Коррозия металлов в повседневной жизни
Окислительно-восстановительные процессы играют исключительно важную роль в современной технике. Например, получение электрической энергии с помощью химических источников тока, металлургические процессы, электролиз. Однако некоторые окислительно-восстановительные процессы приносят вред человечеству. Одним из них является коррозия. Коррозия разрушает различные наземные и подземные металлические сооружения, турбинные и ракетные двигатели, подводные части судов, паровые котлы, проложенные в земле трубопроводы, линии электропередач, железные дороги, нефтепроводы. В результате коррозии ухудшаются электрические и магнитные свойства металлов, изменяются размеры сделанных из них деталей, нарушается герметичность аппаратов. Коррозионный процесс может полностью вывести из строя точные приборы - часы, аналитические весы и другие. Ежегодно потери металлов от коррозии составляют 10-15% от их выпуска и исчисляются миллиардами рублей. Гибнет труд людей, затраченный на обработку металла и создание тех или иных машин и механизмов. Кроме того, снижается производительность и срок работы оборудования, повышается его аварийность, нарушаются технологические процессы. В связи с этим исследование механизма процесса коррозии и разработка методов защиты от неё имеют больше значение.
Также мы обратили внимание, что ржавые изделия, детали, конструкции и прочие промышленные материалы встречаются и в повседневной жизни. Так, нами был замечен эффект коррозии на автомобилях (приложение 1), металлических заборах (приложение 2), дорожных знаков (приложение 3). Кроме того, мы наблюдали содержание ржавчины в водопроводной воде (приложение 4).
Проблемы коррозии постоянно обостряются из-за непрерывного роста производства металлов и ужесточения условий их эксплуатации. Среда, в которой используются металлические конструкции, становится все более агрессивной, в том числе и за счет ее загрязнения . Металлические изделия, используемые в технике, работают в условиях все более высоких температур и давлений, мощных потоков газов и жидкостей. Поэтому вопросы защиты металлических материалов от коррозии становятся все более актуальными. Полностью предотвратить коррозию металлов невозможно, поэтому единственным путем борьбы с ней является поиск способов ее замедления. Поэтому, изучив процесс коррозии, условия его появления и последствия для окружающего мира, мы решили выяснить, как его можно предотвратить или замедлить.
Цель работы: узнать, что такое коррозия, понять сущность данного процесса и влияние его на окружающий мир, и попытаться выявить методы защиты от коррозии.
Гипотеза: если изучить процессы коррозии и разобраться в причинах её возникновения, то данное явления можно предотвратить и взять под контроль.
1. Ознакомиться с историей открытия и исследования коррозии.
2. Изучить виды коррозии и причины ее возникновения.
3. Провести ряд опыты по наблюдению появления ржавчины и способам защиты от неё.
Для решения поставленных задач были использованы следующие методы исследования:
· изучение и обобщение
· фото- и видеосъемка
1. Теоретическая часть
Коррозия металлов - физико-химическое воздействие металлических материалов и окружающей среды, которое приводит к понижению выносливости и прочности материала, вплоть до его разрушения. При коррозии железа и сталей во влажной атмосфере обычно образуются оксиды железа в виде ржавчины.
Пример — кислородная коррозия железа в воде:
Гидроксид железа Fe(OH)3 и является тем, что называют ржавчиной .
1.1. История изучения коррозии металлов
Люди издавна интересовались вопросами защиты от коррозии. Древнегреческий историк Геродот (5 век до нашей эры) и древнеримский ученый Плиний Старший (1 век до нашей эры) упоминают о применении олова для защиты железа от ржавчины.
Средневековые алхимики мечтали о получении нержавеющего железа. Уже в двадцатых годах 19 века электролитическую коррозию изучают химик Гемфри Дэви и физик Майкл Фарадей. С тех пор во многих странах мира было выполнено очень много работ по коррозии различных металлических материалов. Однако правильной, научно обоснованной теории электрохимической коррозии не было. Существовала лишь теория, выдвинутая в 1830 году швейцарским ученым Де ла Ривом, оказавшаяся неверной, согласно которой подвергаться коррозии может лишь такой материал, в котором есть инородные включения. В начале тридцатых годов 20 века, советский ученый Александр Наумович Фрумкин, изучая амальгамы металлов, показал, что активный металл амальгамы растворяется в кислотах, хотя амальгама – это однородное вещество.
В 1935 году Алексей Иванович Шултин объяснил коррозию как индивидуальных металлов, так и сплавов. Он рассмотрел механизм протекания процесса коррозии и факторы, влияющие на его скорость. В том же 1935 году Ярослав Васильевич Дурдин так же высказал обоснованную им мысль о растворении металлов в кислотах без наличия инородных включений в них. Таким образом, советские ученые, в первую очередь Шултин А.И. и Дурдин Я.В., сформулировали теорию электрохимической коррозии металлических материалов.
1.2. Причины и виды коррозии
По характеру взаимодействия металла и среды коррозию принято делить на химическую и электрохимическую. В обоих случаях протекает окислительно-восстановительная реакция, в ходе которой металл окисляется, а присутствующий в агрессивной среде окислитель восстанавливается.
Но при химической коррозии электроны переходят от металла к окислителю непосредственно, при электрохимической коррозии окислительно-восстановительная реакция разбивается на полуреакции окисления и восстановления и электроны переходят по металлу от восстановителя к окислителю.
Химическая коррозия протекает в средах не проводящих электрический ток (в газах, нефти, бензине, керосине и т. д.) при высоких температурах. когда не возможна конденсация водяного пара. Ей подвергается арматура печей, детали двигателей внутреннего сгорания, лопатки газовых турбин, аппаратура химической отрасли промышленности
Электрохимическая коррозия протекает в присутствии влаги. Распространена она значительно шире, чем химическая. Ей подвергаются подводные части судов в морской и пресной воде, паровые котлы, металлические сооружения и конструкции под водой и в атмосфере, проложенные в грунте трубопроводы, оболочки кабелей.
Рассмотрение механизмов действия химической и электрохимической коррозии показывает, что большого различия между ними не существует. Иногда возможен постепенный переход химической коррозии в электрохимическую и, наоборот.
1.3. Методы защиты металлов от коррозии
1) Анодная защита - покрытие металла более активным металлом. Например, в гальванической паре Zn – Fe (оцинкованное железо) защищено железо, в паре Zn –Cu защищена медь. К днищам кораблей прикрепляют протекторы – слитки металла более активного, чем обшивка днища корабля. Чаще всего это – протекторная защита с помощью цинка.
Катодная защита – защита менее активным металлом (луженое железо). Например, покрытие железа оловом (луженое железо).
2) Отделение металла от агрессивной среды (окраска, смазка, покрытие лаками, эмалями). Ученые создали новое стеклокристаллическое покрытие, которое отличается стойкостью и способностью работать при более высокой, чем металлы, температуре
3) Использование замедлителей коррозии – ингибиторов. Чаще это органические вещества или неорганические соли (нитрат натрия, хроматы стронция, свинца, цинка).
4) Электрозащита – нейтрализация тока, возникающего при коррозии, постоянным током, пропускаемым в противоположном направлении. Защищаемую конструкцию присоединяют к катоду внешнего источника тока, а анод заземляют.
Так обычно защищают трубы нефтепровода, газопровода, ни в коем случае нельзя перепутать полюса тока, ошибки должны быть исключены.
5) Пассивация металлов – это образование на поверхности металла плотно прилегающего оксидного слоя, защищающего от коррозии. Например, железо пассивируют погружением изделия в концентрированную азотную кислоту. Пассивированное железо перестает взаимодействовать с кислотами с выделением водорода. Устранить пассивацию можно разрушением пленки.
6) Изготовление сплавов, стойких к коррозии. В результате снижения содержания углерода в нержавеющей стали до 0,1% стало возможным изготовлять из неё листовой прокат (коррозийнно-стойкая сталь).
2. Практическая часть
Изучив сущность коррозии и её основные свойства, мы решили провести несколько опытов по выявлению причин и условий появления ржавчины, а также по изучению способов защиты от воздействия коррозии.
2.1. Получение эффекта коррозии (опыт с гвоздём)
Опыт проводился в хорошо проветриваемом помещении. Для его проведения нам понадобился металл (железный гвоздь). С помощью распылителя опрыскиваем его значительным количеством перекиси водорода. Затем посыпаем металл солью. Делать это необходимо, пока перекись еще влажная. Процесс ржавления начинается практически сразу. После этого гвоздю нужно высохнуть естественным образом, на свежем воздухе. Таким образом, с помощью искусственной коррозии нами был получен ржавый гвоздь. Результат опыта представлен в приложении 5.
2.2. Исследование способов защиты металла от коррозии
Опыт проводился с целью изучить народные средства по удалению ржавчины, которые безопасны и могут быть использованы в быту.
По результатам опыта (приложение 6), самыми эффективными средствами оказались: средство от ржавчины (в состав которого входят различные сильные кислоты: соляная, ортофосфорная, серная, кремниевая и другие), уксус (за счёт содержания в нём концентрированной уксусной кислоты, разъедающей ржавый налет), кетчуп (благодаря разбавленной уксусной кислоте, входящей в его состав).
3. Заключение
Таким образом, при выполнении исследовательской работы, мы выяснили, что коррозия - явление, приносящее не только экономический ущерб, но также отрицательно влияющее на здоровье человека, приносящее ему материальный ущерб и негативно отражающееся на состоянии окружающей среды.
Было обнаружено, что с процессом коррозии, то есть разрушением изделий из металла, мы сталкиваемся в повседневной жизни. В ходе исследований, выдвинутая нами гипотеза подтвердилась - коррозия действительно подконтрольна, зная процессы и причины её возникновения. Также, с помощью опытов выявилось, что защитить металлы от коррозии можно доступными народными средствами. В эпоху современной промышленности, проблема коррозии до сих пор остается актуальной.
Коррозия металлов
Всякое явление или процесс вокруг нас связан с химией. Скажем, ржавление железа. Хоть раз в жизни вы наверняка задумывались, почему одни металлы ржавеют и разрушаются, а другие — нет. И что такого особенного в нержавеющей стали, что этот процесс ей нипочем? Обо всем это мы и поговорим в сегодняшней статье.
О чем эта статья:
Коротко о главном
Коррозия металлов или ржавление в химии — это явление, которое возникает из-за взаимодействия металлической пластинки с веществами окружающей среды (кислородом воздуха или кислотами, с которыми может реагировать металлическое изделие).
Обычно окисляются металлы, включая железо, которые находятся левее водорода в ряду напряжений.
Чаще всего встречаются химическая и электрохимическая коррозии. Чтобы понять, чем они отличаются друг от друга, давайте сравним их по нескольким критериям в таблице ниже.
Таблица 1. Сравнение химической и электрохимической коррозии металлов
Признаки сравнения
Химическая коррозия
Электрохимическая коррозия
Разрушение металлов в из-за взаимодействия с газами или растворами, которые не проводят электрический ток
Разрушение металла, при котором возникает электрический ток в воде или среде другого электролита
При контакте железа с цинком коррозии подвергается цинк:
Zn 0 - 2e - = Zn 2+ .
Защитить металл от коррозии можно по-разному: покрытием защитными материалами, электрохимическими методами, шлифованием и т. д. Далее — подробно обо всем этом.
Что такое коррозия
Коррозия — это самопроизвольное разрушение элементов, чаще всего металлов, под действием химического или физико-химического влияния окружающей среды.
Иными словами, из-за химического воздействия железо начинает ржаветь. Это весьма сложный процесс, который состоит из несколько этапов. Но суммарное уравнение коррозии выглядит так:
Часто под коррозией понимают химическую реакцию между материалом и средой либо между их компонентами, которая протекает на границе раздела фаз. Обычно это окисление металла. Например:
Некоторые металлы, даже активные, покрываются плотной оксидной пленкой при коррозии. Это одна из их характерных черт. Оксидная пленка не дает окислителям проникнуть в более глубокий слой и поэтому защищает металл от коррозии. Алюминий обычно устойчив при контакте с воздухом и водой, даже горячей. Тем не менее, если поверхность алюминия покрыть ртутью, то образуется амальгама. Она разрушает оксидную пленку, и алюминий начинает быстро превращаться в белые хлопья метагидроксида алюминия:
Коррозии подвергаются и многие малоактивные металлы. Например, поверхность медного изделия покрывается патиной — зеленоватым налетом. Это происходит потому, что на ней образуются смеси основных солей.
Виды коррозии металлов
Химическая коррозия
Химическая коррозия — это процесс разрушения металла, который связан с реакцией между металлом и коррозионной средой.
Химическая коррозия протекает без воздействия электрического тока, и в результате этой реакции металлы окисляются. Этот вид коррозии можно разделить на два подвида:
газовая коррозия — металл корродирует под воздействием различных газов при высоких температурах;
коррозия в жидкостях — неэлектролитах.
Их них более распространенной считают газовую коррозию. Она протекает во время прямого контакта твердого тела с активным газом воздуха. Чаще всего это кислород. В результате на поверхности тела образуется пленка продуктов химической реакции между веществом и газом. Дальше эта пленка мешает контакту корродирующего материала с газом. При высоких температурах газовая коррозия развивается интенсивно. Возникшая при этом пленка называется окалиной, которая со временем становится толще.
Важную роль в процессе коррозии играет состав газовой среды. Но для каждого металла он индивидуален и изменяется с переменой температур.
Электрохимическая коррозия
Электрохимическая коррозия — это разрушение металла, которое протекает при его взаимодействии с окружающей средой электролита.
Этот вид коррозии считают наиболее распространенным. Самым важным происхождением электрохимической коррозии является то, что металл неустойчив в окружающей среде с точки зрения термодинамики. Вот несколько ярких примеров этой реакции: ржавчина в трубопроводе, на обшивке днища морского судна и на различных металлоконструкциях в атмосфере.
В механизме электрохимической коррозии обычно выделяют два направления: гомогенное и гетерогенное. Разберем их подробнее в таблице ниже.
Гомогенный механизм электрохимической коррозии
Гетерогенный механизм электрохимической коррозии
Поверхность металла рассматривается как однородный слой.
У твердых металлов поверхность неоднородна из-за структуры сплава, в котором атомы по-разному расположены в кристаллической решетке.
Растворение металла происходит из-за термодинамической возможности для катодного или анодного процессов.
Неоднородность можно наблюдать при наличии в сплаве каких-либо включений.
Скорость, с которой протекает электрохимическая коррозия, зависит от времени протекания процесса.
В электрохимической коррозии протекает одновременно два процесса на аноде и на катоде, которые зависят друг от друга. Растворение основного металла происходит только на анодах. Анодный процесс заключается в том, что ионы металла отрываются и переходят в раствор:
В результате происходит реакция окисления металла. В данном случае анод заряжается отрицательно.
При катодном процессе избыточные электроны переходят в молекулы или атомы электролита, которые, в свою очередь, восстанавливаются. На катоде идет реакция восстановления. Он носит заряд положительного электрода.
Торможение одного процесса приводит к торможению и другого процесса. Окисление металла может происходить только в анодном процессе.
Как защитить металлы от коррозии
От коррозии можно и нужно защищаться. Чтобы уберечь металлы от этой реакции, их покрывают защитными материалами, обрабатывают электрохимическими методами, шлифованием и т. д. Рассмотрим все эти способы подробнее.
Способ № 1. Защитные покрытия.
Для защиты от коррозии металлические изделия покрывают другим металлом, т. е. производят никелирование, хромирование, цинкование, лужение и т. д. Еще один вариант защиты — покрыть поверхность металла специальными лаками, красками, эмалями.
Способ № 2. Легирование.
Легирование — это введение добавок, которые образуют защитный слой на поверхности металла. Например, при легировании железа хромом и никелем получают нержавеющую сталь.
Способ № 3. Протекторная защита.
Протекторная защита — это способ уберечь металл от коррозии, при котором металлическое изделие соединяют с более активным металлом. Этот второй металл в итоге и разрушается в первую очередь.
Способ № 4. Электрохимическая защита.
Чтобы защитить металлы от электрохимической коррозии, нейтрализуют ток, который возникает при ней. Это делают с помощью постоянного тока, который пропускают в обратном направлении.
Способ № 5. Изменение состава среды путем добавления ингибиторов.
Для защиты от коррозии используют специальные средства, которые ее замедляют — ингибиторы. Они изменяют состояние поверхности металла — образуют труднорастворимые соединения с катионами металла. Защитные слои, образованные ингибиторами, всегда тоньше наносимых покрытий.
Способ № 6. Замена корродирующего металла на другие материалы: керамику и пластмассу.
Способ № 7. Шлифование поверхностей изделия.
Проверьте себя
Что такое коррозия?
Где в повседневной жизни можно встретить ржавление железа и других металлов? Приведите примеры.
Гидроксид железа Fe(OH)3 называют:
Что является причиной возникновения коррозии?
Чем отличаются химический и электрохимический типы коррозии?
Что такое коррозионная среда?
Узнайте все о коррозии металлов и разберитесь в других темах за 9 класс на онлайн-курсах по химии в Skysmart! Наши преподаватели помогут выяснить, где скрываются пробелы в знаниях, и восполнить их. Никаких скучных задач и сухих лекций — только интерактивные упражнения, опыты и теория простым языком. Все это поможет разобраться даже в тех темах, которые не давались в школе. Ждем на бесплатном вводном уроке!
Научно-исследовательская работа "Коррозия металлов"
Изучение коррозии металлов
Металлы составляют одну из основ цивилизации на планете Земля. Среди них как конструкционный материал явно выделяется железо. Объем промышленного производства железа примерно в 20 раз больше, чем объем производства всех остальных металлов, вместе взятых. Широкое внедрение железа в промышленное строительство и транспорт произошло на рубеже XVIII-XIX вв. В это время появился первый чугунный мост, спущено на воду первое судно, корпус которого был изготовлен из стали, созданы первые железные дороги. Однако начало практического использования человеком железа относят к IX в. до н.э. Именно в этот период человечество из бронзового века перешло в век железный. Тем не менее история свидетельствует о том, что изделия из железа были известны в Хеттском царстве (государство Малой Азии), а его расцвет относят к XIV…XIII вв. до н.э.
Несмотря на широкое внедрение в нашу сегодняшнюю жизнь полимерных материалов, стекла, керамики, основным конструкционным материалом продолжает оставаться железо и сплавы на его основе. С изделиями из железа мы на каждом шагу встречаемся в быту и знаем, как много хлопот доставляют его ржавление и сама ржавчина. Ржавлением называют только коррозию железа и его сплавов. Другие металлы корродируют, но не ржавеют. Хотя корродируют практически все металлы, в повседневной жизни человек чаще всего сталкивается с коррозией железа.
Коррозией называют самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды. Процессы физического разрушения к коррозии не относят, хотя часто они наносят неменьший вред памятникам культуры. Можно привести такие примеры: в III веке до нашей эры на острове Родос был построен маяк в виде огромной статуи Гелиоса. Колосс Родосский считался одним из семи чудес света, однако просуществовал всего 66 лети рухнул. У Колосса Родосского бронзовая оболочка была смонтирована на железном каркасе. Под действием влажного, насыщенного солями средиземноморского воздуха железный каркас разрушился; Эйфелева башня — крупный туристический и деловой комплекс. Одним из главных способов защиты металлической башни от разрушения вследствие коррозии является покраска поверхности образующих башню элементов. Этот процесс занимает 18 месяцев и осуществляется командой из 25 высококвалифицированных рабочих. Предварительно, сооружение тщательно осматривается, а участки, где антикоррозийное покрытие особенно сильно повреждено, очищаются и покрываются новым слоем защиты. Остальная поверхность башни очищается паром под высоким давлением. Затем всё сооружение окрашивается в два слоя. При этом расходуется около 60 тонн краски стоимостью около 60 млн евро.
Строгие расчеты показывают, что большинство металлов имеет склонность к коррозии. Поэтому удивительно не то, что металлы корродируют, а то, что изделия из них могут существовать длительное время. Скорость, с которой протекает коррозия, не поддается теоретическому вычислению. Как правило, она определяется опытным путем. Скорость прежде всего зависит от характера образующихся продуктов коррозии и прочности их сцепления с металлом.
Сегодня нам предстоит познакомиться с давним и очень опасным врагом большинства применяемых в технике и быту металлов. Коварство его в том, что он остается всегда целым и невредимым, а металлы и сплавы несут огромные потери: примерно до 15% всех производимых в мире металлов становятся ежегодно жертвами этого врага (в США экономический ущерб был оценён примерно в 276 млрд долларов).
Читайте также: