Красная граница фотоэффекта для данного металла

Обновлено: 05.01.2025

Внутренний фотоэффект-это образование свободных зарядов в полупроводниках под действием электромагнитного излучения (света).

Внешний фотоэффект-это вылет электронов с поверхности вещества (металла) под действием излучения (света).

Уравнение Эйнштейна для фотоэффекта.

Еизл.=hν = hc/λ - энергия излучения(фотона)

Екин=meVe 2 - кинетическая энергия электрона, вылетевшего из вещества благодаря фотоэффекту

Авых.-работа выхода электрона из вещества

φ-потенциал работы выхода(вольт) е=1,6*10 -19 Кл- заряд электрона1э= 1,6*10 -19 Дж

Энергия фотона Еизл , падающего на поверхность вещества, расходуется на совершение электроном работы выхода Авых. и приобретение электроном кинетической энергии Екин.

Условия прохождения фотоэффекта

ñ Энергия излучения больше либо равна работе выхода E изл ≥ Aвых

ñ Частота излучения больше либо равна частоте красной границы фотоэффекта νизл≥ νкрасной границы

ñ Длина волны излучения меньше либо равна длине волны красной границы фотоэффекта λизл≥λкрасной границы

Красная граница фотоэффекта - это минимальная частота, или соответствующая длинна волны, при которой начинается фотоэффект.

h ν = A, откуда νкрасной границыmin = A/h

νminкр.гр.- частота красной границы фотоэффекта или минимальная частота при которой начинается фотоэффект

38 Строение атома. Модели атома. Постулаты Бора.

Модель атома Томсона

1897 г.- Дж. Томсоном выдвинута модель строения атома. Атом имеет форму шара. По всему объему атома с посто­янной плотностью распределен положительный заряд. Внутри (как изюм в кексе) расположены электроны. В целом атом электрически нейтрален. Когда электроны колеблются относительно центра сферы, атом излу­чает свет.

Опыт Резерфорда по рассеянию альфа-частиц

1906 г. - Э. Резерфорд проводит опыты для проверки состоятельности модели атома Томсона:


В вакууме в свинцовом стакане располагался источник радиоактивного излучения (альфа-частиц) - полоний(Ро). Тонкая золотая фольга бомбардировалась положительно заряженн­ыми альфа-частицами, скорость кото­рых около 20 ООО км /с. На экране регистрировались вспышки от попадания на него альфа-частиц.
Кроме основного экрана следы от альфа-частиц были зафиксированы и на бо­ковых экранах.

Зная о том, как взаимодействуют одноименно заря­женные частицы, а они отталкиваю­тся друг от друга, можно объяс­нить ре­зультаты опыта - частицы, которые отклонялись, пролетали недалеко от ядра
- частицы, которые отражались, попадали точно в ядро
- частицы, которые не испытывали отклонений, проле­тали далеко от ядра
Понимание причин отклонения альфа-частиц позволило Э.Резерфорду выдвинуть собствен­ную планетарную (иначе ядерную) модель строения атома.
Планетарная модель атома:
- это положительно заряженное ядро в центре атома и электроны на орбитах вокруг ядра
- характер движения электронов определяется действием кулоновских сил со стороны ядра
- диаметр ядра в 100000 раз меньше диаметра атома
- масса ядра составляет 99,4% от массы всего атома
- заряд ядра по модулю равен сумме зарядов электронов, поэтому атом в целом нейтрален.

Красная граница фотоэффекта для данного металла

Задания Д32 C3 № 4793

Уровни   энергии   электрона   в   атоме    водорода   задаются    формулой
эВ, где . При переходе атома из состояния в состояние атом испускает фотон. Попав на поверхность фотокатода,этот фотон выбивает фотоэлектрон. Частота света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода, Гц. Чему равен максимально возможный импульс фотоэлектрона?

Согласно постулатам Бора, свет излучается при переходе атома на более низкие уровни энергии, при этом фотоны несут энергию, равную разности энергий начального и конечного состояний. Таким образом, испущенный фотон имел нес энергию

Согласно уравнению фотоэффекта, максимальная кинетическая энергия вылетающих фотоэлектронов связана с энергией фотона и работой выхода соотношением

Работа выхода связана с частотой красной границы соотношением:

Таким образом, максимально возможный импульс фотоэлектрон равен

Задания Д32 C3 № 4828

Уровни энергии электрона в атоме водорода задаются формулой эВ, где . При переходе атома из состояния в состояние атом испускает фотон. Попав на поверхность фотокатода,этот фотон выбивает фотоэлектрон. Длина волны света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода, Чему равен максимально возможный модуль импульса фотоэлектрона?

Работа выхода связана с длиной волны красной границы соотношением:

Задания Д32 C3 № 4898

Уровни   энергии   электрона   в   атоме    водорода   задаются    формулой
 эВ, где . При переходе атома из состояния в состояние атом испускает фотон. Попав на поверхность фотокатода,этот фотон выбивает фотоэлектрон. Частота света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода, Гц. Чему равна максимальная возможная кинетическая энергия фотоэлектрона?

Таким образом, максимально возможная кинетическая энергия фотоэлектрон равна

Источник: ЕГЭ по физике 06.06.2013. Основная волна. Сибирь. Вариант 5., ЕГЭ по физике 06.06.2013. Основная волна. Сибирь. Вариант 6.

Внешний и внутренний фотоэффект. Уравнение Эйнштейна. Красная граница фотоэффекта

Примеры решенных задач по физике на тему "Фотоэффект"

Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь похожее условие и решить свою по аналогии. Загрузка страницы может занять некоторое время в связи с большим количеством рисунков. Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.

Явление фотоэффекта заключается в испускании веществом электронов под действием падающего света. Теория фотоэффекта разработана Эйнштейном и заключается в том, что поток света представляет собой поток отдельных квантов(фотонов) с энергией каждого фотона h n . При попадании фотонов на поверхность вещества часть из них передает свою энергию электронов. Если этой энергия больше работы выхода из вещества, электрон покидает металл. Уравнение эйнштейна для фотоэффекта: где — максимальная кинетическая энергия фотоэлектрона.

Длина волны красной границы фотоэффекта для некоторого металла составляет 307 нм. Максимальная кинетическая энергия фотоэлектронов – 1 эВ. Найти отношение работы выхода электрона к энергии падающего фотона.

Пример решения задачи на тему фотоэффект

Частота света красной границы фотоэффекта для некоторого металла составляет 6*10 14 Гц, задерживающая разность потенциалов для фотоэлектронов – 2В. Определить частоту падающего света и работу выхода электронов.

Пример решения задачи на тему фотоэффект

Работа выхода электрона из металла составляет 4,28эВ. Найти граничную длину волны фотоэффекта.

Пример решения задачи на тему фотоэффект

На медный шарик радает монохроматический свет с длиной волны 0,165 мкм. До какого потенциала зарядится шарик, если работа выхода электрона для меди 4,5 эВ?

Пример решения задачи на тему фотоэффект

Работа выхода электрона из калия составляет 2,2эВ, для серебра 4,7эВ. Найти граничные длину волны фотоэффекта.

Пример решения задачи на тему фотоэффект

Пример решения задачи на тему фотоэффект

Длина волны радающего света 0,165 мкм, задерживающая разность потенциалов для фотоэлектронов 3В. Какова работа выхода электронов?

Красная граница фотоэффекта для цинка 310 нм. Определить максимальную кинетическую энергию фотоэлектронов, если на цинк падает свет с длиной волны 200нм.

Пример решения задачи на тему фотоэффект

На металл с работой выхода 2,4эВ падает свет с длиной волны 200нм. Определить задерживающую разность потенциалов.

Пример решения задачи на тему фотоэффект

На металл падает свет с длиной волны 0,25 мкм, задерживающая разность потенциалов при этом 0,96В. Определить работу выхода электронов из металла.

Пример решения задачи на тему фотоэффект

При изменении длины волны падающего света максимальные скорости фотоэлектронов изменились в 3/4 раза. Первоначальная длина волны 600нм, красная граница фотоэффекта 700нм. Определить длину волны после изменения.

Пример решения задачи на тему фотоэффект

Пример решения задачи на тему фотоэффект

Работы выхода электронов для двух металлов отличаются в 2 раза, задерживающие разности потенциалов - на 3В. Определить работы выхода.

Пример решения задачи на тему фотоэффект

Максимальная скорость фотоэлектронов равно 2,8*10 8 м/с. Определить энергию фотона.

Пример решения задачи на тему фотоэффект

Энергии падающих на металл фотонов равны 1,27 МэВ. Найти максимальную скорость фотоэлектронов.

Пример решения задачи на тему фотоэффект

Максимальная скорость фотоэлектронов равно 0,98с, где с - скорость света в вакууме. Найти длину волны падающего света.

Пример решения задачи на тему фотоэффект

Энергия фотона в пучке света, падающего на поверхность металла, равно 1,53 МэВ. Определить максимальную скорость фотоэлектронов.

Пример решения задачи на тему фотоэффект

На шарик из металла падает свет с длиной волны 0,4 мкм, при этом шапик заряжается до потенциала 2В. До какого потенциала зарядится шарик, если длина волны станет равной 0,3 мкм?

Пример решения задачи на тему фотоэффект

После изменения длины волны падающего света в 1,5 раза задерживающая разность потенциалов изменилась с 1,6В до 3В. Какова работа выхода?

Пример решения задачи на тему фотоэффект

Красная граница фотоэффекта 560нм, частота падающего света 7,3*10 14 Гц. Найти максимальную скорость фотоэлектронов.

Пример решения задачи на тему фотоэффект

Красная граница фотоэффекта 2800 ангстрем, длина волны падающего света 1600 ангстрем. Найти работу выхода и максимальную кинетическую энергию фотоэлектрона.

Пример решения задачи на тему фотоэффект

Задерживащая разность потенциалов 1,5В, работа выхода электронов 6,4*10 -19 Дж. Найти длину волны падающего света и красную границу фотоэффекта.

Пример решения задачи на тему фотоэффект

Работа выхода электронов из металла равна 3,3 эВ. Во сколько раз изменилась кинетическая энергия фотоэлектронов. если длина волны падающего света изменилась с 2,5*10 -7 м до 1,25*10 -7 м?

Пример решения задачи на тему фотоэффект

Найти максимальную скорость фотоэлектронов для видимого света с энергией фотона 8 эВ и гамма излучения с энергией 0,51 МэВ. Работа выхода электронов из металла 4,7 эВ.

Пример решения задачи на тему фотоэффект

Фототок прекращается при задерживающей разности потенциалов 3,7 В. Работа выхода электронов равна 6,3 эВ. Какая работа выхода электронов у другого металла, если там фототок прекращается при разности потенциалов, большей на 2,3В.

Пример решения задачи на тему фотоэффект

Работа выхода электронов из металла 4,5 эВ, энергия падающих фотонов 4,9 эВ. Чему равен максимальный импульс фотоэлектронов?

Пример решения задачи на тему фотоэффект

Красная граница фотоэффекта 2900 ангстрем, максимальная скорость фотоэлектронов 10 8 м/с. Найти отношение работы выхода электронов к энергии палающих фотонов.

Пример решения задачи на тему фотоэффект

Длина волны падающего света 400нм, красная граница фотоэффекта равна 400нм. Чему равна максимальная скорость фотоэлектронов?

Пример решения задачи на тему фотоэффект

Длина волны падающего света 300нм, работа выхода электронов 3,74 эВ. Напряженность задерживающего электростатического поля 10 В/см.Какой максимальный путь фотоэлектронов при движении в направлении задерживающего поля?

Пример решения задачи на тему фотоэффект

Длина волны падающего света 100 нм, работа выхода электронов 5,30эВ. Найти максимальную скорость фотоэлектронов.

Пример решения задачи на тему фотоэффект

При длине волны радающего света 491нм задерживающая разность потенциалов 0,71В. Какова работа выхода электронов? Какой стала длина волны света, если задерживающая разность потенциалов стала равной 1,43В?

Пример решения задачи на тему фотоэффект

Кинетическая энергия фотоэлектронов 2,0 эВ, красная граница фотоэффекта 3,0*10 14 Гц. Определить энергию фотонов.

Пример решения задачи на тему фотоэффект

Красная граница фотоэффекта 0,257 мкм, задерживающая разность потенциалов 1,5В. Найти длину волны падающего света.

Пример решения задачи на тему фотоэффект

Красная граница фотоэффекта 2850 ангстрем. Минимальное значение энергии фотона, при котором возможен фотоэффект?

Пример решения задачи на тему фотоэффект

Ниже вы можете посмотреть обучаюший видеоролик на тему фотоэффекта и его законов.

Тип 19 № 6502

Монохроматический свет с энергией фотонов Eф падает на поверхность металла, вызывая фотоэффект. Запирающее напряжение, при котором фототок прекращается, равно Uзап. Как изменятся модуль запирающего напряжения Uзап и длина волны λкр, соответствующая «красной границе» фотоэффекта, если энергия падающих фотонов Eф увеличится?

Для каждой величины определите соответствующий характер изменения:

Запишите в ответ выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Энергия налетающих фотонов передаётся электронам и расходуется на преодоление электронами работы выхода из металла и увеличение скорости электронов Запирающее напряжение определяется максимальной кинетической энергией вылетевших электронов: С увеличением энергии налетающих фотонов увеличится запирающее напряжение. «Красная граница» фотоэффекта — это максимальная длина волны при которой ещё происходит фотоэффект и она зависит от работы выхода, не зависит от энергии налетающих фотонов. Следовательно, при увеличении энергии налетающих фотонов длина волны, соответствующая «красной границе» фотоэффекта не изменится.

Источник: Демонстрационная версия ЕГЭ—2015 по физике., Демонстрационная версия ЕГЭ—2022 по физике, ЕГЭ по физике 2022. Досрочная волна. Вариант 2

Тип 19 № 7330

Металлическую пластинку облучают светом с длиной волны λ. Как изменятся максимальная скорость электронов, вылетающих с поверхности этой пластинки, и длина волны, соответствующая «красной границе» фотоэффекта, если уменьшить длину волны падающего излучения?

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

вылетающих с поверхности

Энергия налетающих фотонов передаётся электронам и расходуется на преодоление электронами работы выхода из металла и увеличение скорости электронов Значит, при уменьшении длины волны, а следовательно, при увеличении частоты излучения, увеличивается энергия падающих фотонов и увеличивается максимальная скорость фотоэлектронов.

«Красная граница» фотоэффекта — это максимальная длина волны при которой ещё происходит фотоэффект и она зависит от работы выхода, не зависит от энергии налетающих фотонов. Следовательно, при увеличении энергии налетающих фотонов длина волны, соответствующая «красной границе» фотоэффекта не изменится.

Аналоги к заданию № 7298: 7330 Все

Тип 19 № 29543

Монохроматический свет с энергией фотонов Eф падает на поверхность металла, вызывая фотоэффект. Запирающее напряжение, при котором фототок прекращается, равно Uзап. Как изменятся модуль запирающего напряжения Uзап и длина волны λкр, соответствующая «красной границе» фотоэффекта, если энергия падающих фотонов Eф уменьшится, но фотоэффект не прекратится?

Энергия налетающих фотонов передаётся электронам и расходуется на преодоление электронами работы выхода из металла и увеличение скорости электронов Запирающее напряжение определяется максимальной кинетической энергией вылетевших электронов: С уменьшением энергии налетающих фотонов уменьшится запирающее напряжение. (2)

«Красная граница» фотоэффекта — это максимальная длина волны при которой ещё происходит фотоэффект и она зависит от работы выхода, не зависит от энергии налетающих фотонов. Следовательно, при увеличении энергии налетающих фотонов длина волны, соответствующая «красной границе» фотоэффекта не изменится. (3)

Аналоги к заданию № 6502: 29543 Все

Задания Д11 B20 № 2039

Какое из приведенных ниже равенств является условием красной границы фотоэффекта (с поверхности тела с работой выхода А) под действием света с частотой ?

Тип 26 № 6246

Металлический фотокатод освещён светом длиной волны λ = 0,42 мкм. Максимальная скорость фотоэлектронов, вылетающих с поверхности фотокатода, км/с. Какова длина волны красной границы фотоэффекта для этого металла? (Ответ приведите в микрометрах с точностью до сотых. Постоянную Планка примите равной 6,6·10 –34 Дж · с.)

Энергия падающего фотона затрачивается на преодоление работы выхода и увеличение кинетической энергии фотоэлектрона где — частота соответствующая красной границе фотоэффекта. Тогда длина волны красной границы фотоэффекта для этого металла:

задание не точно. округление произведено не правильно. ответ 0,64.

Задания Д32 C3 № 9044

При увеличении в 2 раза частоты света, падающего на поверхность металла, запирающее напряжение для вылетающих с этой поверхности фотоэлектронов увеличилось в 3 раза. Первоначальная длина волны падающего света была равна 250 нм. Какова частота, соответствующая «красной границе» фотоэффекта для этого металла?

где — частота, соответствующая «красной границе» фотоэффекта, e — заряд электрона, — запирающее напряжение.

2. Запишем уравнение фотоэффекта для двух частот:

3. Найдём частоту, соответствующая «красной границе» фотоэффекта:

Задания Д32 C3 № 9255

Частота красной границы фотоэффекта для калия равна 5,33 · 10 14 Гц. Если другой металл облучить светом с такой же длиной волны, то кинетическая энергия вылетевших электронов будет в 3 раза меньше работы выхода для этого вещества. Чему равна частота красной границы фотоэффекта для неизвестного металла?

Согласно уравнению фотоэффекта, энергия фотона, работа выхода и максимальная кинетическая энергия электрона связаны соотношением:

Красная граница фотоэффекта — это минимальная частота при которой ещё происходит фотоэффект и она зависит от работы выхода и не зависит от энергии налетающих фотонов

Запишем закон фотоэффекта для неизвестного металла:

Ответ: 4 · 10 14 Гц.

Задания Д32 C3 № 11646

Катод из ниобия облучают светом частотой соответствующей красной границе фотоэффекта для германия. При этом максимальная кинетическая энергия вылетевших фотоэлектронов в два раза меньше, чем работа выхода для ниобия. Найдите частоту красной границы фотоэффекта для ниобия.

Запишем уравнение фотоэффекта: Заметим, что работа выхода и частота красной границы фотоэффекта связанны уравнением: Получаем: откуда

Тип 26 № 16867

Максимальная кинетическая энергия фотоэлектронов, вылетающих из металлической пластинки под действием света, равна 2 эВ. Длина волны падающего монохроматического света составляет длины волны, соответствующей «красной границе» фотоэффекта для этого металла. Какова работа выхода электронов? Ответ приведите в электрон-вольтах.

Если длина волны падающего света равна длине «красной границы» фотоэффекта, то работа выхода равна энергии падающих фотонов, то есть для фотонов имеющих длину волны, соответствующую «красной границе» фотоэффекта верно соотношение Длина волны света, его частота и скорость света связаны соотношением: Следовательно, частота падающего света в раза больше То есть Для первого уравнения получаем:

Тип 26 № 17671

На металлическую пластинку падает монохроматический свет с длиной волны λ = 400 нм. «Красная граница» фотоэффекта для металла пластинки λкр = 600 нм. Чему равно отношение максимальной кинетической энергии фотоэлектронов к работе выхода для этого металла?

Если длина волны падающего света равна длине «красной границы» фотоэффекта, то работа выхода равна энергии падающих фотонов, то есть для фотонов имеющих длину волны, соответствующую «красной границе» фотоэффекта верно соотношение Для кинетической энергии получаем:

Тогда искомое отношение:

Тип 24 № 25043

Учащимся в классе при электрическом освещении лампами накаливания показали опыт: цинковый шар электрометра зарядили эбонитовой палочкой, потёртой о сукно. При этом стрелка электрометра отклонилась, заняв положение, указанное на рисунке, и в дальнейшем не меняла его. Когда на шар направили свет аргоновой лампы, стрелка электрометра быстро опустилась вниз. Объясните разрядку электрометра, учитывая приведённые спектры (зависимость интенсивности света I от длины волны ) лампы накаливания и аргоновой лампы. Красная граница фотоэффекта для цинка

1) Эбонитовая палочка, потертая о шерсть, заряжается отрицательно. Следовательно, электрометр получит от нее отрицательный заряд (избыток электронов).

2) При освещении заряженного отрицательно цинкового шара светом от лампы накаливания не происходило вырывания электронов с поверхности цинка, так как, судя по диаграмме, максимальная освещенность приходилась на длины волн больше 500 нм, что больше, чем красная граница фотоэффекта для цинка. Потому электрометр не разряжался.

3) При освещении заряженного отрицательно цинкового шара светом от аргоновой лампы фотоэффект наблюдался, так как, судя по диаграмме, максимальная освещенности приходилась на длины волны больше 250 нм, что меньше, чем красная граница фотоэффекта для цинка. В результате вырывания электронов с поверхности цинкового шара, заряд уменьшался, из-за чего электрометр разряжался.

Читайте также: