Конус морзе размеры таблица для токарного станка по металлу
Конус Морзе, предложенный изобретателем Стивеном Морзе является наиболее применяемым способом крепления инструмента. Существующее подразделение на восемь размеров, от КМ0 до КМ7, и девять размеров укороченных позволяют применять конический хвостовик для различного режущего инструмента, оснастки и приспособлений. Конусность при этом варьируется в соотношении от 1:19,002 (при угле 1°25′43″) до 1:20,047 (угол при этом соотношении равен 1°30′26″). КМ7 отечественным ГОСТом 25557-82 не рекомендуется к применению и вместо него применяется метрический конус № 80, например в отверстии шпинделя некоторых токарных станков. Типоразмер конуса в качестве хвостовика инструмента зависит от способа установки и предназначения последнего, и бывает как укороченным, так и с резьбой или с лапкой.
Конус 1:20
Метрические конусы инструментов. Отверстия в шпинделях станков.
Конус Морзе – это одно из самых распространенных средств для закрепления инструмента на станке. Свое название данный инструмент получил в честь знаменитого инженера Стивена Морзе, жившего в XIX веке. Сегодня для правильного выбора размеров этого изделия применяют дробные числа. Существует несколько стандартизованных значений, различающихся углами наклона и размерами.
Читать также: Как раскрутить винт с сорванными гранями
Область применения конуса Морзе – это машиностроение. С его помощью можно быстро и очень точно закрепить режущий инструмент. Для этого конус Морзе крепится в станке в специальном отверстии или патроне, а в него в свою очередь вставляется например сверло. Такой способ крепежа гарантирует наиболее точное центрирование и последующую обработку. Также с его помощью можно подавать к обрабатываемой детали или режущему инструменту смазочно-охлаждающую жидкость.
Конусы Морзе и метрические с резьбовым отверстием
Для надёжной фиксации инструмента, как например фрез, применяется конус Морзе с внутренним резьбовым отверстием. Фиксирование (затягивание) выполняется с помощью штревеля, или болтом, если инструмент устанавливается в переходную втулку. Данная конструкция также способствует быстрой и удобной замене инструмента путём выжимания конусного хвостовика.
Основные размеры наружных инструментальных метрических и Морзе конусов с резьбовым отверстием
Наименование конуса | N конуса | Конусность | D, мм | D1 , мм | d, мм | l, мм | Lmax , мм | tmax , мм | M | t1, min , мм |
Морзе | 1 | 1:20,047 | 12,065 | 12,2 | 9 | 3,5 | 57 | 5 | M6 | 16 |
2 | 1:20,020 | 17,780 | 18 | 14 | 5 | 69 | M10 | 24 | ||
3 | 1:19,992 | 23,825 | 24,1 | 19 | 86 | 7 | M12 | 28 | ||
4 | 1:19,254 | 31,267 | 31,6 | 25 | 6,5 | 109 | 9 | M16 | 32 | |
5 | 1:19,002 | 44,399 | 44,7 | 35,7 | 136 | 10 | M20 | 40 | ||
6 | 1:19,180 | 63,348 | 63,8 | 51 | 8 | 190 | 16 | M24 | 50 | |
Метрический | 80 | 1:20 | 80 | 80,4 | 67 | 8 | 204 | 24 | M30 | 65 |
100 | 100 | 100,5 | 85 | 10 | 242 | 30 | M36 | 80 | ||
120 | 120 | 120,6 | 102 | 12 | 280 | 36 | ||||
160 | 160 | 160,8 | 138 | 16 | 356 | 48 | M48 | 100 | ||
200 | 200 | 201 | 174 | 20 | 432 | 60 |
Наилучшие разновидности конусов на сегодняшний день
В наши дни особой популярностью, благодаря своему качеству, пользуются инструментальные конусы Морзе компаний HSK, Capto и Kennametal. Хорошая устойчивость к изменениям температуры и соответствие жестким требованиям в станкостроении позволило конусам Морзе этих брендов стать лидерами рынка.
HSK – это полые инструменты с конусностью 1:10. Обозначаются буквой латинского алфавита и цифрой, обозначающей больший диаметр фланца. Главной особенностью таких изделий является быстрая замена инструмента, что очень важно в станках с ЧПУ.
Инструментальные конусы Capto соответствуют международному стандарту ISO и являются высококлассной продукцией. Продукция дорогостоящая из-за сложности изготовления, но высокая точность позволит минимизировать брак на производстве при использовании на станках этих инструментов. Особенность конструкции не позволяет им провернуться во время работы станка, происходит самозаклинивание. Жесткость соединения продукции компании Capto – это основное их преимущество перед другими конкурентами
Продукция Kennametal менее распространена, но так же отлично справляется со своим предназначением.
Продукция компаний B&S, Jacobs и Jarno распространены в основном в США, так как не имеют подтверждения международных стандартов и создаются соответственно для американского рынка, где пользуются большим спросом.
Читать также: Паяльник для ткани с насадками
Компания Bridgerport Machines разработала модель R8 для цанговых зажимов на своем оборудовании. Но затем изобретение было доработано и выпущено на международный рынок. Эффективность этого средства вызвала в свое время фурор и стали появляться всевозможные аналоги. На сегодняшний день компания выпускает только один вид исполнения такого механизма.
Инструментальный конус 7:24 широко применяем в станках с ЧПУ, где смена инструмента происходит автоматически. Являясь инструментальным, он обладает рядом преимуществ перед обычным и поэтому так популярен в станкостроении. Существует множество его разновидностей. Во многих странах разработаны собственные стандарты к нему и поэтому между собой модели 7:24 от разных производителей не заменяют друг друга.
Конус 1:50 также широко применим в машиностроительной отрасли, если требуется дополнительно скрепить два изделия с резьбовым соединением. Для этого у модели 1:50 есть специальный штифты, которые необходимо вставить в обрабатываемые изделия, предварительно просверлив в тех отверстия в соответствующих местах.
Конусы Морзе и метрические с лапкой
Конструкция шпинделей сверлильных, сверлильно-фрезерных, и некоторых типов других станков для надёжной фиксации режущего инструмента и предотвращения проворачивания имеет паз для лапки конуса. Сквозное поперечное отверстие предназначено для установки в паз клина, и нетрудного извлечения конусной оправки инструмента.
Основные размеры наружных инструментальных метрических и Морзе конусов
Наименование конуса | N конуса | Конусность | D, мм | D1 , мм | d1 , мм | a, мм | Lmax , мм | lmax , мм | emax , мм |
Метрический | 4 | 1:20 | 4 | 4,1 | — | 2 | — | ||
6 | 6 | 6,2 | 3 | ||||||
Морзе | 0 | 1:19,212 | 9,045 | 9,2 | 6,1 | 3 | 59,5 | 56,5 | 10,5 |
1 | 1:20,047 | 12,065 | 12,2 | 9 | 3,5 | 65,5 | 62 | 13,5 | |
2 | 1:20,020 | 17,780 | 18 | 14 | 5 | 80 | 75 | 16 | |
3 | 1:19,992 | 23,825 | 24,1 | 19,1 | 99 | 94 | 20 | ||
4 | 1:19,254 | 31,267 | 31,6 | 24,5 | 6,5 | 124 | 117,5 | 24 | |
5 | 1:19,002 | 44,399 | 44,7 | 35,7 | 156 | 149,5 | 29 | ||
6 | 1:19,180 | 63,348 | 63,8 | 51 | 8 | 218 | 210 | 40 | |
Метрический | 80 | 1:20 | 80 | 80,4 | 69 | 8 | 228 | 220 | 48 |
100 | 100 | 100,5 | 87 | 10 | 270 | 260 | 58 | ||
120 | 120 | 120,6 | 105 | 12 | 312 | 300 | 68 | ||
160 | 160 | 160,8 | 141 | 16 | 396 | 380 | 88 | ||
200 | 200 | 201 | 177 | 20 | 480 | 460 | 108 |
Диаметры D1 и d1 являются теоретически-расчётными и зависят от номинальных размеров D, a и l.
Основные размеры внутренних инструментальных метрических и Морзе конусов
Наименование конуса | N конуса | Конусность | D, мм | g, мм | h, мм | l1 , мм |
Метрический | 4 | 1:20 | 4 | 2,2 | 8 | 21 |
6 | 6 | 3,2 | 12 | 29 | ||
Морзе | 0 | 1:19,212 | 9,045 | 3,9 | 15 | 49 |
1 | 1:20,047 | 12,065 | 5,2 | 19 | 52 | |
2 | 1:20,020 | 17,780 | 6,3 | 22 | 62 | |
3 | 1:19,992 | 23,825 | 7,9 | 27 | 78 | |
4 | 1:19,254 | 31,267 | 11,9 | 32 | 98 | |
5 | 1:19,002 | 44,399 | 15,9 | 38 | 125 | |
6 | 1:19,180 | 63,348 | 19 | 47 | 177 | |
Метрический | 80 | 1:20 | 80 | 26 | 52 | 186 |
100 | 100 | 32 | 60 | 220 | ||
120 | 120 | 38 | 70 | 254 | ||
160 | 160 | 50 | 90 | 321 | ||
200 | 200 | 62 | 110 | 388 |
Укороченные конусы Морзе
По причине избыточности длины конуса Морзе при некотором его применении, был образован стандарт укороченных конусов. В обозначении конуса находится значение наибольшего диаметра образованного после уменьшения длины при сохранении соотношения. Таким образом девять типоразмеров укороченных конусов, В7, В10, В12, В16, В18, В22, В24, В32, В45 получили распространение при установке сверлильных патронов и другого инструмента.
Значения диаметров D1 и d1 являются теоретически-расчётными и зависят от номинальных размеров D и L.
Основные размеры укороченных конусов Морзе
Наименование конуса | N конуса Морзе | D, мм | D1 , мм | d1 , мм | amax , мм | L, мм | M | l1 , мм |
B7 | 0 | 7,067 | 7,2 | 6,5 | 3,0 | 11,0 | — | |
B10 | 1 | 10,094 | 10,3 | 9,4 | 3,5 | 14,5 | — | |
B12 | 12,065 | 12,2 | 11,1 | 18,5 | М6 | 16,0 | ||
B16 | 2 | 15,733 | 16,0 | 14,5 | 5,0 | 24,0 | — | |
B18 | 17,780 | 18,0 | 16,2 | 32,0 | М10 | 24,0 | ||
B22 | 3 | 21,793 | 22,0 | 19,8 | 40,5 | — | ||
B24 | 23,825 | 24,1 | 21,3 | 50,5 | М12 | 28,0 | ||
B32 | 4 | 31,267 | 31,6 | 28,6 | 6,5 | 51,0 | М16 | 32,0 |
B45 | 5 | 44,399 | 44,7 | 41,0 | 64,5 | М20 | 40,0 |
Точение конуса на токарном станке
1. Точение конической поверхности при повороте поперечногосуппорта
при ручной подаче, как показано на рисунке 20а. Угол поворота определяют по формуле:
tg = (D – d)/2l, где D и d – диаметры конуса, мм; l – длина конуса, мм. Этим методом обрабатываются как наружные, так и внутренние конические поверхности.
2. Точение конусов широким резцом
при поперечной подаче (рисунок 20б). Этот способ применяется при обработке конических поверхностей небольшой длины. Ширина резца должна немного превышать длину обрабатываемой поверхности.
3. Точение конусов при поперечном смещении корпуса задней бабки
показано на рисунке 20в. Таким способом обрабатываются длинные детали с небольшой конусностью ( 8 о ). Величина смещения задней бабки от оси
h = L(D – d)/2l, где l – длина детали, мм.
4. Точение конусов при помощи копировальной
(конусной)
линейки
показано на рисунке 20г. Таким способом обрабатываются конусные детали большой длины. Для этого на кронштейне, прикреплённом к станине, располагают линейку с ползуном, которая кинематически связана с поперечным суппортом станка.
Рисунок 20 – Способы обработки конических поверхностей.
Точение конической поверхности с поворотом поперечного суппорта и ручной подачи (а)
1 – ось поворота поперечного суппорта; 2 – рукоятка ручной подачи.
Точение конусов широким резцом (б). Точение конусов при поперечном смещении корпуса задней бабки (в). Точение конусов при помощи копировальной (конусной) линейки (г)
1, 5 – болты крепления линейки; 2 – кронштейн; 3 – копировальная линейка; 4 – ползун; 6 – тяга; 7 – станина; 8 – деталь; 9 – поперечный суппорт
Кинематическая схема токарно-винторезного станка 1к62
При анализе кинематических схем металлорежущих станков различают главное рабочее движение
и
движение подачи
.
Главное рабочее движение
. Привод главного движения – коробка скоростей имеет 6 валов. Вал I (рисунок 21) приводится в движение электродвигателем
(N = 10 кВт, n = 1450 об/мин) через клиноремённую передачу со шкивами диаметром 142 и 254 мм. На этом валу размещается пластинчатая фрикционная муфта М1, переключение которой реверсирует вращение шпинделя. При включении муфты влево вращение с вала I на вал II передаётся через шестерни 56 – 34 или 51 – 39, а при включении муфты вправо – через шестерни 50 – 24 и 36 – 38. В последнем случае передача движения осуществляется через блок промежуточных (паразитных) шестерён 24 – 36, которые изменяют направление движения вала II, и, следовательно, направление вращения шпинделя.
При включении муфты влево обеспечивается прямое вращение шпинделя – по часовой стрелке при взгляде с его нерабочей стороны, при включении вправо – обратное вращение. Реверсирование движения шпинделя необходимо для проведения тяжёлых отрезных работ (большие диаметры, твёрдые материалы) при обратном вращении шпинделя, а также для извлечения инструмента, закреплённого в задней бабке, при обработке отверстий. В дальнейшем будет рассматриваться только прямой рабочий ход.
С вала II на вал III вращение передаётся через шестерни 29 – 47; 21 – 55; 38 – 38. С вала III движение может непосредственно передаваться через шестерни 65 – 43 на вал VI – шпиндель, обеспечивая таким образом, 6 самых высоких частот его вращения.
С другой стороны, движение с вала III может передаваться на вал IV через шестерни 22 – 88 или 45 – 45, а с вала IV на вал V через шестерни 22 – 88 или 45 – 45 и далее 27 – 54 на шпиндель. Валы IV и V являются системой перебора. Благодаря этой системе шпиндель получает ещё 24 частоты вращения, итого – 30.
Фактически станок имеет 23 частоты вращения, так как при некоторых передачах скорости дублируются.
Уравнение кинематической цепи главного движения в общем виде выглядит так:
где nшп – частота вращения шпинделя, об/мин; nэд – частота вращения электродвигателя, об/мин; dэд – диаметр шкива на валу I, мм; — коэффициент проскальзывания клиноремённой передачи ( 0,01 0,015); i – передаточное отношение передачи с одного вала на другой.
Конус Морзе
Габариты и элементы конуса Морзе
Отличительной чертой одного конуса Морзе от другого являются размеры. Существуют несколько их видов и в соответствии с ГОСТом каждый имеет определенный номер и аббревиатуру. Чтобы измерить его, необходимо воспользоваться калибровкой, а лучше всего специальной таблицей, которая позволит рассчитать размеры до микрона. В зависимости от станка, на котором будет проводиться обработка детали, следует выбирать например резец, сверло, а затем вид изобретения Стивена Морзе.
С развитием машиностроительной отрасли возникла потребность в расширении модельного ряда конусов Морзе. Для этого был разработан метрический конус, который не имел особых конструктивных отличий от своего предшественника. Его конусность равнялась 1:20, при этом угол 2°51’51″, а уклон 1°25’56″. Метрические конусы позволили создать большой выбор инструмента для различных станков и операций. Классифицируются они на две категории: большие и малые. Большие обозначаются, например № 120, 200, и цифры соответствуют наибольшему диаметру метрического конуса.
Размеры конуса Морзе
Инструментальный конус представляет собой конический хвостовик какого-нибудь режущего инструмента и коническое отверстие в шпинделе или бабке такого же диаметра. Его функция заключается в быстрой смене режущего инструмента и сохранении высокой точности при центрировании и закреплении.
Применяется в основном в станках с ЧПУ, потому что устраняет ряд недостатков обычного конуса Морзе.
- заклинивание хвостовиков в шпинделе гораздо меньше;
- меньшие размеры;
- улучшенный упор по оси;
- простота закрепления;
- автоматическая смена режущего инструмента.
В наши дни конусы Морзе изготавливают в соответствие с международным стандартом ISO и DIN. В России система стандартизации объединяет в один класс как просто конусы Морзе, так и метрические и инструментальные. Информацию о них можно получить в ГОСТ 25557-82. Ситуация с единым ГОСТом сложилась из-за того, что конусы Морзе со времен СССР пользуются в нашем государстве большой популярностью, а параллельно с этим появилось много новых.
Конусы Морзе распределены по 8 категориям. За рубежом это МТ0, МТ1, МТ2, МТ3, МТ4, МТ5, МТ6, МТ7. В Германии такая же нумерация, но буквенное обозначение МК. В нашей стране и на постсоветском пространстве КМ0, КМ1, КМ2, КМ3, КМ4, КМ5, КМ6 и №80.
Как показало время, некоторые конусы Морзе зарубежного производства неудобны в эксплуатации по причине большой длины. На этот случай был разработан ряд укороченных изделий, имеющий 9 размеров.
Продукция Kennametal менее распространена, но так же отлично справляется со своим предназначением.
Основные сведения о хвостовиках и их обозначение
Существует несколько видов исполнения инструментального конуса. Он может содержать резьбу, лапку или обходиться без них.
В его торце может быть нарезана резьба, которую делают для закрепления инструмента на шпинделе с использованием штревеля. Это специальный шток, предотвращающий выпадение инструмента. Также с его помощью изделие можно извлечь, если его случайным образом заклинит в шпинделе.
Если хвостовик изготовлен с лапкой, то она удерживает инструмент в шпинделе за счет того, что закреплена в специальном пазу. Лапка имеет два предназначения, с ее помощью легче достать изделие из шпинделя, а также создается жесткая фиксация и не будет проворачивания.
Также можно встретить исполнение с несколькими канавками и отверстиями. Они имеют разную глубину и размеры. Их задача – подводить к режущему инструменту смазочно-охлаждающую жидкость.
Хвостовики инструмента бывают различной конструкции и обозначаются буквенным кодом. Ниже приведена их расшифровка:
- BI – внутренний, имеется паз;
- ВЕ – наружный, имеется лапка;
- AI – внутренний, имеется отверстие по оси;
- АЕ – наружный, имеется отверстие по оси с резьбой;
- BIK – внутренний, имеются паз и отверстие для подачи смазочно-охлаждающей жидкости (СОЖ);
- ВЕК – наружный, имеется лапка и отверстие для подачи СОЖ;
- AIK – внутренний, содержит отверстия по оси и для подачи СОЖ;
- АЕК – наружный, содержит отверстие по оси с резьбой и отверстие для подачи СОЖ.
Наружный и внутренний соответствуют своим названиям. В зависимости от используемого инструмента, следует выбирать исполнение наружное или внутреннее.
В некоторых ситуациях размеры конуса Морзе через чур большие и в таком случае следует пользоваться укороченными вариантами.
Представленные ниже названия означают, что конус был укорочен:
- B7 — до 14 мм;
- B10 — до 18 мм;
- B12 — до 22 мм;
- B16 — до 24 мм;
- B18 — до 32 мм;
- B22 — до 45 мм;
- B24 — до 55 мм;
- B32 — до 57 мм;
- B45 — до 71 мм;
Цифра в названии информирует о размере диаметра новой части конуса. Подробные данные можно взять из соответствующего ГОСТа.
Хвостовики инструмента с конусом Морзе. Метрические конусы
Конус Морзе, предложенный изобретателем Стивеном Морзе является наиболее применяемым способом крепления инструмента. Существующее подразделение на восемь размеров, от КМ0 до КМ7, и девять размеров укороченных позволяют применять конический хвостовик для различного режущего инструмента, оснастки и приспособлений. Конусность при этом варьируется в соотношении от 1:19,002 (при угле 1°25′43″) до 1:20,047 (угол при этом соотношении равен 1°30′26″).
КМ7 отечественным ГОСТом 25557-82 не рекомендуется к применению и вместо него применяется метрический конус № 80, например в отверстии шпинделя некоторых токарных станков.
Типоразмер конуса в качестве хвостовика инструмента зависит от способа установки и предназначения последнего, и бывает как укороченным, так и Конусы Морзе или с лапкой.
Метрические конусы
Для расширения диапазона конусов Морзе как в меньшую, так и в большую сторону была выбрана конусность 1:20 с углом 1°25′56″ с обозначением типоразмера по наибольшему диаметру. В итоге в ряду конусов схожих по конструкции с Морзе присутствуют как маленькие метрические конуса №4 и №6, так и большие №80, №100, №120, №160, №200.
Диаметры D1 и d1 являются теоретически-расчётными и зависят от номинальных размеров D, a и l.
По причине избыточности длины конуса Морзе при некотором его применении, был образован стандарт укороченных конусов. В обозначении конуса находится значение наибольшего диаметра образованного после уменьшения длины при сохранении соотношения. Таким образом девять типоразмеров укороченных конусов, В7, В10, В12, В16, В18, В22, В24, В32, В45 получили распространение при установке сверлильных патронов и другого инструмента.
Значения диаметров D1 и d1 являются теоретически-расчётными и зависят от номинальных размеров D и L.
Конус Морзе – это вспомогательное приспособление, используемое для фиксации промышленного инструмента. Устройство обеспечивает быструю смену оснастки без потери точности выполнения операций. Прототип изделия был изготовлен в 1864 году, с тех пор оно успешно применяется в промышленности.
Актуальные стандарты
Размеры конусов Морзе зависят от их исполнения. В продаже представлены изделия 8 типоразмеров – от КМ0 до КМ7. Характеристики каждого типоразмера прописаны в отраслевых нормативах. Там же отображается специфика совместимого оборудования.
Рис. 1 Конус Морзе с патроном и без него
Отечественные и зарубежные стандарты, регламентирующие изготовление конусов Морзе:
- ISO 296;
- DIN 228;
- ГОСТ 25557-2016.
Конусы Морзе по ГОСТ представлены не всеми типоразмерами. В российском стандарте отсутствуют изделия, относящиеся к категории КМ7. Они заменены конусами №80, несовместимыми с аналогами зарубежного производства.
Разновидности хвостовиков
В продаже представлены токарные конусы Морзе с хвостовиками нескольких типов. Элементы различаются спецификой исполнения и особенностями фиксации.
Хвостовики с лапкой
Хвостовики с лапкой фиксируются путем заклинивания. Лапка попадает в соответствующий паз шпинделя, обеспечивая надежное крепление компонента. Она исключает проворачивание изделия, существенно упрощает его извлечение при необходимости.
Рис. 2 Конус Морзе с патроном и хвостовиком с лапкой
Хвостовики с резьбой
Хвостовики с резьбой вкручиваются в шпиндель, надежно фиксируются в посадочном проеме. Размер и тип резьбы определяются конструктивным исполнением.
Рис. 3 Конус Морзе с патроном и резьбовым хвостовиком
Хвостовики с фиксацией трением
Тип хвостовиков, не содержащих лапок и резьбы. Удержание изделия осуществляется за счет сил трения, возникающих при плотном контакте элементов конуса и шпинделя.
Рис. 4 Конус Морзе с патроном, фиксирующийся за счет трения
Условные обозначения хвостовиков
На хвостовиках конусов Морзе могут присутствовать условные обозначения, определяющие специфику их конструкции.
Обозначения хвостовиков внутреннего типа:
- BI –с пазом;
- AI –с отверстием по оси;
- BIK –с пазом и проемом для ОЖ;
- AIK – с отверстием и проемом для ОЖ.
Обозначение хвостовиков наружного типа:
- BE – с лапкой;
- АЕ – с отверстием;
- BEK –с лапкой и проемом для ОЖ;
- АЕК – с резьбой и проемом для ОЖ.
Маркировка конуса Морзе для станков также указывается в сопроводительной документации.
Метрические конусы Морзе
Метрические конусы созданы для расширения модельного ряда существующих изделий. Угол конуса Морзе в данном исполнении составляет 1°25’56". Продукция обозначается номером или буквами «КМ» с привязкой к размеру наибольшего диаметра.
Таблица №1. Размеры конусов Морзе метрического типа
Для решения ряда производственных задач длина классического конуса является чрезмерной. В данном случае целесообразно использование укороченных изделий. Длина таких конусов в 2 раза меньше оригинальной. Они оперативно фиксируются в шпинделе, позволяют качественно выполнять работы в ограниченном пространстве.
Укороченные модели пропорциональны конусам КМ, имеют соответствующие обозначения:
- В7 – КМ0 длиной 14 мм;
- В10 – КМ1 длиной 18 мм;
- В12 – КМ1 длиной 22 мм;
- В16 – КМ2 длиной 24 мм;
- В18 – КМ 2 длиной 32 мм;
- В22 – КМ3 длиной 45 мм;
- В24 – КМ3 длиной 55 мм;
- В32 – КМ4 длиной 57 мм.
Наиболее крупные конусы – В45. Они являются укороченной версией КМ5, имеют длину 71 мм.
Рис. 5 Конус 7:24
Альтернативные решения
В качестве замены конусов Морзе созданы аналогичные продукты. Они обладают рядом уникальных качеств, полностью или частично заменяют классические решения.
Конусы 7:24
Конусы 7:24 созданы для станков с возможность автоматизированной смены инструмента. Изделия лишены недостатков типовых конусов, связанных с заклиниванием, большими размерами и недостаточным контактом осевого упора.
Рис. 6 Конус 7:24
Продукция предназначена для предприятий с высокой степенью оснащенности, изготавливается в разных странах. Производители используют различные нормативы при производстве инструментальных конусов.
- ISO 7388 . Международный стандарт, применяемый многими предприятиями ЕС.
- ГОСТ 25857-2014 . Отечественный норматив, аналог стандарта ISO. Основные отличия кроются в параметрах используемых материалов.
- DV и SK . Нормы, применяемые в Германии.
- ANSI B15.18 . Нормативные документы, используемые американскими производителями.
- JIS B6339 . Японская вариация инструментальных конусов. Размерность изделий определяется в дюймовой системе исчисления.
- NFE 62540 . Стандарт, используемый французскими производителями.
- IS 2340 . Индийский стандарт.
При обозначении типоразмеров изделий используются цифры от 10 до 80. Шаг градации равен 5. Ниже представлена таблица размеров инструментальных конусов, где D – максимальный диаметр конусного проема, L – его глубина, а DF – диаметр фланца.
Таблица №2. Размеры инструментальных конусов
Конусы HSK
Конусы типа HSK ориентированы на фрезерные станки. Продукция изготавливается в соответствии с ГОСТ Р 12164 и DIN 69893. Изделия обозначаются буквами от А до F, в наименовании прописывается диаметр фланца (минимальное значение – 25 мм, максимальное – 160 мм).
Преимущества решений серии HSK:
- максимально быстрая замена металлорежущего инструмента;
- умеренный вес;
- возможность работы с резцами токарного типа;
- прекрасная повторяемость;
- высокие показатели жесткости.
Для работы с квадратными резцами требуются переходные элементы. Резцы некоторых производителей сразу имеют хвостовик HSK.
Рис. 7 Продукция серии HSK
CAPTO
Конусы CAPTO позиционируются как премиальный аналог изделий серии HSK. Продукция выпускается согласно ISO 26623, имеет треугольное сечение. Угол поверхности посадки аналогичен классическим конусам. Изделие надежно фиксируется в рабочем проеме, обеспечивает хорошую повторяемость в различных осях.
Продукция линейки CAPTO оптимальна для черновой и получерновой обработки. Она обеспечивает высокую жесткость соединения, что может привести к преждевременному износу шпинделя при значительной нагрузке.
В модельном ряде производителя присутствует 6 конусов. Изделия имеют маркировку от С3 до С10 , диаметр рабочего фланца составляет от 32 до 100 мм.
Переходники
При работе с конусами используются переходные оправки и переходные втулки на конус Морзе. Они упрощают проведении работ, исключая покупку дополнительной оснастки и инструмента.
Рис. 8 Переходная втулка с КМ2 на КМ3
Специалисты рекомендуют приобретать сертифицированные конусы и переходные элементы. Это обеспечит качественное выполнение работ, снизит вероятность поломок, сократит производственные издержки и расходы на дополнительную обработку заготовок.
Коническая резьба используется при создании герметичных соединений технической направленности. Она востребована при прокладке гидравлических сетей, водонапорных линий, смазывающих и охлаждающих контуров.
В статье расскажем, какие бывают виды калибров, как с их помощью проводить измерение деталей и какие нормативные документы регулируют использование этих метрологических инструментов.
Токарный резец — это основной инструмент, который применяется для обработки заготовок на токарных станках. Именно он контактирует с деталью и придает ей необходимую форму. В этой статье мы максимально подробно расскажем о конструктивных особенностях и классификации резцов. Изучив информацию, вы сможете на практике без проблем подобрать инструмент для той или иной операции.
Заточка концевой фрезы — это операция, которую применяют для придания инструментам нужных геометрических параметров и восстановления изношенных фрез. В этой статье мы расскажем об основных технологиях, используемых для этих целей.
Для закрепления инструмента на станках в машиностроении широко применяются хвостовики и оправки конической формы, называемой конусом Морзе. Эта простая и, в то же время, надежная конструкция позволяет быстро и максимально точно закрепить инструмент в патроне станка.
История создания
Появления такой конструкции, а так же происхождение самого названия до сих пор покрыто множеством тайн. Достоверно известно, что в 1863 году американский инженер Стивен Морзе зарегистрировал патент на изобретение спирального сверла, такого, которое известно нам и по сей день. До этого для изготовления сверла, скручивали заостренный плоский профиль.
В описании, запатентованного Стивеном Морзе спирально м сверле, нет никаких упоминаний об особой форме хвостовика, но по какой-то причине Бюро стандартов США внесло коническую форму в национальные стандарты. Считается, что изобретатель, запатентовав новую конструкцию сверла, направил опытные образцы в Бюро патентов, где была замечена и по достоинству оценена эта особенность.
Впоследствии была создана компания по производству, получившая его имя и занимавшаяся изготовлением инструмента для машиностроения. К концу 19 века компания серьезно расширилась и стала одним из ведущих производителей инструмента того времени. Произведенный ей продукт поставлялся во многие страны мира, в том числе и в Россию. За время ее существования было запатентовано еще несколько изобретений, но, ни одно из них не было связано с коническим исполнением хвостовиков инструмента. Так же есть сведения, что через какое-то время после основания сам изобретатель по неизвестным причинам покинул компанию, при этом его имя в названии сохранилось.
Так же известно еще несколько изобретателей с фамилией Морзе, живших в США в то время. И, возможно, автором этого изобретения является кто-то из них, но никакой информации, подтверждающей эту версию, нет. Поэтому официальным изобретателем конической формы хвостовика инструмента считается именно Стивен Эмброуз Морзе.
Особенности конструкции и основные типы конусов Морзе
Есть версия, что коническая конструкция появилась в результате постепенной эволюции токарного, фрезерного и сверлильного инструмента в результате изучения влияния износа инструмента на его характеристики и качество выпускаемых деталей. Было замечено, что в процессе работы инструмент с цилиндрическим хвостовиком изнашивался и начинал проворачиваться в кулачках, возникали биения и отклонения инструмента.
Наиболее оптимальной формой, позволяющей с максимальной точностью закрепить инструмент в станке, обеспечить быструю смену инструмента без отклонений, а так же обеспечить подачу СОЖ (смазочно-охлаждающей жидкости) к рабочей части инструмента является конус.
В процессе развития технологий машиностроения появился так называемый метрический конус, который отличается от своих предшественников постоянной конусностью и угловыми размерами. Его конусность составляет 1:20, уклон – 1°51’56”, а угол – 1°51’51”, тогда как до этого конусность была переменной и варьировалась от 1:19,002 до 1:20,047.
Согласно классификации, принятой в ГОСТах СССР конусы Морзе принято разделять на малые, большие и общего применения.
Исходя из особенностей конструкции, на сегодняшний день различают три типа конусов Морзе:
- Гладкий;
- С резьбой;
- С лапкой.
Выпадение инструмента из шпинделя предотвращается самой конической формой хвостовика и отверстия в шпинделе или оправке. Дополнительно крепление хвостовика с лапкой в шпинделе происходит за счет вхождения лапки в специальный паз, резьбового – за счет резьбы в торце хвостовика.
Так же изготавливают инструмент с дополнительными пазами и отверстиями для подведения СОЖ. Это наиболее актуально для современных станков с ЧПУ.
Преимущества конуса Морзе
Кроме возможности быстрой смены инструмента и прочного закрепления его в станке, избегая смещения, а соответственно и перенастройки станка конус Морзе дает еще ряд преимуществ.
Во-первых, применение конуса Морзе привело к значительному уменьшения размеров хвостовика инструмента без потери надежности его закрепления в станке.
Во-вторых – придает дополнительный упор по оси крепления при меньшей длине инструмента по сравнению с цилиндрическим хвостовиком.
В-третьих – существенно снижает вероятность заклинивания инструмента в шпинделе.
Системы обозначения конусов Морзе
В России и странах ближнего зарубежья до сих пор принято классифицировать все виды конусов Морзе согласно советским ГОСТам. В них указаны основные параметры (конусность, длина, диаметры наружного и внутреннего конусов) для каждого вида конусов Морзе.
Даже сейчас, когда во всем мире производство инструмента регламентируется международными стандартами ISO и DIN, обозначения ГОСТ обозначения в нашей стране не потеряли свою актуальность. Более того, старые ГОСТы постоянно дорабатываются и совершенствуются.
На данный момент основным документом, регламентирующим обозначения и размеры конусов Морзе является ГОСТ 25557-2006 «Конусы инструментальные. Основные размеры», заменивший устаревший ГОСТ 25557-82. Ниже приведены примеры обозначения конусов Морзе из данного ГОСТ.
Так же существуют госты на отдельные виды инструмента, в которых применена эта конструктивная особенность. Например, ниже приведена таблица обозначений оправок с конусом Морзе для сверлильных патронов (ГОСТ 2682-86).
В соответствие с современными международными стандартами конусы Морзе подразделяются на 8 видов, обозначаемых маркировкой МТ и цифрами от 0 до 7 (например: МТ3), в Германии принята маркировка МК
В процессе развития станкостроения появились станки, в которых размеры патронов под инструмент оказались меньше длины стандартных конусов Морзе, что создавало большие проблемы с подбором инструмента и установкой его в станок. Для таких станков был разработан отдельный вид укороченных конусов Морзе.
Главной особенностью таких конусов является то, что при сохраненном большем диаметре и конусности, длина хвостовика была уменьшена. При этом, укороченные конусы, благодаря сохранению своей формы, ни в чем не уступают стандартным. Они позволяют так же надежно закреплять инструмент и так же быстро производить его замену.
Читайте также: