометаллических вкладышей и втулок;
- АО6-1, АО9-1, АО20-1 – биметаллические ленты и вкладыши; толщина антифрикционного слоя — 1 мм;
- АН2-5 – отливки вкладышей, монометаллические и биметаллические ленты; толщина антифрикционного слоя — менее 0,5 мм;
- АСМ, АМСТ – биметаллические ленты и вкладыши; толщина антифрикционного слоя — менее 0,5 мм.
5. Цинк и его сплавы
Сплав цинка с медью — латунь. Цинк — металл светло-сероголубоватого цвета, хрупкий при комнатной температуре и при 200°С, при нагревании до 100–150°С становится пластичным. В промышленности широко применяются цинковые сплавы: латуни, цинковые бронзы, сплавы для покрытия стальных изделий, изготовления гальванических элементов, типографские и др.
Цинковые сплавы используются в автомобиле- и приборостроении и других отраслях промышленности. Марки этих сплавов:
- ЦАМ4-10 — особо ответственные детали;
- ЦАМ4-1 — ответственные детали;
- ЦАМ4-1в — неответственные детали;
- ЦА4о — ответственные детали с устойчивыми размерами;
- ЦА4 — неответственные детали с устойчивыми размерами.
Цинковые антифрикционные сплавы, предназначенные для производства монометаллических и биметаллических изделий. Марки этих сплавов:
- ЦАМ9-1,5Л — отливка монометаллических вкладышей, втулок и ползунов; допустимые нагрузка — 10 МПа (100 кгс/см2), скорость скольжения — 8 м/с, температура 80 оС; если биметаллические детали получают методом литья при наличии металлического каркаса, то нагрузка, скорость скольжения и температура могут быть увеличены до 20 МПа (200 кгс/см2), 10 м/с и 100о С соответственно;
- ЦАМ9-1,5 — получение биметаллической ленты (сплав цинка со сталью и дюралюминием) методом прокатки, лента предназначена для изготовления вкладышей путем штамповки; допустимые нагрузка — до МПа (250 кгс/см2), скорость скольжения — до 15 м/с, температура 100о С;
- ЦАМ10-5Л — отливка подшипников и втулок; допустимыя нагрузка – 10 МПа (100 кгс/см2), скорость скольжения — 8 м/с, температура 80о С;
- ЦАМ10-5 – прокатка полос для направляющих скольжения металлорежущих станков и других изделий; рабочие нагрузка до 20 МПа (200 кгс/см2), скорость скольжения — до 8 м/с, температура 80о С.
6. Титан и его сплавы
Титан — металл серебристо-белого цвета, один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61%) он занимает десятое место. Титан легок (плотность его 4,5 г/см3), тугоплавок (температура плавления 1665°С), весьма прочен и пластичен. На поверхности его образуется стойкая окисная пленка, за счет которой он хорошо сопротивляется коррозии в пресной и морской воде, а также в некоторых кислотах. Титан устойчив против кавитационной коррозии и под напряжением. При температурах до 882°С он имеет гексагональную плотно упакованную решетку, при более высоких температурах — объемно-центрированный куб. Механические свойства листового титана зависят от химического состава и способа термической обработки. Предел прочности его – 300–1200 МПа (30–120 кгс/мм2), относительное удлинение – 4–30%. Предел прочности титановых сплавов – 350–1000 МПа (35–100 кгс/мм2), относительное удлинение – 4–10%.
Благодаря своим замечательным свойствам титан и его сплавы нашли широкое применение в самолето-, ракето- и судостроении. Из титана и его сплавов изготовляют полуфабрикаты: листы, трубы, прутки и проволоку. Двуокись титана применяется при производстве белил и эмалей.
Для изготовления полуфабрикатов предназначены титан и титановые сплавы, обрабатываемые давлением. В зависимости от химического состава предусмотрены следующие марки: ВТ1-00, ВТ1-0, ОТ4-0, ОТ4-1, ОТ4, ВТ5, ВТ5-1, ВТ6, ВT3-1, ВТ9, ВТ14, ВТ16, ВТ20, ВТ22, ПТ-7М, ПТ-ЭВ, ПT-1M. Железо, кремний и цирконий в зависимости от марки сплава могут быть основными компонентами или примесями.
7. Припои
Припои — металл или сплав, предназначенный для соединения деталей пайкой. Температура плавления припоев должна быть ниже температуры плавления материалов паяемых деталей.
Припои разделяют на мягкие (tпл≤400 °С) и твердые (tпл >400 °С). Основные материалы мягких припоев — сплавы олова и свинца. Их обозначение (например, ПОС 61) расшифровывается так: П — припой, ОС — оловянно-свинцовый, 61 — содержание олова в процентах. Твердые припои выполняют на серебряной основе (например, ПСр 72, где 72 — содержание серебра, %) или на медно-латунной и медно-никелевой основах. Серебряные припои применяют для пайки черных и цветных металлов, кроме сплавов алюминия и магния, а припои на медной основе — для пайки углеродистых и легированных сталей, никеля и его сплавов.
Таблица 4. Области применения оловянно-свинцовых припоев
Цветные металлы - свойства, группы, применение
Цветные металлы — особый класс нержавеющих металлов и сплавов, в составе которых нет железа. Сюда входят олово, медь, цинк, никель, серебро, золото. Металлы называются цветными, потому что каждый из них имеет определенный окрас. Они отличаются прочностью и долговечностью, поскольку формируют на своей поверхности защитную оксидную пленку и проявляют устойчивость к негативным факторам внешней среды.
В начале XX века насчитывалось около 20 наименований нежелезных металлов, а сегодня их количество уже превышает 70. Добычей, обогащением руд и выплавкой таких материалов занимается цветная металлургия. Способ производства — высокотемпературная плавка. За каждым изделием стоит долгая и кропотливая работа — металлы подвергаются механической обработке и проходят через ковку, сварку, прессование, штамповку, грунтование и прочие процессы.
Свойства
Цветные металлы обладают высокой тепло– и электропроводностью, коррозионной стойкостью, стабильностью в температурном диапазоне и инертностью к воздействию агрессивной среды. В отличие от железа, они не реагируют на влагу и кислород, растворяют газы при нагревании (кроме интертных) и с легкостью взаимодействуют с ними.
Группы
Ученые подразделяют цветные металлы на несколько групп:
- Тяжелые. Олово, медь, никель, цинк, свинец и т.п. Добываются из сульфидных и окисленных полиметаллических руд. Мировое производство металлов данной категории достигает нескольких миллионов тонн в год.
- Легкие. Алюминий, титан, магний, натрий, калий, кальций, бериллий, стронций, барий и другие элементы этой группы имеют самую низкую удельную массу среди остальных нежелезных металлов.
- Благородные. Золото, серебро, платина, рутений, родий, палладий, осмий и иридий входят в число редких драгоценных металлов и отличаются повышенной стойкостью к окислению и коррозии.
- Малые. Представители группы — ртуть, кобальт, мышьяк, сурьма, висмут и т.п. Добываются в небольшом количестве вместе с тяжелыми металлами.
- Тугоплавкие. Известны как самые износостойкие металлы. К ним относится цирконий, ванадий, хром, вольфрам, молибден и другие элементы с высокой плотностью и температурой плавления.
- Редкоземельные. Представлены 17 металлами серебристо–белого цвета: гольмий, тулий, скандий, самарий, европий, диспрозий, лютеций, прометий и т.д. Обладают одинаковыми химическими свойствами.
Применение
В последние годы спрос на цветные металлы резко увеличился. Они влияют на развитие многих отраслей промышленности и широко применяются в авиа– и машиностроении, радиоэлектронике, ракетной и атомной технике, сфере высоких технологий, а также в быту.
Нежелезные металлы — незаменимое сырье в производстве металлопроката, крупных конструкций и небольших изделий.
Вы можете заказать цветные металлы и сплавы на нашем сайте. На странице каталога представлен широкий ассортимент товаров с подробным описанием и ценами. Стоимость за 1 кг зависит от вида материала и варьируется от 135 до 2200 рублей. Денежные средства принимаем на расчетный счет. Подробнее об условиях покупки цветного металла в Москве и регионах России читайте здесь.
Цветные металлы и их сплавы
Цветная металлургия занимается добычей руд цветных металлов, а также обогащением и выплавкой чистых металлов и их сплавов. Цветные металлы имеют множество ценных свойств: малую плотность (магний, алюминий), высокую теплопроводность (медь), устойчивость к коррозии (титан) и др. Условно они делятся на тяжелые, легкие, благородные и редкие.
Группы металлов
К тяжелым металлам относятся вещества, которые отличаются высокой плотностью. Это кобальт, хром, медь, свинец и др. Некоторые из них (свинец, цинк, медь) применяют в чистом меде, но обычно используют в качестве легирующих элементов.
Плотность легких металлов — менее 5 г/см3. В этой группе относятся алюминий, натрий, калий, литий и др. Их используют как раскислители при изготовлении чистых металлов и сплавов, а также применяют в пиротехнике, медицине, фототехнике и других областях.
Благородные металлы отличаются высокой устойчивостью к коррозии. В данную группу входят платина, золото, серебро, осмий, палладий, родий, иридий и рутений. Они применяются в медицине, электротехнике, приборостроении, ювелирном деле.
Редкие металлы объединены в отдельную группу, так как имеют особые свойства, не характерные для других металлов. Это уран, вольфрам, селен, молибден и др.
Также выделяется группа широко применяемых металлов. В нее входят титан, алюминий, медь, олово, магний и свинец.
Сплавы на основе цветных металлов бывают литейные и деформируемые. Они различаются технологией создания заготовок: из литейных производят детали с помощью литья в металлические или песчаные формы, а из деформируемых делают листы, фасонные профили, проволоку и другие элементы. В этом случае используются методы прессования, ковки и штамповки. Литейные сплавы относятся к металлургии тяжелых металлов, деформируемые — к металлургии легких металлов.
Алюминий и его сплавы
Алюминий — цветной металл, который имеет серебристо-белый оттенок и плавится при температуре 650°С. В периодической системе ему соответствует символ Al. Этот элемент занимает третье место по распространенности среди всех пород в земной коре (на первом месте — кислород, на втором — кремний). В атмосферных условиях на поверхности алюминия образуется оксидная пленка, препятствующая появлению коррозии.
Важные свойства алюминия:
- Низкая плотность — всего 2,7г/см3 (например, у меди — 8,94г/см3).
- Высокая электрическая проводимость (37*106 См/м) и теплопроводность (203,5 Вт/(м·К)).
- Низкая прочность в чистом виде — 50 МПа.
- Структура кристаллической решетки — кубическая гранецентрированая.
Металл легко обрабатывается давлением. Находит широкое применение в электропромышленности: из алюминия изготавливают проводники электрического тока. При производстве стали его используют для раскисления. Из алюминия также делают посуду, однако она не подходит для приготовления солений и хранения кисломолочных продуктов — элемент неустойчив в щелочной и кислой среде. Некоторые стальные детали покрывают алюминием (процесс алитирования), чтобы повысить их жаростойкость. Из-за невысокой прочности алюминий практически не применяется в чистом виде.
При маркировке алюминия используется буква А в сочетании с числом, которое указывает на содержание металла. Например, марка A99 содержит 99,95% алюминия, а марка А99 — 99,99%. Существует также марка особой чистоты — А999, в которой 99,999% алюминия.
Деформируемые сплавы алюминия
Деформируемые алюминиевые сплавы делятся на упрочняемые и неупрочняемые.
Упрочняемые деформируемые сплавы алюминия — это дуралюмины (система А-Сu-Mg) и высокопрочные сплавы (Аl-Сu-Mg-Zn). Высокие механические свойства и небольшой удельный вес позволяют широко применять эти сплавы в области машиностроения, особенно — в изготовлении деталей для самолетов.
Основными легирующими элементами для дуралюминов служат магний и медь. Эти сплавы маркируются буквой Д с числом. Из Д1 делают лопасти винтов, Д16 используется для лонжеронов, шпангоутов, обшивки самолетов, а Д 17 — для крепежных заклепок.
Высокопрочные сплавы, помимо алюминия, меди и магния, содержат цинк. Обозначаются буквой В и числом, применяются для изготовления деталей сложной конфигурации, лопастей вертолетов, высоконагруженных конструкций.
Неупрочняемые деформируемые алюминиевые сплавы — это сплавы алюминия с марганцем (маркировка — АМц1) и с магнием (AМг2 и АМг3). Они хорошо обрабатываются сваркой, вытяжкой, прокаткой, горячей и холодной штамповкой. Отличаются высокой пластичностью, но при этом не очень прочные. Они выпускаются преимущественно в виде листов, которые применяются для изготовления изделий сложной формы (заклепки, рамы и др.).
Литейные сплавы на основе алюминия
Наиболее широкое применение получили литейные сплавы алюминия и кремния, которые называются силуминами. Они содержат более 4,5% кремния и обозначаются буквами АК с номером марки. Силумины сочетают малый удельный вес с высокими механическими и литейными свойствами. Они применяются для сложного литья авто-, мото- и авиадеталей, а также для производства некоторых видов бытовой техники — мясорубок, теплообменников, санитарно-технических арматур и др.
Сплавы на основе меди
Медь — цветной металл, который на поверхности имеет красный оттенок, а в изломе — розовый. В периодической системе Д.И. Менделеева обозначается символом Cu. В чистом виде металл имеет высокую степень пластичности, электро- и теплопроводности, а также характеризуется устойчивостью к коррозии. Это позволяет использовать медь и ее сплавы для кровель ответственных зданий.
Важные свойства металла:
- Температура плавления — 1083°С.
- Структура кристаллической решетки — кубическая гранецентрированая.
- Плотность — 8,94 г/см3.
Благодаря пластичности медь легко поддается обработке давлением, но плохо режется. Из-за большой усадки металл обладает низкими литейными свойствами. Любые примеси, за исключением серебра, оказывают большое влияние на вещество и снижают его электрическую проводимость.
При маркировке меди используется буква М с числом, которое обозначает марку. Чем меньше номер марки, тем больше в ней чистого вещества. Например, М00 содержит 99,99 % меди, а М4 — 99 %.
Наиболее широкое применение в технике находят две группы медных сплавов — бронзы и латуни.
Бронзы
Бронзы — сплавы на основе меди, в которых легирующим элементом является любой металл, кроме цинка. Наиболее часто применяются сплавы меди со свинцом, оловом, алюминием, кремнием и сурьмой.
Все бронзы по химическому составу делятся на оловянные и специальные, или безоловянные, то есть не содержащие в своем составе олова.
Оловянные бронзы отличаются наиболее высокими литейными, механическими и антифрикционными свойствами, а также имеют повышенную устойчивость к коррозии. Из-за высокой стоимости олова эти сплавы применяют ограниченно.
Специальные бронзы часто используют в качестве заменителей оловянных, и некоторые имеют лучшие технологические свойства. Выделяются следующие виды специальных бронз:
- Алюминиевые. Они содержат от 5% до 11% алюминия, а также марганец, никель, железо и другие металлы. Эти сплавы обладают более высокими механическими свойствами, чем оловянные бронзы, однако их литейные свойства ниже. Алюминиевые бронзы служат для изготовления мелких ответственных деталей.
- Свинцовистые. В их состав входит около 30% свинца. Эти сплавы имеют высокие антифрикционные свойства, поэтому широко применяются в производстве подшипников.
- Кремнистые. Эти бронзы содержат примерно 4% кремния, легируются никелем и марганцем. По своим механическим свойствам почти соответствуют сталям. Применяются, в основном, для изготовления пружинистых элементов в судостроении и авиации.
- Бериллиевые. Содержат до 2,3% бериллия, характеризуются высокой упругостью, твердостью и износостойкостью. Эти бронзы используются для пружин, которые работают в условиях агрессивной среды.
Все бронзы имеют хорошие антифрикционные показатели, коррозионную стойкость, высокие литейные свойства, которые позволяют использовать сплавы для изготовления памятников, отливки колоколов и др.
Латуни
Магний — цветной металл, который имеет серебристый оттенок и обозначается символом Mg в периодической системе.
Важные свойства магния:
- Температура плавления — 650°С.
- Плотность — 1,74 г/см3.
- Твердость — 30-40 НВ.
- Относительное удлинение — 6-17%.
- Временное сопротивление — 100-190 МПа.
Металл обладает высокой химической активностью, в атмосферных условиях неустойчив к образованию коррозии. Он хорошо режется, воспринимает ударные нагрузки и гасит вибрации. Так как магний имеет низкие механические свойства, он практически не применяется в конструкционных целях, зато используется в пиротехнике, химической промышленности и металлургии. Он часто выступает в качестве восстановителя, легирующего элемента и раскислителя при изготовлении сплавов.
При маркировке используются буквы Мг с цифрами, которые обозначают процентное содержание магния. Например, в марке Мг96 содержится 99,96% магния, а в Мг90 — 99,9 %.
Сплавы на основе магния характеризуются высокой удельной прочность (предел прочности — до 400 МПа). Они хорошо режутся, шлифуются, полируются, куются, прессуются, прокатываются. Из недостатков магниевых сплавов — низкая устойчивость к коррозии, плохие литейные свойства, склонность воспламеняться при изготовлении.
Деформируемые сплавы магния
Наиболее распространены три группы сплавов на основе магния.
Сплавы магния, легированные марганцем
Содержат до 2,5% марганца, не упрочняются термической обработкой. У них хорошая коррозионная стойкость. Так как эти сплавы легко свариваются, они применяются для сварных деталей несложной конфигурации, а также для деталей арматуры, масляных и бензиновых систем, которые не испытывают больших нагрузок. Среди данной группы — сплавы МА1 и МА8.
Сплавы системы Mg-Al-Zn-Mn
В состав этих сплавов, помимо магния и марганца, входят алюминий и цинк. Они заметно повышают прочность и пластичность, благодаря чему сплавы подходят для изготовления штампованных и кованых деталей сложных форм. К этой группе относятся марки МА2-1 и МА5.
Сплавы системы Mg-Zn
Сплавы на основе магния и цинка дополнительно легируются кадмием, цирконием и редкоземельными металлами. Это высокопрочные магниевые сплавы, которые применяются для деталей, испытывающих высокие нагрузки (в самолетах, автомобилях, станках и др.). К данной группе относятся сплавы марок МА14, МА15, МА19.
Литейные сплавы магния
Самая распространенная группа литейных магниевых сплавов относится к системе Mg-Al-Zn. Эти сплавы практически не поглощают тепловые нейтроны, поэтому широко применяются в атомной технике. Из них также делают детали самолетов, ракет, автомобилей (двери кабин, корпуса приборов, топливные баки и др.). Сплавы магния, цинка и алюминия используют в приборостроении и в изготовлении кожухов для электронной аппаратуры. К данной группе относятся марки МЛ5 и МЛ6.
Высокопрочные литейные магниевые сплавы отличаются лучшими механическими и технологическими свойствами. Они применяются в авиации для изготовления нагруженных деталей. К данной группе относятся сплавы МЛ12 (магний, цинк и цирконий), МЛ8 (магний, цинк, цирконий и кадмий), МЛ9 (магний, цирконий, неодим), МЛ10 (магний, цинк, цирконий, неодим).
Цинк и его сплавы
Цинк — цветной металл серо-голубоватого оттенка. В системе Д. И. Менделеева обозначается символом Zn. Он обладает высокой вязкостью, пластичностью и коррозионной стойкостью. Важные свойства металла:
- Небольшая температура плавления — 419 °С.
- Высокая плотность — 7,1 г/см3.
- Низкая прочность — 150 МПа.
В чистом виде цинк используется для оцинкования стали с целью защиты от коррозии. Применяется в полиграфии, типографии и гальванике. Его часто добавляют в сплавы, преимущественно в медные.
Существуют следующие марки цинка: ЦВ00, ЦВ0, ЦВ, Ц0А, Ц0, Ц1, Ц2 и Ц3. ЦВ00 — самая чистая марка с содержанием цинка в 99,997%. Самый низкий процент чистого вещества в марке Ц3 — 97,5%.
Деформируемые цинковые сплавы
Деформируемые сплавы цинка используются для производства деталей методами вытяжки, прессования и прокатки. Они обрабатываются в горячем состоянии при температуре от 200 до 300 ?С. В качестве легирующих элементов выступают медь (до 5%), алюминий (до 15%) и магний (до 0,05%).
Деформируемые цинковые сплавы характеризуются высокими механическими свойствами, благодаря которым часто используются в качестве заменителей латуней. Они обладают высокой прочностью при хорошей пластичности. Сплавы цинка, алюминия и меди наиболее распространены, так как они имеют самые высокие механические свойства.
Литейные цинковые сплавы
В литейных цинковых сплавах легирующими элементами также выступают медь, алюминий и магний. Сплавы делятся на 4 группы:
- Для литья под давлением.
- Антифрикционные.
- Для центробежного литья.
- Для литья в кокиль.
Слитки легко полируются и принимают гальванические покрытия. Литейные цинковые сплавы имеют высокую текучесть в жидком состоянии и образуют плотные отливки в застывшем виде.
Литейные сплавы получили широкое применение в автомобильной промышленности: из них делают корпуса насосов, карбюраторов, спидометров, радиаторных решеток. Сплавы также используются для производства некоторых видов бытовой техники, арматуры, деталей приборов.
В России цветная металлургия — одна из самых конкурентоспособных отраслей промышленности. Многие отечественные компании являются мировыми лидерами в никелевой, титановой, алюминиевой подотраслях. Эти достижения стали возможными благодаря крупным инвестициям в цветную металлургию и применению инновационных технологий.
Алюминий и его сплавы: характеристика, свойства, применение
Алюминий — серебристо-белый легкий парамагнитный металл. Впервые получен физиком из Дании Гансом Эрстедом в 1825 году. В периодической системе Д. И. Менделеева имеет номер 13 и символ Al, атомная масса равна 26,98.
Производство алюминия
Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.
Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.
Алюминиевые сплавы
Наиболее распространенные элементы в составе алюминиевых сплавов — медь, марганец, магний, цинк и кремний. Реже встречаются сплавы с титаном, бериллием, цирконием и литием.
Алюминиевые сплавы условно разделяют на две группы: литейные и деформируемые.
Для изготовления литейных сплавов расплавленный алюминий заливают в литейную форму, которая соответствует конфигурации получаемого изделия. Эти сплавы часто содержат значительные примеси кремния для улучшения литейных свойств.
Деформируемые сплавы сначала разливают в слитки, а затем придают им нужную форму.
- Прокаткой, если необходимо получить листы и фольгу.
- Прессованием, если нужно получить профили, трубы и прутки.
- Формовкой, чтобы получить сложные формы полуфабрикатов.
- Ковкой, если требуется получить сложные формы с повышенными механическими свойствами.
Марки алюминиевых сплавов
- А — технический алюминий;
- Д — дюралюминий;
- АК — алюминиевый сплав, ковкий;
- АВ — авиаль;
- В — высокопрочный алюминиевый сплав;
- АЛ — литейный алюминиевый сплав;
- АМг — алюминиево-магниевый сплав;
- АМц — алюминиево-марганцевый сплав;
- САП — спеченные алюминиевые порошки;
- САС — спеченные алюминиевые сплавы.
- М — сплав после отжига (мягкий);
- Т — после закалки и естественного старения;
- А — плакированный (нанесен чистый слой алюминия);
- Н — нагартованный;
- П — полунагартованный.
Виды и свойства алюминиевых сплавов
Алюминиево-магниевые сплавы
Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.
В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.
Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.
Алюминиево-марганцевые сплавы
Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.
Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.
Сплавы алюминий-медь-кремний
Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.
Алюминиево-медные сплавы
Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.
Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.
Алюминий-кремниевые сплавы
Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.
Сплавы алюминий-цинк-магний
Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.
Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.
Авиаль
Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».
Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.
Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.
Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.
Физические свойства
- Плотность — 2712 кг/м 3 .
- Температура плавления — от 658°C до 660°C.
- Удельная теплота плавления — 390 кДж/кг.
- Температура кипения — 2500 °C.
- Удельная теплота испарения — 10,53 МДж/кг.
- Удельная теплоемкость — 897 Дж/кг·K.
- Электропроводность — 37·10 6 См/м.
- Теплопроводность — 203,5 Вт/(м·К).
Химический состав алюминиевых сплавов
Алюминиевые сплавы | |||||||||||||
Марка | Массовая доля элементов, % | Плотность, кг/дм³ | |||||||||||
ГОСТ | ISO 209-1-89 | Кремний (Si) | Железо (Fe) | Медь (Cu) | Марганец (Mn) | Магний (Mg) | Хром (Cr) | Цинк (Zn) | Титан (Ti) | Другие | Алюминий не менее | ||
Каждый | Сумма | ||||||||||||
АД000 | A199,8 1080A | 0,15 | 0,15 | 0,03 | 0,02 | 0,02 | 0,06 | 0,02 | 0,02 | 99,8 | 2,7 | ||
АД00 1010 | A199,7 1070A | 0,2 | 0,25 | 0,03 | 0,03 | 0,03 | 0,07 | 0,03 | 0,03 | 99,7 | 2,7 | ||
АД00Е 1010Е | ЕА199,7 1370 | 0,1 | 0,25 | 0,02 | 0,01 | 0,02 | 0,01 | 0,04 | Бор:0,02 Ванадий+титан:0,02 | 0,1 | 99,7 | 2,7 |
Применение алюминия
Ювелирные изделия
В далеком прошлом из-за высокой стоимости алюминия его использовали для изготовления ювелирных изделий. Так, весы с алюминиевыми и золотыми чашами были подарены Д. И. Менделееву в 1889 г.
Когда себестоимость алюминия снизилась, мода на ювелирные изделия из этого металла прошла. Но и в наши дни его используют для изготовления бижутерии. В Японии, например, алюминием заменяют серебро при производстве национальных украшений.
Столовые приборы
По-прежнему пользуются популярностью столовые приборы и посуда из алюминия. В частности, в армии широко распространены алюминиевые фляжки, котелки и ложки.
Стекловарение
Алюминий широко применяют в стекловарении. Высокий коэффициент отражения и низкая стоимость вакуумного напыления — основные причины использования алюминия при изготовления зеркал.
Пищевая промышленность
Военная промышленность
Из-за небольшого веса и низкой стоимости алюминий широко применяют при изготовлении ручного стрелкового оружия — автоматов и пистолетов.
Ракетная техника
Алюминий и его соединения используют в качестве ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах.
Алюмоэнергетика
В алюмоэнергетике алюминий используют для производства водорода и тепловой энергии, а также выработки электроэнергии в воздушно-алюминиевых электрохимических генераторах.
Легкие цветные металлы
Общее определяющее свойство любых продуктов цветной металлургии – полное либо крайне низкое содержание железа в их составе. Этим обусловлена способность таких элементов или сплавов на их основе образовывать оксидную защитную пленку и проявлять высокую стойкость к коррозии. Благодаря данному качеству изделия, изготовленные из данных материалов, обретают дополнительную функциональную ценность, находят широкое применение в различных отраслях промышленности и быту.
Группа легких цветных металлов
К наиболее распространенным способам классификации цветмета по его физико-химическим свойствам относится распределение на семь групп, среди которых выделяются так называемые тяжелые и легкие цветные металлы. Данное условное определение основано на показателе плотности материала. В основной список входят алюминий, магний, титан, литий, олово, бериллий. К этой же группе относятся кадмий, таллий, галлий, висмут, индий и другие элементы. Производство легких сплавов является крайне энергозатратным, поэтому предприятия, специализирующиеся на этой области металлургии, размещаются непосредственно вблизи источников дешевой энергии.
Специфические особенности
Несмотря на принадлежность к общей группе, разные легкие цветные металлы имеют специфические свойства, отличающие их друг от друга, а также обуславливающие ценность конкретного материала и область его применения. Чтобы лучше понять эти нюансы, стоит подробнее рассмотреть основных представителей данного вида цветмета.
Пожалуй, наиболее типичным примером легкого цветного металла, хорошо знакомого самому обширному кругу пользователей, является алюминий. Материал пластичен и легко обрабатывается, за счет чего чрезвычайно популярен в широчайшем спектре производств – от космической и авиационной промышленности до изготовления кухонной посуды. Окисная пленка надежно защищает поверхность алюминиевых изделий от негативного воздействия окружающей среды, агрессивных веществ. К главным свойствам относятся:
- высокая тепло- и электропроводность;
- стойкость к коррозии;
- высокая пластичность;
- малая плотность.
В отличие от алюминия, магний характеризуется низкой пластичностью, поэтому в качестве конструкционного материала практически не рассматривается. Он обладает следующими свойствами:
- способность к образованию гидроокиси;
- высокая температура плавления;
- повышенная стойкость к коррозии;
- усиление механических показателей.
Самый легкий цветной металл – литий, который, как правило, используется для сплавов и незаменим для работ с оптикой, лазерами, а также производства анодов. При изготовлении электролитов для щелочных аккумуляторов применяется гидроксид, а в керамическом производстве – силикат и алюминат лития. Свойства этого элемента делают его весьма полезным для металлургической и военной промышленности, а также для медицины, фармацевтики, термоядерной отрасли.
Сплавы с участием легких цветных металлов
В чистом виде цветмет находит применение не так часто, как в качестве составляющих разнообразных сплавов. К примеру, хорошо знакомая бронза есть не что иное, как сочетание меди с алюминием, оловом, марганцем, свинцом и рядом других элементов. За счет хороших литейных характеристик материал широко используется для изготовления сантехнического оборудования (вентилей, кранов), осветительных устройств, предметов декора и прочих изделий.
Силумин также обладает высокими литейными характеристиками, сочетает свойства алюминия и кремния – пластичность, гибкость, твердость. Путем модифицирования эти механические характеристики силуминов можно заметно улучшить, благодаря повышению степени дисперсности кристаллов. Еще один сплав с алюминиевой основой – дюралюминий. Наряду с алюминием здесь присутствуют марганец, медь, кремний, магний и другие элементы, относящиеся к разным группам. Технические свойства дюралюминия повышаются посредством термической обработки.
Особенности сдачи легких сплавов
В настоящее время физические и юридические лица имеют возможность получить прибыль от сдачи цветмета в специализированные пункты приема. Стоимость лома определяется рядом факторов, среди которых качество материала, чистота его химического состава, категория и прочие параметры. Также имеют значение актуальные расценки на рынке, тарифы конкретной принимающей компании.
Формальная сторона вопроса сдачи любого лома, в том числе легких цветных металлов, имеет свою специфику. Право на такое мероприятие есть у каждого, но реализуется оно по-разному. Например, если сдача цветмета производится юридическим лицом – организацией, предприятием или представителем малого бизнеса (ИП), – то потребуется специальная лицензия. На физических лиц данное требование не распространяется, однако следует учитывать несколько правил:
- к приемке допускается только собственный лом (при наличии документов, подтверждающих право на владение);
- подлежащий сдаче цветмет должен входить в реестр материалов, принимаемых без лицензии;
- сдача лома нелегальным пунктам приема может иметь весьма неприятные последствия в соответствии с действующим законодательством.
Помимо сугубо меркантильного интереса сдача цветных металлов привлекательна с точки зрения экологии, сохранения запасов природных ресурсов. Переработанный лом снова идет на изготовление необходимой продукции, причем производство из вторсырья оказывается дешевле, чем при использовании руды. С учетом того, что потребность промышленности в ломе неуклонно растет, тогда как природные запасы сырья стремительно сокращаются, замкнутый производственный цикл является наиболее рациональным. Таким образом, каждый, кто сдает сдает лом цветмета, не только повышает собственное благосостояние, но и действует во благо общества в целом.
Читайте также: