Коробление металла при нагреве
Процессы, происходящие при разупрочнении металлов при нагреве – отдых, полигонизация, рекристаллизация. Изменение структуры при отдыхе – условия прохождение отдыха. Изменение структуры при полигонизации – виды полигонизации. Температура рекристаллизации. Виды рекристаллизации – первичная, собирательная, вторичная. Процессы, происходящие при этих видах рекристаллизации, их влияние на свойства металлов и сплавов.
Структура холоднодеформированного металла, характеризующаяся повышенной плотностью дислокаций, вакансий и других дефектов, обладает повышенным запасом свободной энергии и является термодинамически неустойчивой. При нагреве такая структура будет самопроизвольно переходить в более устойчивое состояние с меньшим запасом энергии.
При повышении температуры различают следующие основные виды структурных изменений при нагреве наклепанного металла:
1. Отдых, включающий в себя возврат и полигонизацию;
2. Рекристаллизация, включающая в себя первичную, собирательную и вторичную рекристаллизации.
Под возвратом следует понимать процесс повышения структурного совершенства наклепанного металла путем перераспределения и уменьшения концентрации точечных дефектов, а также некоторого перераспределения дислокаций без образования новых границ. Этот процесс происходит при невысоких температурах (до 0,1-0,2 Тпл.).
При возврате происходит частичное восстановление (возврат) свойств металла без металлографически обнаруживаемых изменений структуры. Наиболее существенно на стадии возврата изменяется удельное электросопротивление, которое, в сравнении с наклепанным состоянием уменьшается на 20-30 %. Основной причиной восстановления свойств при возврате является уменьшение концентраций точечных дефектов. Избыточные вакансии и межузельные атомы погашаются при встрече или поглощаются дислокациями и границами зерен. На этой стадии частично устраняются и дислокации. Дислокации противоположных знаков притягиваются ианнигилируют.
При рассмотрения явления полигонизации различают две ее разновидности: стабилизирующую и предрекрестaллизационную. Первая наблюдается в слабoдеформированных металлах, вторая - в сильнодеформированных.
Стабилизирующая полигонизация, протекающая при нагреве слабодеформированных металлов, характеризуется перераспределением и частичной аннигиляцией дислокаций, формированием субзеренных границ и ростом субзерен. Дислокационный механизм стабилизирующей полигонизации наиболее наглядно объясняется на примере монокристаллов, деформированных изгибом и содержащих избыточное число краевых дислокаций одного знака (рис, 1а).
При нагреве дислокации под воздействием дальнодействующих упругих полей перегруппировываются. Дислокации разных знаков аннигилируют, а избыточные дислокации одного знака выстраиваются в энергетически более выгодные дислокационные стенки, перпендикулярные плоскостям скольжения (рис. 1б).
Полигонизация в металлах протекает при температурах 0,25 - 0,3 Тпл, когда скорость диффузионных процессов заметно увеличивается. Поэтому формирование вертикальных дислокационных стенок происходит как за счет перегруппировавшихся дислокаций, так и в связи с их переползанием. Образовавшиеся вертикальные стенки дислокаций представляют собой малоугловые границы, которые делят кристалл как бы на отдельные кристаллические блоки или полигоны (откуда и полигонизация), свободные от дислокаций. Такие дислокационные стенки хорошо выявляются металлографически в виде ямок травлений в местах выхода каждой дислокации.
Рассмотренное представление о полигонизации, основанное на анализе этого процесса в слабо деформированном кристалле, без достаточных оснований было перенесено и на сильно деформированный металл. В настоящее время понятие полигонизации значительно расширено.
Рисунок 1 - Схема распределения дислокаций в кристалле после деформации (а) и стабилизирующей полигонизации (б)
Рисунок 2 - Схема превращения ячеистой структуры сильно деформированного металла (а) в субзеренную(6) в результате предрекристаллизационной полигонизации.
В случае нагрева сильнодеформированного металла, в котором при деформации сформировалась дислокационная ячеистая структура (случай наиболее частый), полигонизация заключается в сплющивании дислокационных объемных сплетений (стенок ячеек) и превращения этих сплетений в плоские субграницы. При этом ячейки превращаются в субзерна (рис. 2).
Этот более сложный случай полигонизации включает в себя не только скольжение и переползание, но и поперечное скольжение винтовых дислокаций.
В отличие от слабодеформированного кристалла, в котором границы (полигонов) формируются только в процессе полигонизации, в более сильно деформированном кристалле ячеистая дислокационная структура определяет форму иразмер образующихся при полигонизации субзерен. Таким образом, при полигонизации ячеистой структуры образующиеся субзерна как бы наследуют расположение, форму и размер ячеек деформации.
Малоугловые границы, образовавшиеся при полигонизации слабодеформированного кристалла, являются малоподвижными исубзерна после такой полигонизации не растут. Отсюда иназвание: стабилизирующая полигонизация.
Субзерна, образовавшиеся на месте деформационных ячеек, отличаются большей кривизной и подвижностью, чем дислокационные стенки, образовавшиеся при полигонизации после слабой деформации. Такие субзерна нестабильны и склонны к укрупнению. Укрупнение субзеренможет совершаться двумя путями:
I) миграцией субграниц под влиянием стремления к уменьшению зернограничного натяжения или к уменьшению объемной энергии соседних субзерен;
2) путем коалесценции соседних субзерен с рассыпанием разделяющей их дислокационной границы.
В результате полигонизации частично уменьшаются внутренние напряжения, внесенные деформацией. Обычно комплекс механических свойств в процессе полигонизации чаще изменяется мало.
В результате полигонизации образуются иукрупняются субзерна внутри деформированных зерен, но форма зерен, вытянутых деформацией, не меняется. Только при дальнейшем повышении температуры в связи с увеличением диффузионной подвижности атомов развивается.
Рекристаллизация -это процесс полной или частичной замены одних зерен данной фазы другими зернами той же фазы, обладающими меньшей энергией.
В чистых металлах рекристаллизация протекает при температурах выше 0,4 Тпл, а в сплавах - выше 0,6 Тпл.
При первичной рекристаллизации, которая развивается первой, происходят зарождение ирост новых неискаженных равновесных зерен взамен вытянутых деформацией (рис. 3). Зародыши новых зерен образуется всегда в местах максимальной искаженности кристаллической решетка, созданных деформацией: на тройных стыках зерен, на границах зерен и двойников, на границах полос скольжения, около частиц других фаз. Механизм зарождения центров рекристаллизации тесно связан с процессами, протекающими при рекристаллизационной полигонизации. Образовавшиеся при полигонизации субзерна отличаются между собой по размерам и величине разориентировки. Большие по величине и более сильно разориентированные субзерна растут интенсивнее. Их малоугловые границы поглощают при своем движении дислокации ив результате превращаются в большеугловые высокоподвижные границы, что и характеризует окончание формирования центра (зародыша) рекристаллизации. Затем зародыши растут в результате перехода к ним атомов от деформированных участков. Рекристаллизованные зерна содержат значительно меньше дислокаций (10 6 - 10 8 см -2 ), чем деформированные (10 10 – 10 12 см -2 ).
Таким образом, при нагреве наклепанного метала старое зерно не восстанавливается, впоявляется совершено новое, размеры которого могут существенно отличаться от исходного.
Измельчение исходного (до деформации) зерна приводит к понижению температуры начала рекристаллизации, так как в более мелкозернистом металле больше суммарная площадь высокоугловых границ, где зарождаются центры рекристаллизации, и больше накопленная при деформации энергия.
Процесс первичной рекристаллизации термодинамически выгоден, так как сопровождается уменьшением объемной свободной энергия за счет уменьшения плотности дислокаций.
В результате первичной рекристаллизация после больших степеней холодной пластической деформации образуется мелкозернистая структура (рис. 4).
Наименьшая температура, при которой начинается рекристаллизация, называется температурным порогом рекристаллизации. Для данного металла (сплава) она зависит в первую очередь от чистоты металла по примесям и от целого ряда других факторов, которые будут рассмотрены ниже.
Рисунок 3 - Начальная стадия первичной рекристаллизации в технически чистом железе (а) и латуни (б)
Рисунок 4 - Мелкозернистая структура латуни, образовавшаяся в результате первичной рекристаллизации.
Зависимость температуры начала рекристаллизации от состава в двойных системах немонотонная и различная у разных сплавов. Только в однофазной области в интервале малых концентраций наблюдается непрерывный рост температуры порога рекристаллизации, причем с увеличением их концентрации температура начала рекристаллизации сначала растет очень сильно, а затем - замедляется.
Атомы примесей упруго притягиваются к дислокациям, образуя атмосферы Коттрелла. Эти примесные атмосферы мешают перераспределению дислокаций, необходимому для формирования центров рекристаллизации. Примеси тормозят не только зарождение, но и рост центров рекристаллизации, так как они притягиваются к границе зародыша. При нагреве металла до более высоких температур примесные атмосферы размываются тепловых движением, в результате чего становится возможным деформирование центров рекристаллизации и облегчается их рост.
Таким образом, чем чище металл, тем ниже порог рекристаллизации.
По сравнению с действием малых добавок на чистейший металл, когда сотые и десятые доли процента добавки могут повысить температуру начала рекристаллизации на сто градусов и более, увеличение содержания легирующих элементов в области больших концентраций на проценты я десятки процентов сравнительно слабо изменяют температуру порога рекристаллизации. Соотношение температур начала рекристаллизация я плавления у твердых растворов выше, чем у чистых металлов, причем у однофазных сплавах-растворах величина Тр/Тпл. составляет максимум 0,6 (по сравнению с 0,25 - 0,40 у металлов).
В двухфазных сплавах увеличение объемной доли второй фазы приводят к возрастанию порога рекристаллизации.
Следует уяснить, что после окончания первичной рекристаллизация структура металла еще не становится стабильной. При увеличении времени выдержки или повышении температуры вслед за первичной, происходят собирательная рекристаллиация.
Под собирательной рекристаллиацией понимают процесс роста зерен одной фазы за счет других зерен этой же фазы, идущий в направлении приближения тройных стыков к равновесия» (120°), в направлений спрямления границ и уменьшения их кривизны. Процесс роста происходят передвижением высокоугловых границ таким образом, что зерна с вогнутыми границами "поедает" зерна с выпуклыми границами. Основной движущей силой собирательной рекристаллизация является стремление системы к уменьшению зернограничной (поверхностной) энергия благодаря уменьшении протяженности границ при росте зерна. Следует подчеркнуть, что зерен предпочтительного роста при собирательной рекристаллизации нет.
Примеси в металлах оказывают заметное влияние на собирательную рекристаллизации. Атомы растворенных примесей упруго притягивается к границе и движение ее (миграция) связана с протаскиванием за собой примесных атомов. Мигрирующая граница встречает на своем пути примесные атомы, распределенные в теле "поедаемого" зерна, примесь на границе накапливается, усиливая ее торможение.
Если мигрирующая граница встречает включения второй фазы, то она должна огибать эти включения и затем отрываться от них, что затрудняет собирательную) рекристаллизацию. После отрыва границы от включений второй фазы их цепочка остается внутри растущего зерна.
Процессы первичной и собирательной рекристаллизация могут идти одновременно, то есть они накладываются друг на друга.
В результате собирательной рекристаллизации вырастают крупные равновесные (полиэдрические) зерна (рис. 5), содержащие значительно меньше дислокаций (10 6 - 10 8 см -2 ),чем деформированные (10 10 - 10 12 см -2 ).
В итоге рассмотренных процессов рекристаллизации наклеп практически полностью снимается и свойства приближается к их исходным значениям (рис. б).
Как видно из графика, при рекристаллизации предел прочности и, особенно, предел текучести, резко снижается, а характеристики пластичности возрастает. Достигаемое разупрочнение объясняется снятием искажений решетки и резким уменьшением плотности дислокация.
Если в результате собирательной рекристаллизация вырастает слишком крупное зерно, это мотет быть причиной снижения пластичности металла (явление перегрева).
Рис. 5. Структуры технически чистого железа (а) и латуни (б)
после собирательной рекристаллизации.
Важнейшее практическое значение рекристаллизации состоят в том, что она только позволяет восстановить структуру недеформированного металла, но дает возможность управлять величиной зерна, которая оказывает большое влияниена механические и другие свойства металлов, (как вам уже известно, с уменьшением размера зерна их вязкость а прочностные характеристики возрастают).
Для того, чтобы управлять величиной зерна я, следовательно, пожучить необходимее свойства, необходимо знать, какие факторы оказывают влияние на эту характеристику структуры.
Рис. 6. Влияние нагрева на структуру и механические свойства метана, упрочненного деформацией.
К таким факторам относятся прежде всего температура рекристаллизационного отжига я его длительность, а также степень деформации, предшествовавшей нагреву. Понятно, что влияние этих факторов должно зависеть от природы основного металла, наличия я количества легирующих элементов и нерастворенных примесей. Ясно также, что размер рекристаллизированного зерна зависят от размеров зерна исходного.
Вторичная рекристаллизация, называемая иногда аномальной, заключается в преимущественном росте отдельных зерен, попавших в наиболее благоприятные условия роста. В результате вторичной рекристаллизации образуется множество мелких зерен и небольшое количество очень крупных зерен. Вторичная рекристаллизация может быть вызвана благоприятной для роста кристаллографической ориентировкой отдельных зерен, меньшей, чем у других зерен, концентрацией дефектов, меньшим содержанием на границах примесей. Соответственно, в зависимости от условия, этот вид рекристаллизации может стимулироваться объемной или зернограничной энергией. Структура с разнозернистостью характеризуется пониженной пластичностью.
Влияние температуры рекристаллизации на размер зерна рассмотрено выше и характеризуется графиком, приведенным на рис. 7а, из которого следует интенсивный рост зерна при увеличении этой температуры. При данной степени деформации Е и определенной температуре размер зерна возрастает с увеличением продолжительности рекристаллизационного отжига, как это изображено на рис. 7 б.
Рис. 7. Влияние температуры, продолжительности отжига и
степени деформации на величину рекристаллизированного зерна (t123; On и On ’ - продолжительности инкубационного периода; f и f ’ - критические степени деформации).
Зависимость величины рекристаллизационного зерна, приведенная на рис. 7 в, объясняется следующим образом. Установлено, что зародыши рекристаллизации образуется в местах максимальных искажений кристаллической решетки. Количество таких мест с увеличением степени деформация возрастает, а значит, будет увеличиваться и число центров рекристаллизации. Поскольку при увеличения числа центров рекристаллизации, особенно после больших степеней деформация, . скорость их роста поя постоянной температуре изменяется незначительно, размер рекристаллизационных зерен с увеличением степени деформации должен уменьшаться.
Как видно из приведенной опытной зависимости, выдвинутая гипотеза подтверждается только при относительно больших степенях деформации - выше 5 - 15 %. При меньших степенях деформации величина зерна вообще не изменяется. И было понятно, почему после рекристаллизации металла, деформированного на 5 - 15 %, образуется столь крупное зерно, иногда во много раз превосходящее по размерам исходное.
Установлено, что после малых степеней холодной деформация (до 5 %) плотность дислокаций в деформированном металле повышается незначительно. Нагрев после такой деформации приводят, как правлю, к стабилизирующей полигонизации, затрудняющей последующие структурные изменения. В результате, нагрев, после таких степеней деформации, не вызывает роста зерна. Процесс ограничивается протекавшей в них полигонизацией.
Степень деформации (5 - 15 %), нагрев после, которой вызывает скачкообразный рост зерна, называется критической. При нагреве после критической: деформации также не происходит первичной рекристаллизации, характерной особенностью которой является зарождение и рост новых зерен. Нагрев после критической деформации вызывает рост одних исходных перекристаллизованных зерен за счет поглощения соседних. Такой механизм кристаллизация, сходной со вторичной рекристаллизацией, объясняется неоднородностью деформации разных зерен при небольших степенях деформации.
В связи с этим при нагреве становится возможным рост менее деформированных зерен, имеющих более низкое значение свободной энергии, за счет более деформированных, имеющих большую свободную энергия. При более высока степенях деформация протекает процесс первичной рекристаллизации.
В практике обработки металлов давлением следует избегать критической степени деформация, т.к. крупнозернистая структура, получаемая в результате последующего рекристаллизационного отжига, проводимого для снятия наклепа, обладает пониженной ударной вязкостью, Это требование должно регламентироваться технологическими инструкциями.
Влияние нагрева на структуру и свойства деформированного металла
Около 10…15 % всей энергии, затраченной на пластическую деформацию, поглощается металлом и накапливается в нем. Остальная часть энергии идет на нагрев металла.
Деформированный металл находится в неравновесном, неустойчивом состоянии, и в нем могут протекать процессы, направленные на достижение устойчивого состояния. Этот переход связан с уменьшением искажений в кристаллической решетке и снятием напряжений, что в свою очередь определяется возможностью перемещения атомов.
С повышением температуры подвижность атомов увеличивается и начинают развиваться процессы, приводящие металл к равновесному состоянию. По мере нагрева деформированный металл проходит стадии возврата и рекристаллизации, в результате чего изменяются его структура и свойства (рисунок 20).
В области возврата (при нагреве до 0,3 Тпл) происходит повышение структурного совершенства металла в результате уменьшения плотности дефектов строения. При этом не наблюдается заметных изменений структуры, видимой в оптический микроскоп. Механические свойства металла изменяются незначительно, порядка на 5…7 %.
При низких температурах (ниже 0,2 Тпл) протекает первая стадия возврата — отдых, когда происходит уменьшение точечных дефектов (вакансий) и перераспределение дислокаций без образования субграниц. При нагреве вакансии поглощаются дислокациями, которые двигаются к границам зерен. Часть дислокаций противоположного знака уничтожается.
Вторая стадия возврата — полигонизация, под которой понимают дробление (фрагментацию) кристаллов на субзерна (полигоны). При нагреве беспорядочно распределенные дислокации одного знака выстраиваются в дислокационные стенки, что приводит к образованию в монокристалле или в зерне поликристалла субзерен (полигонов), свободных от дислокаций и отделенных дислокационными границами (рисунок 21).
Этот процесс протекает обычно при небольших деформациях при температуре (0,25…0.3)Тпл, и им создаются условия для образования в структуре металла зародышей новых зерен.
Рисунок 21 — Схема процесса полигонизации
Стадия первичной рекристаллизации в деформированном металле происходит при его нагреве выше 0,3Тпл. При высоких температурах подвижность атомов возрастает и образуются новые равноосные зерна.
Образование новых, равноосных зерен вместо ориентированной волокнистой структуры деформированного металла называется первичной рекристаллизацией.
В деформированном металле на участках с повышенной плотностью дислокаций образуются и растут зародыши. Образуется совершенно новое зерно, по размерам отличающееся от исходного до деформации. Наклеп практически полностью снимается, и свойства приближаются к их исходным значениям.
Температура, при которой начинается процесс рекристаллизации называется температурным порогом рекристаллизации.
Температурный порог рекристаллизации (Тр) связан с температурой плавления металла зависимостью А.А.Бочвара:
где Тпл — абсолютная температура плавления, К;
а — коэффициент, зависящий от чистоты металла.
Для металлов высокой чистоты а = 0,1…0,2; для технически чистых металлов а=0,4; для сплавов твердых растворов а = 0,5…0,6.
Для некоторых металлов значение температурного порога рекристаллизации приведено в таблице 2.
Рекристаллизационный отжиг малоуглеродистых сталей проводят при 600…700 0 С, латуней и бронз при 560…700 0 С, алюминиевых сплавов при 350…450 0 С, титановых сплавов при 550…750 0 С.
Собирательная рекристаллизация проходит после завершения первичной рекристаллизации в процессе дальнейшего нагрева. Она заключается в росте образовавшихся новых зерен. Движущей силой собирательной рекристаллизации является поверхностная энергия зерен. При укрупнении зерен общая протяженность их границ становится меньше, что соответствует переходу металла в более равновесное состояние.
Таблица 2 — Температура начала рекристаллизации технически чистых металлов
Металл | Температура плавления, 0 С | Температура рекристаллизации, 0 С |
Вольфрам | 3400 | 1200 |
Молибден | 2625 | 900 |
Железо | 1539 | 450 |
Медь | 1083 | 200 |
Алюминий | 660 | 100 |
Особенность собирательной рекристаллизации состоит в том, что рост происходит не в результате слияния нескольких мелких зерен в одно более крупное зерно, а одни зерна растут за счет других зерен, ”поедая” их вследствие перехода атомов через границы раздела. Зерна с вогнутыми границами растут за счет зерен с выпуклыми границами (рисунок 22). Атом на вогнутой поверхности имеет большее число соседей и, следовательно, меньшую энергию, по сравнению с атомами на выпуклой поверхности. Малые зерна постепенно исчезают. Собирательная рекристаллизация, вызывающая образование крупного зерна и разнозернистости, способствует снижению механических свойств металлов и поэтому чаще всего недопустима для наклепанного металла.
Рисунок 22 — Схема роста зерен при собирательной рекристаллизации
На свойства металла большое влияние оказывает размер зерен, получившихся при рекристаллизации. Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень производительной пластической деформации (рисунок 23).
Величина зерна возрастает с повышением температуры нагрева и времени выдержки. При температурах Т1 и Т2 (выше Тр) образование рекристаллизованного зерна происходит не сразу, а через некоторый отрезок времени t1 и t2, который называется инкубационным.
Рисунок 23 — Влияние температуры (а), продолжительности нагрева (б) и степени деформации (в) на величину рекристаллизованного зерна
Наиболее крупные зерна образуются после незначительной предварительной деформации, обычно порядка 3…15 %, такую степень деформации называют критической.
Критической называют такую минимальную степень деформации, выше которой при нагреве становится возможной первичная рекристаллизации.
Причины коробления стали при закалке
Эту цитату необходимо воспринимать как аксиому, ведь процесс упрочнения стальных деталей неизбежно связан с их короблением или поводками. Коробление деталей при закалке это такая же закономерность, как и замерзание воды при понижении температуры.
- Формообразование (механическая обработка, гибка, штамповка, высадка и т.д.) - термообработка деталей с припусками под коробление - доводка геометрических размеров механической обработкой
- Термообработка поковок и отливок, близких по форме к готовой детали - доводка геометрических размеров механической обработкой
Также используются и уникальные схемы, позволяющие термообрабатывать детали в полуфабрикатах (листы, уголки, полосы). Это более трудоёмкий процесс с точки зрения конструкторских расчётов, т.к. должны быть учтены такие факторы, как прокаливаемость стали при разных параметрах закалки, возможные проблемы с анизотропией механических свойств по сечению детали и многие другие.
Коробление деталей при мартенситном превращении невозможно устранить даже при использовании самого современного термического оборудования. Но при использовании такого оборудования можно устранить другие причины влияющие на изменение размеров деталей при термообработке. Одной из таких причин является температурный удар при нагреве. Как правило, детали загружаются в печь с уже рабочей температурой. Это вызывает быстрый и неравномерному разогрев металла в микроскопических объёмах, особенно легированных сталей. Из-за разных коэффициентов линейного термического расширения элементов сплава, могут возникать растягивающие и сжимающие напряжения, что также вызовет изменение геометрии. В качестве примера можно привести рекомендуемый режим термообработки быстрорезов Р18 и Р6М5. Из-за разных свойств теплопроводности вольфрама, молибдена и железа необходимо делать изотермические выдержки при нагреве. В противном случае, величина короблений может превысить предел прочности, что приведет к появлению трещины.
Еще, на появление короблений деталей влияет неравномерность нагрева в макроскопических объёмах, т.е в пределах размера детали. Эта неравномерность вызвана прежде всего устройством печи, плотностью и расположением нагревательных элементов, расположением деталей в садке. Если деталь будет с одной стороны нагреваться быстрее, чем с другой, то это вызовет разнонаправленные напряжения, которые также могут превысить предел текучести и даже предел прочности.
Два последних фактора устраняются использованием качественного термического оборудования и отработанными режимами термообработки для конкретных марок стали. Конечно, большим плюсом в борьбе с термическими короблениями будет являться применение вакуумного оборудования. Не зря производители вакуумных печей говорят о минимальных короблениях деталей при использовании их оборудования. При вакуумном нагреве, степень искажения размеров минимизируется за счёт очень плавного разогрева деталей вместе с печью и за счёт однородности температурного поля как при конвекционном нагреве, так и в вакууме. Но повторимся, высокотехнологичные вакуумные печи не смогут подавить физико-химические закономерности изменения удельного веса при мартенситном превращении.
Недавно, на каком-то сайте, зарубежные коллеги рассказывали о короблении изделий в аустенитном состоянии под собственным весом или весом других деталей, в неправильно сформированной садке. Как вариант, можно рассмотреть и этот случай. Действительно, аустенит обладает очень низкими механическими свойствами: низким пределом текучести и прочности. Например его твердость составляет всего 160-200 HB. Соответственно, если нагрузка на деталь в аустенитном состоянии превысит допустимую (предел текучести), то это приведет к точечной или объемной пластической деформации.
В статье мы рассмотрели основные причины коробления сталей при закалке. Конечно, существует еще множество причин поводок и отклонения геометрических размеров. Это могут быть такие факторы, как: дисперсионное твердение, повышенная прокаливаемость, сложная геометрия детали и многие другие. Но все эти факторы являются очень явными и останавливаться на них нет смысла.
Пластическая деформация металлов
Деформацией называется изменение размеров и формы тела под действием приложенных сил. Деформация делится на упругую и пластическую.
Упругая деформация. Упругой деформацией называют деформацию, влияние которой на форму, структуру и свойства тела полностью устраняется после прекращения действия внешних сил. Упругая деформация не вызывает заметных остаточных изменений в структуре и свойствах металла; под действием приложенной нагрузки происходит только незначительное относительное и полностью обратимое смещение атомов.
Пластическая деформация. При возрастании касательных напряжений выше определенной величины (предел или порог упругости) деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации. Часть же деформации, которую называют пластической, остается.
Пластическая деформация в кристаллах может осуществляться скольжением и двойникованием. Скольжение (смещение) отдельных частей кристалла относительно друг друга происходит под действием касательных напряжений, когда эти напряжения в плоскости и в направлении скольжения достигают определенной критической величины (τк).
Схема упругой и пластической деформаций металла с кубической структурой, подвергнутого действию касательных напряжений, показана на рис. 18. Эта схема дает наглядное представление о смещении атомов в соседних плоскостях при сдвиге на одно межатомное расстояние.
Скольжение в кристаллической решетке протекает по плоскостям, и направлениям с наиболее плотной упаковкой атомов где величина сопротивлению сдвигу (τк) наименьшая, а сама величина τ значительна. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая.
Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической деформации. Металлы, имеющие кубическую кристаллическую решетку, обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с гексагональной плотноупакованной структурой менее пластичны и поэтому труднее, чем металлы с кубической структурой, поддаются прокатке, штамповке и другим способам деформации.
Процесс скольжения не следует, однако, представлять как одновременное передвижение одной части кристалла относительно другой. Такой жесткий или синхронный сдвиг потребовал бы напряжений, в сотни или даже тысячи раз превышающих те, при которых в действительности протекает процесс деформации.
Рис. 18. Схема упругой и пластической деформации металла под действием напряжения сдвига:
а – первоначальный кристалл; б – упругая деформация; в – увеличение упругой и пластической деформации, вызванных скольжением, при нагружении, большем предела упругости; г – напряжения, обусловившие появление сдвига (после сдвига сохранилась остаточная деформация); д – образование двойника.
Рис. 19. Движение краевой дислокации, приводящее к образованию ступеньки единичного сдвига на поверхности кристалла:
а – схема движения дислокации; б – краевая дислокация в кристаллической структуре; в – дислокация переместилась на дно; г – на два межатомных расстояния в решетке под влиянием приложенного напряжения; д – выход дислокации на поверхность и появление сдвига.
Скольжение осуществляется в результате перемещения в кристалле дислокаций, что показано на рис. 19. Чтобы дислокация из исходного положения 1 переместилась в соседнее положение 14, не нужно сдвигать всю верхнюю половину кристалла на одно межатомное расстояние.
Достаточно, чтобы произошли следующие перемещения атомов: атом 1 в положение атома 2, атом 3 — в 4, атом 5 — в 6, атом 7 — в 8, атом 9 — в 10, атом 11 — в 12, атом 13 — в 14, атом 15 — в 16 и атом 17 — в 18. Также смещаются атомы не только в плоскости чертежа, но и во всех атомных слоях, параллельных этой плоскости.
Незначительные перемещения атомов в области дислокации приводят к перемещению дислокаций на одно межатомное расстояние.
Следует иметь в виду, что перемещение дислокаций, образовавшихся в процессе кристаллизации, ограничено. Большие деформации возможны только вследствие того, что движение этих дислокаций вызывает появление или размножение большого количества новых дислокаций в процессе пластической деформации.
Двойникование. Пластическая деформация некоторых металлов, имеющих плотноупакованные решетки К12 и Г12, помимо скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования. Двойникование подобно скольжению сопровождается прохождением дислокаций сквозь кристалл.
При большой деформации в результате процессов скольжения зерна (кристаллиты) меняют свою форму. До деформации зерно имело округлую форму, после деформации в результате смещений по плоскостям скольжения зерна вытягиваются в направлении действующих сил τ, образуя волокнистую или слоистую структуру. Одновременно с изменением формы зерна внутри него происходит дробление блоков и увеличение угла разориентировки между ними.
Текстура деформации. При большой степени деформации возникает преимущественная кристаллографическая ориентировка зерен. Закономерная ориентировка кристаллитов относительно внешних деформирующих сил получила название текстуры (текстура деформации).
Наклеп. С увеличением степени деформации свойства, характеризующие сопротивление деформации (σв, σт, НВ и др.), повышаются, а способность к пластической деформации — пластичность (δ и φ) уменьшается. Это явление роста упрочнения получило название наклепа. Упрочнение металла в процессе пластической деформации (наклеп) объясняется увеличением числа дефектов кристаллического строения (дислокаций, вакансий, межузельных атомов).
Все дефекты кристаллического строения затрудняют движение дислокаций, а следовательно, повышают сопротивление деформации и уменьшают пластичность. Наибольшее значение имеет, увеличение плотности дислокаций, так как возникающее при этом взаимодействие между ними тормозит дальнейшее их перемещение. В результате деформации уменьшается плотность, сопротивление коррозии и повышается электросопротивление. Холодная деформация ферромагнитных металлов, например железа, повышает коэрцитивную силу и уменьшает магнитную проницаемость.
Свойства пластически деформированных металлов.
В результате холодного пластического деформирования металл упрочняется и изменяются его физические свойства — электросопротивление, магнитные свойства, плотность. Наклепанный металл запасает 5-10% энергии, затраченной на деформирование. Запасенная энергия тратится на образование дефектов решетки (например, плотность дислокаций возрастает до 10 9- 10 12 см -2 ) и на упругие искажения решетки. Свойства наклепанного металла меняются тем сильнее, чем больше степень деформации (рис. 20).
При деформировании увеличиваются прочностные характеристики (твердость;σв; σ0,2; σупр) и понижаются пластичность и вязкость (δ; φ; ан). Металлы интенсивно наклепываются в начальной стадии деформирования, после 40%-ной деформации механические свойства меняются незначительно. С увеличением степени деформации предел текучести растет быстрее предела прочности (временного сопротивления).
Обе характеристики у сильно наклепанных металлов сравниваются, а удлинение становится равным нулю. Такое состояние наклепанного металла является предельным, при попытке продолжить деформирование металл разрушается.
Путем наклепа твердость и временное сопротивление (предел прочности) удается повысить в 1,5-3 раза, а предел текучести — в 3-7 раз при максимально возможных деформациях. Металлы с ГЦК-решеткой упрочняются сильнее металлов с ОЦК-решеткой. Среди сплавов с ГЦК-решеткой сильнее упрочняются те, у которых энергия дефектов упаковки минимальна (например, интенсивно наклепываются аустенитная сталь; алюминиевая бронза с 7% А1; никель; а алюминий упрочняется незначительно).
Упрочнение при наклепе широко используют для повышения механических свойств деталей, изготовленных методами холодной обработки давлением. В частности, наклеп поверхностного слоя деталей повышает сопротивление усталости. Понижение пластичности при наклепе используют для улучшения обрабатываемости резанием вязких и пластичных материалов (сплавов алюминия, латуней и др.).
Влияние нагрева на структуру и свойства холоднодеформированных металлов.
Неравновесная структура, созданная холодной деформацией у большинства металлов устойчива при комнатной температуре. Переход металла в более стабильное состояние происходит при нагреве. Процессы, происходящие при нагреве подразделяют на две основные стадии: возврат и рекристаллизацию; обе стадии сопровождаются выделением теплоты и уменьшением свободной энергии. Возврат происходит при относительно низких температурах, рекристаллизация — при более высоких.
Возвратом называют все изменения тонкой структуры и свойств, которые не сопровождаются изменением микроструктуры деформированного металла, т. е. размер и форма кристаллов при возврате не изменяются.
Рекристаллизацией называют зарождение и рост новых кристаллов с меньшим количеством дефектов строения; в результате рекристаллизации образуются совершенно новые, чаще всего, равноосные кристаллы.
Возврат. Стадию возврата, в свою очередь, разделяют на две возможные стадии: отдых и полигонизацию. Отдых при нагреве деформированных металлов происходит всегда, а полигонизация развивается лишь при определенных условиях.
Отдыхом холоднодеформированного металла называют стадию возврата, при которой вследствие перемещения атомов уменьшается количество точечных дефектов, в основном вакансий; в ряде металлов, таких как алюминий и железо, отдых включает также переползание дислокаций, которое сопровождается взаимодействием дислокаций разных знаков и приводит к заметному уменьшению их плотности. Перераспределение дислокаций сопровождается также уменьшением остаточных напряжений.
Отдых вызывает значительное уменьшение удельного электросопротивления и повышение плотности металла. Если при отдыхе уменьшается плотность дислокаций, то наблюдается уменьшение твердости и прочности металла (алюминий, железо); если плотность дислокаций при отдыхе не меняется, то отдых не сопровождается изменением механических свойств (медь, латунь, никель).
Полигонизация — это процесс разделения деформированных зерен металла на полигоны — области с малой плотностью дислокаций. Эти области называются блоками. Процесс полигонизации протекает в интервале температур отдых — рекристаллизация и заканчивается созданием блочной структуры.
Полигонизация приводит к дальнейшему снятию упругих искажений кристаллической решетки и более полному восстановлению физических свойств металла. Механические свойства его при этом изменяются незначительно. Текстура сохраняется, хотя и становится блочной.
Вслед за возвратом протекает рекристаллизация, заключающаяся в зарождении и росте новых неискаженных равноосных зерен (рис. 21).
При первичной рекристаллизациив деформированной среде зарождаются и растут равноосные зерна до тех пор, пока полностью не исчезнет текстура, созданная деформацией. Зародышами зерен являются отдельные энергетически выгодные блоки (центры рекристаллизации). После исчезновения текстуры металл приобретает равновесную мелкозернистую структуру.
Суммарная протяженность границ мелких зерен велика. Граничные зоны зерен представляют собой тонкие (в несколько атомных слоев) сильно искаженные области, так как здесь сопрягаются кристаллические решетки различно ориентированных стыкующихся зерен, сюда стекаются точечные дефекты и дислокации. Поэтому граничные зоны зерен и характеризуются высокими значениями энергии (поверхностной энергии), которая уменьшается за счет округления зерен и дальнейшего их роста путем фронтального перемещения граничных зон растущих зерен и поглощения мелких.
Атомы из мелких зерен диффундируют через границу в растущие зерна, отчего первые постепенно исчезают, а вторые разрастаются. В результате число зерен структуры металла уменьшается, а их размеры увеличиваются. Рост одних равноосных зерен за счет исчезновения других представляет собой собирательную рекристаллизацию.
Температура начала рекристаллизации зависит от многих факторов и прежде всего от степени деформации материала и содержания примесей в нем. Определено, что
где Трекр— абсолютная минимальная температура рекристаллизации; α — коэффициент, учитывающий вышеперечисленные факторы; Тпл — абсолютная температура плавления данного вещества.
Минимальная температура рекристаллизации железа и других металлов технической чистоты определяется по формуле А. А. Бочвара:
Термическая операция, заключающаяся в нагреве деформированного (текстурованного) материала до температуры выше Трекр, выдержке и последующем медленном охлаждении (в печи), называется рекристаллизационным отжигом.
Рис. 21. Влияние нагрева на механические свойства и структуру металла, упрочненного деформацией.
Практически температура рекристаллизационного отжига выбирается выше расчетной (обычно на 200. 300°С), так как чем выше температура нагрева, тем быстрее протекает рекристаллизация, характеризующаяся, в частности, уменьшением твердости металла. Для железа и низкоуглеродистой стали температура рекристаллизационного отжига принимается равной 650. 700°С.
Для того чтобы в металле при нагреве протекала рекристаллизация, необходима его хотя бы минимальная предварительная холодная обработка (критическая степень деформации εкр для железа равна 5. 6 %, для малоуглеродистой стали — 7. 15, для меди — около 5, для алюминия — 2. 3 %).
При рекристаллизации после деформирования материала с εкр зерно растет в нем особенно сильно и может увеличиться по сравнению с исходным во много раз. Выбирая степень деформации и температуру рекристаллизационного отжига, можно получить в металле зерно нужного размера. Рекристаллизационный отжиг широко используют для управления формой и размерами зерен, текстурой и свойствами металлов и сплавов.
Создание текстуры и наклеп возможны только в случае холодного деформирования металла. Обработка давлением называется холодной, если она совершается при температурах ниже температуры рекристаллизации, горячей — при температурах выше температуры рекристаллизации.
При горячей обработке давлением одновременно с пластической деформацией металла протекает рекристаллизация, которая продолжается и после деформации до тех пор, пока температура металла не станет ниже Трекр. При этом в металлах не возникает текстура и они не наклепываются. Такая обработка широко используется при производстве горячекатаного стального полуфабриката различного профиля.
Дефекты, возникающие при термической обработке и их устранение
Неправильно проведенная закалка стали приводит к дефектам (браку изделия). Наиболее распространенные из них:
- недостаточная твердость закаленного изделия;
- мягкие пятна;
- пережог и закалочные трещины;
- обезуглероживание и окисление поверхности;
- коробление и деформация;
В этой небольшой статье мы детально рассмотрим каждый из этих потенциальных дефектов закаленной стали.
Недостаточная твердость
Недостаточная твердость закаленного изделия появляется в результате неправильно выбранной температуры закалки или недостаточно интенсивного охлаждения. Скажем, при закалке доэвтектоидных сталей недостаточная твердость может получиться в результате того, что температура закалки была ниже АС3 и в структуре стали сохранился феррит.
Кроме того, в доэвтектоидной стали пониженная твердость может быть результатом перегрева. Образование при этом крупноигольчатой структуры мартенсита, помимо пониженной твердости, вызывает понижение ударной вязкости.
В заэвтектоидных сталях недостаточная твердость закаленного изделия может также являться результатом перегрева и образования крупноигольчатого мартенсита.
Образование мягких пятен
Образование мягких пятен может являться результатом неравномерного охлаждения, соприкосновения деталей друг с другом в процессе охлаждения, наличия жировых пятен на поверхности изделия и неоднородности структуры.
Исправляется такой брак повторной закалкой изделия. Неоднородность структуры устраняется предварительной его нормализацией.
Окисление и обезуглероживание
Такой брак характеризуются образованием окалины на поверхности стальных изделий и выгоранием углерода в поверхностных слоях (так называемое - обезуглероживание) .
Такой брак термической обработки неисправим, но если позволяет припуск на механическую обработку, то окисленный и обезуглероженный слой удаляют шлифовкой.
Для предотвращения этого вида брака нагрев изделий рекомендуется проводить в печах с нейтральной атмосферой либо в жидких средах.
Пережог
Пережог наступает при весьма высоких температурах нагрева, близких к температуре плавления, поэтому имеет место проникновение кислорода внутрь металла и образование окислов, располагающихся по границам зерен, или даже оплавление металла по границам зерен. Это нарушает сплошность металла, и, как результат, он становится не пригодным для применения. Такой брак термической обработки также неисправим.
Закалочные трещины
Закалочные трещины могут являться результатом слишком быстрого и неравномерного нагрева, либо слишком быстрого охлаждения, либо наличия на детали резких переходов сечений, где возникают большие внутренние напряжения, приводящие к растрескиванию.
Они могут получиться и в том случае, если после закалки деталь сразу не подвергли отпуску для снятия внутренних напряжений.
Для устранения растрескивания деталей при закалке необходимо обеспечить равномерный и более медленный нагрев, использовать закалку с одстуживанием (в двух средах или ступенчатую), отпускать изделия непосредственно после закалки и т.д.
Деформация и коробление
И последний возможный дефект закаленной стали - деформация и коробление. Структурные изменения, происходящие в металле при термической обработке, вызывают изменение объема (деформацию), а неравномерность охлаждения — искажение внешней формы (коробление).
Такие дефекты закаленной стали происходят в связи с тем, что структуры имеют различный удельный объем. Это следует учитывать при назначении допуска на шлифовку. Например, удельный объем мартенсита больше, чем удельный объем перлита. Также форма различных деталей под влиянием структурных напряжений изменяется иначе, чем под влиянием термических напряжений.
Тела простой формы после деформации и правильное положение положение деталей при погружении их в закалочный бак
Для предотвращения деформаций и коробления необходимо обеспечить медленное охлаждение в интервале мартенситного превращения путем ступенчатой и изотермической закалок, закалки.
Читайте также: