Конструирование баз металлических колонн

Обновлено: 05.01.2025

Металлические конструкции применяются в инженерных сооружениях в виде стержневых или сплошных систем: в одноэтажных и многоэтажных производственных зданиях; большепролетных покрытиях различных систем зданий и сооружений (спортивные сооружения, крытые рынки, театры, выставочные павильоны, ангары, судостроительные эллинги, авиасборочные цехи и др.); мостах и эстакадах; высотных сооружениях (телевизионные башни, мачты, опоры воздушных линий электропередачи, вытяжные башни, нефтяные вышки, дымовые и вентиляционные трубы, промышленные этажерки, геодезические вышки, надшахтные копры и многие другие сооружения); каркасах гражданских многоэтажных зданий; крановых и других подвижных конструкциях (мостовые, башенные и козловые краны, краны-перегружатели, крупные экскаваторы, затворы и ворота гидротехнических сооружений);листовых конструкциях (резервуары различного назначения, газгольдеры, бункеры, силосы, трубопроводы большого диаметра, конструкции доменного и химического производств); конструкции уникального назначения (радиотелескопы, антенны космической связи).

Эксплуатационныекачестваметаллоконструкций:+:Надежность;Легкость;Непроницаемость;Индустриальность;Ремонтопригодность.Сохраняемость материального фонда;-:Коррозия;Низкая огнестойкость.

Колонны.Колонны служат для передачи нагрузки от вышерасположенных конструкций через фундамент на грунт. В зависимости от того как приложена нагрузка на колонну различают центрально-сжатые, внецентренно-сжатые и сжато-изгибаемые колонны. Центрально-сжатые колонны работают на продольную силу, приложенную по оси колонны и вызывающую равномерное сжатие ее поперечного сечения. Внецентренно-сжатые колонны и сжато-изгибаемые колонны, кроме осевого сжатия от продольной силы, работают также на изгиб от момента.

Колонны состоят из трех основных частей: стержня, являющегося основным несущим элементом колонны; оголовка, служащего опорой для вышележащих конструкций и закрепления их на колонне; базы, распределяющей сосредоточенную нагрузку от колонны по поверхности фундамента, обеспечивающей прикрепление с помощью анкерных болтов.

Колонны различаются: по типу – постоянного и переменного по высоте сечений; по конструкции сечения стержня – сплошные (сплошностенчатые) и сквозные (решетчатые).

Внецентренно сжатой колонной считается колонна, в расчетном сечении которой действуют продольная сила N и изгибающий момент М. Такие колонны широко применяют в каркасах производственных зданий (с крановыми нагрузками и без них).

В зависимости от конструктивного решения стержня различают три типа внецентренно сжатых колонн производственных зданий.-постоянного по высоте сечения с консолью для подкрановой балки, применяемые при высоте до нижнего пояса фермы не более 12 м, и грузоподъемностью мостовых кранов не более 20 т;-переменного по высоте сечения (ступенчатые) сплошные и сквозные широко применяемые в каркасах промышленных зданий при большей градации грузоподъемности мостовых кранов (более 20 т). -раздельного типа, применяемые в цехах с тяжелым режимом работы при грузоподъемности кранов более 150 т и сравнительно небольшой высоте (до 20 м).

Проектирование металлических колонн

Металлические колонны промышленных и гражданских зданий

Металлические колонны промышленных и гражданских зданий

Стальные колонны являются несущими элементами металлического каркаса здания, воспринимающие основные нагрузки на здание или сооружение. Стальная колонна состоит из базы, оголовка и стержня колонны.

2. Оголовок колонны;

3. Сечение колонны.

РАСЧЕТ КОЛОНН

Проектирование колонн начинают с расчетов. Могут работать как центрально-сжатые стержни, а могут как сжато-изгибаемые элементы. Смотрите соответствующие страницы сайта:

Далее разрабатывают схему расположения колонн. Это может быть схема раздела КМ или КМД. Если объект простой, то это может быть схема в разделе АС.

ЧЕРТЕЖИ

Образец оформления схемы расположения колонн смотрим на странице:

Если мы делаем раздел КМ (Конструкции металлические), то можно ограничиться схемой расположения колонн и узлами. Узлы для схемы КМ смотрите на страницах с колоннами (Список ниже). Но если мы делаем КМД (Конструкции металлические деталировочные), то придется еще и отправочный марки разрабатывать. Без чертежей колонн тут не обойдешься, а так как колонны бывают разные, разложим их по категориям:

2. ЧЕРТЕЖИ — Колонны — одноветвевые сквозного сечения.

3. ЧЕРТЕЖИ — Колонны — одноветвевые с консолью для мостовых кранов.

4. ЧЕРТЕЖИ — Колонны — двухветвевые.

Ниже представлена информация для общего развития.

Классификация колонн

Колонны постоянного сечения применяют при отсутствии мостовых кранов большой грузоподъемности и высотой до 9 метров.

Колонны переменного сечения более экономичны, чем колонны постоянного сечения. Используются при наличии мостовых кранов небольшой грузоподъемности (до 50 тн.)

Колонны с ветвями (двухветвевые, трехветвевые и т.д.) используются при наличии кранов большой грузоподъемности (Более 50 тн.)

Характер работы колонн

Центрально — сжатые колонны

Внецентренно — сжатые колонны

Конструкция стальных колонн

Основные конструктивные элементы:

— база (место крепления колонны к фундаменту);

— стержень (средняя часть колонны);

— консоль (участок крепления подкрановой балки);

— оголовок — верхняя часть колонны;

При проектировании колонн могут быть полезными следующие типовые серии:

№ п/п Номер Наименование Примечания
1 Серия 1.423.3-8 Стальные колонны одноэтажных производственных зданий без мостовых опорных кранов. Смотреть
2 Серия 1.424-2 Стальные колонны одноэтажных производственных зданий, оборудованных мостовыми кранами. Смотреть
3 Серия 1.424-4 Стальные колонны одноэтажных производственных зданий. Смотреть
4 Серия 1.424.3-7 Стальные колонны одноэтажных производственных зданий, оборудованных мостовыми опорными кранами. Смотреть

Металлические колонны одноэтажных зданий проектируют с постоянным или переменным сечением. Колонны переменного сечения имеют сплошное постоянное сечение надкрановой части, а подкрановая часть может быть сплошного или сквозного сечения.

Колонны сквозного сечения проектируют с ветвями, которые соединяются решеткой. Раздельные колонны проектируют из независимо работающих шатровой и подкрановой ветвями. Если колонны работают на центральное сжатие, при этом изгибающие моменты незначительны, то применяют колонны сплошного сечения, которые выполняют из широкополочных прокатных или сварные двутавров. При изготовлении сквозных колонн используют двутавры, швеллеры и уголки.

Типы стальных колонн

Рис. 1. Типы стальных колонн: а, б — постоянного сечения; в – переменного сечения; г — раздельного типа; д — сечение сплошных колонн; е — то же сквозных

В зданиях без мостовых кранов, а также здания с мостовыми кранами грузоподъемностью до 20 тн. высотой до 8,4 м применяют стальные унифицированные колонны постоянного сечения из сварных двутавров с высотой стенки 400 и 630 мм (рис.1 а, б). В зданиях высотой 10,8 … 18,0 м, с кранами грузоподъемностью до 50 тн используют унифицированные колонны, которые проектируют из двух частей: подкрановой и надкрановой (рис.1 в). Для зданий, имеющих высоту более 18 м с мостовыми кранами грузоподъемностью 75 тн. и более, стальные колонны проектируют по индивидуальным проектам. Раздельные колонны применяют в зданиях с мостовыми кранами (125 тн. и более).

Колонны крепятся к фундаменту за счет нижней части в которой предусмотрена стальная база колонны (башмак). Базы колонн крепят к фундаментам анкерными болтами, которые предусматривают в фундаментах при их изготовлении.

Конструирование и расчет базы колонны

База является опорной частью колонны и служит для передачи усилий с колонны на фундамент. При сравнительно небольших расчетных усилиях в колоннах (до 4000 – 5000 кН) применяют базы с траверсами. Усилие от стержня колонны передается через сварные швы на плиту, опирающуюся непосредственно на фундамент. Для более равномерной передачи давления с плиты на фундамент жесткость плиты при необходимости может быть увеличена постановкой дополнительных ребер и диафрагм.

База закрепляется с фиксацией ее проектного положения на фундаменте анкерными болтами. В зависимости от закрепления осуществляется шарнирное или жесткое сопряжение колонны с фундаментом. В базе с шарнирным сопряжением анкерные болты диаметром 20 – 30 мм крепятся непосредственно за опорную плиту, обладающую определенной гибкостью, обеспечивающей податливость при действии случайных моментов (рис. 4.12).

Рис. 4.12. База колонны при Рис. 4.13. База колонны при

шарнирном сопряжении жестком сопряжении

с фундаментом с фундаментом

Для возможности некоторой передвижки (рихтовки) колонны в процессе ее установки в проектное положение диаметр отверстий в плите для анкерных болтов принимают в 1,5 – 2 раза больше диаметра анкеров. На анкерные болты надевают шайбы с отверстием, которое на 3 мм больше диаметра болта, и после натяжения болта гайкой шайбу приваривают к плите. При жестком сопряжении анкерные болты прикрепляются к стержню колонны через выносные консоли траверс, имеющих значительную вертикальную жесткость, что устраняет возможность поворота колонны на фундаменте. При этом болты диаметром 24 – 36 мм затягиваются с напряжением близким к расчетному сопротивлению материала болта. Анкерная пластина принимается толщиной tap = 20 – 40 мм и шириной bap, равной четырем диаметрам отверстий под болты (рис. 4.13).

Конструкция базы должна отвечать принятому в расчетной схеме колонны способу сопряжения ее с фундаментом. Принята к расчету и конструированию база колонны с жестким закреплением на фундаменте.

4.5.1. Определение размеров опорной плиты в плане

Определяем расчетное усилие в колонне на уровне базы с учетом собственного веса колонны:

где k = 1,2 – конструктивный коэффициент, учитывающий вес решетки, элементов базы и оголовка колонны. Давление под плитой принимается равномерно распределенным. В центрально-сжатой колонне размеры плиты в плане определяются из условия прочности материала фундамента:

где y – коэффициент, зависящий от характера распределения местной нагрузки по площади смятия (при равномерном распределении напряжений y =1);

Rb,loc – расчетное сопротивление бетона смятию под плитой, определяемое по формуле

где a = 1 – для бетона класса ниже B25;

Rb = 7,5 МПа для класса бетона B12,5 – расчетное сопротивление бетона сжатию, соответствующее его классу и принимаемое по табл. 4.3;

jb – коэффициент, учитывающий повышение прочности бетона сжатию в стесненных условиях под опорной плитой и определяемый по формуле

здесь Af1 – площадь верхнего обреза фундамента, незначительно превышающая площадь опорной плиты Af.

Расчетные сопротивления бетона Rb

Класс прочности B5 B7,5 B10 B12,5 B15 B20 B25
Rb, МПа 2,8 4,5 6,0 7,5 8,5 11,5 14,5

Коэффициент jb принимается не больше 2,5 для бетонов классов выше B7,5 и не больше 1,5 для бетонов класса B7,5 и ниже.

Предварительно задаемся jb = 1,2.

Размеры плиты (ширина B и длина L) назначаются по требуемой площади Af, увязываются с контуром колонны (свесы опорной плиты должны быть не менее 40 мм) и согласуются с сортаментом (рис. 4.14).

Рис. 4.14. К расчету опорной плиты

Назначаем ширину плиты:

B = h + 2tt + 2c = 36 + 2 · 1 + 2 · 4 = 46 см,

где h = 36 см – высота сечения стержня колонны;

tt = 10 мм – толщина траверсы (принимают 8 – 16 мм);

с = 40 мм – минимальный вылет консольной части плиты (предварительно принимают равным 40 – 120 мм и при необходимости уточняют в процессе расчета толщины плиты).

Требуемая длина плиты

Для центрально-сжатой колонны опорная плита должна быть близкой к квадрату (рекомендуемое соотношение сторон L/В ≤ 1,2). Принимаем квадратную плиту с размерами В = L = 480 мм.

Площадь плиты Af = LВ = 48 · 48 =2304 см 2 .

Площадь обреза фундамента (размеры верхнего обреза фундамента устанавливаем на 20 см больше размеров опорной плиты)

Расчетное сопротивление бетона смятию под плитой

Проверяем прочность бетона под плитой:

Уменьшение размеров плиты не требуется, так как она была принята с минимальными размерами в плане.

Расчёт и конструирование базы колонны

Конструкция колонны должна обеспечивать равномерную передачу нагрузки от колонны на фундамент и принятое в расчётной схеме закрепление нижнего конца колонны. База состоит из опорной плиты, траверс (рисунок 3.4).


Рисунок 3.4. База центрально-сжатой колонны

Требуемая площадь плиты:

Nб — нагрузка на базу колонны с учётом собственного веса колонны;

Rф — расчётное сопротивление материала фундамента смятию.

Rв = 11 МПа— расчётное сопротивление бетона класса В 15 осевому сжатию;

Аф — площадь верхнего обреза фундамента;

Апл — площадь опорной плиты.

Конструктивно ширина плиты:

bтр — расстояние между ветвями траверс. bтр = bf = 30 см

tтр — толщина траверсы. tтр = 10 мм;

с — свес консольной части опорной плиты с = 50 мм.

Принимаем плиту 420×420 мм

Опорная плита работает на изгиб от реактивного давления фундамента

Изгибающие моменты на различных участках плиты:

участок 1 с опиранием на четыре канта:

— коэффициент, определяемый по таблице в зависимости от соотношения

q — давление на 1 см 2 плиты

а — короткая сторона участка плиты.

участок 2 с опиранием на три канта:

— длина свободного края.

участок 3 — консольный:

По наибольшему из найденных моментов для различных участков плиты определяем требуемую толщину плиты:

— расчётное сопротивление по пределу текучести материала плиты.

Принимаем толщину плиты

Высоту траверсы находим из условия среза сварного шва, прикрепляющего траверсу к стержню колонны. При 4 вертикальных швах электродами Э 42 катетом 0,7 см её высота составит:

Принимаем высоту траверсы .

Катет швов, прикрепляющую траверсу к опорной плите, определяем из расчёта передачи вертикального усилия:

— суммарная длина сварных швов, прикрепляющих траверсу к плите:

Принимаем катет шва kf =11 мм.

Определяем изгибающий момент в траверсе на консольном участке:

на среднем участке:

— опорное давление на 1 см траверсы.

Напряжение в листе траверса в месте приварки колонны должно удовлетворять условию:

— момент сопротивления сечения траверсы

Список литературы

1.СНиП II-23-81*. Стальные конструкции. Нормы проектирования: — М.: ЦИТП Госстроя СССР, 1990. -96 с.

2.Лихтарников Л.М., Ладыженский Д.В., Клыков В.М. Расчёт стальных конструкций. -2-е изд. –К.: Будивэльнык, 1984.-368 с.

3.Беленя Е.Л. Металлические конструкции. 6-е изд. –М.: Стройиздат, 1985,- 560 с.

4.Байков В.Н., Сигалов Э.Е. Железобетонные конструкции. Общий курс. – 5-е изд. – М.: Стройиздат, 1991. -768 с.

Расчет и конструирование сквозной колонны

Пример 4.3. Подобрать сквозную колонну из двух швеллеров, соединенных планками (рис. 4.5), по данным примера 4.2.


Рис. 4.5. Составной стержень колонны на планках

Расчетом сквозных колонн относительно материальной оси x-x определяют номер профиля, а расчетом относительно свободной оси y-y, производимым так же, как сплошных колонн, но с заменой гибкости стержня приведенной гибкостью, назначают расстояние между ветвями, при котором обеспечивается равноустойчивость стержня в двух взаимно перпендикулярных плоскостях.

4.3.1. Расчет колонны на устойчивость относительно

материальной оси x-x

Рекомендуют предварительно задаться гибкостью: для средних по длине колонн 5 – 7 м с расчетной нагрузкой до 2500 кН принимают гибкость l = 90 – 50; с нагрузкой 2500 – 3000 кН – l = 50 – 30, для более высоких колонн необходимо задаваться гибкостью несколько большей.

Предельная гибкость колонн – коэффициент, учитывающий неполное использование несущей способности колонны, принимаемый не менее 0,5. При полном использовании несущей способности колонны lu = 120.

Рекомендуемые материалы

Задаемся гибкостью l = 50.

По табл. 3.12 определяем тип кривой в соответствии с типом принятого сечения (тип ′′b′′). Согласно табл. 3.11 условной гибкости 1,7 соответствует коэффициент устойчивости при центральном сжатии j = 0,868.

Находим требуемую площадь поперечного сечения по формуле

Требуемая площадь одной ветви

Требуемый радиус инерции относительно оси x-x

По требуемым площади Ab и радиусу инерции ix выбираем из сортамента (ГОСТ 8240-93) два швеллера №36, имеющих следующие характеристики сечения:

Ab = 53,4 см 2 ; A = 2Ab = 53,4 × 2 = 106,8 см 2 ; Ix = 10820 см 4 ; I1 = 513 см 4 ;

ix = 14,2 см; i1 = 3,1 см; толщину стенки d = 7,5 мм; ширину полки bb = 110 мм; привязку к центру тяжести zо = 2,68 см; линейную плотность (массу 1 м пог.) 41,9 кг/м.

Если максимальный швеллерный профиль [40 не обеспечивает требуемую несущую способность сквозной колонны, переходят на проектирование

ветвей колонны из прокатных двутавров, принимаемых по ГОСТ 8239–89.

– для кривой устойчивости ′′b′′ коэффициент устойчивости φ = 0,833. Проверяем общую устойчивость колонны относительно материальной

оси x-x:

Общая устойчивость колонны обеспечена.

Недонапряжение в колонне

Если устойчивость колонны не обеспечена или получен большой запас, то изменяют номер профиля и вновь делают проверку.

4.3.2. Расчет колонны на устойчивость относительно свободной оси y-y

Расчет на устойчивость центрально-сжатой колонны сквозного сечения, ветви которой соединены планками или решетками, относительно свободной оси (перпендикулярной плоскости планок или решеток) производят по приведенной гибкости lef :

– для колонны с планками

и

– для колонны с треугольной решеткой

где y-y;

1-1;

z-z;

I1 – момент инерции ветви относительно оси 1-1 (по сортаменту);

lb – расстояние между планками по центрам тяжести;

lob – расстояние между планками в свету;

bo – расстояние между центрами тяжести ветвей колонн;

A – площадь сечения всего стержня колонны;

Ad1 – суммарная площадь поперечных сечений раскосов решеток, лежащих в плоскостях, перпендикулярных оси у-у;

α1 = 10a 3 /(b 2 l) – коэффициент, зависящий от угла наклона раскоса к ветви β (a, b, l – размеры, определяемые по рис. 4.6).

Рис. 4.6. Схема треугольной решетки

Подбор сечения колонн относительно оси y-y производится из условия ее равноустойчивости (равенства гибкости λx относительно x-x и приведенной гибкости λef относительно оси y-y), которая достигается за счет изменения расстояния между ветвями bo.

4.3.3. Сквозная колонна с планками

Расчет колонны относительно свободной оси y-y. Приравнивая

где l1 = 33 – предварительно принятая гибкость ветви (гибкость ветви назначают в пределах l1 = 30 – 40 и обеспечивают ее при последующем конструировании колонны путем выбора соответствующего расстояния между планками lo = λ1i1).

По λy находим радиус инерции:

Воспользовавшись приближенными значениями радиусов инерции, приведенными в табл. 4.1, определяем ширину сечения:

b = iy/0,44 = 17,38 / 0,44 = 39,5 см.

Принимаем b = 400 мм и определяем расстояние между ветвями:

Проверяем расстояние в свету между полками швеллеров:

а = b – 2bb = 400 – 2 · 110 = 180 мм > 100 мм.

Расстояние между ветвями увеличивать не требуется.

Проверка колонны на устойчивость относительно оси у-у. До проверки устойчивости колонны нужно скомпоновать сечение стержня, установить расстояние между планками, назначить их размеры.

Расчетная длина ветви

Принимаем расстояние в свету между планками lob = 100 см.

Длину планки bпл принимают равной расстоянию в свету между ветвями с напуском на ветви по 20…30 мм:

Высоту планок hпл обычно устанавливают в пределах (0,5 – 0,75)b =

= 200 – 300 мм, где b = 400 мм – ширина колонны. Принимаем hпл = 240 мм.

Толщину планок принимают tnл = 6 – 12 мм и по условиям местной устойчивости она должна быть:

Окончательно принимаем планки из листов 240´240´8 мм.

Момент инерции стержня колонны относительно оси у-у

iy =

Гибкость стержня колонны

λy = ly/iy = 813 / 17,6 = 46,19.

Для вычисления приведенной гибкости λef относительно свободной оси проверяется отношение погонных жесткостей планки и ветви:

где

Гибкость ветви колонны

Условная приведенная гибкость

По табл. 3.11 в зависимости от b″ находим коэффициент устойчивости при центральном сжатии j = 0,833.

Устойчивость колонны обеспечена.

Расчет планок.

Проверяем принятое сечение планок. Расчет соединительных элементов (планок, решетки) сжатых составных стержней выполняется на условную поперечную силу Qfic, принимаемую постоянной по всей длине стержня колонны и определяемую по формуле

Qfic = 7,15·10 -6 (2330 – E/Ry)N/φ =

= 7,15·10 -6 (2330 – 2,06 · 10 4 / 24) 2067,18 / 0,833 = 26,3 кН,

где j = 0,833 – коэффициент устойчивости при сжатии, принимаемый для составного стержня в плоскости соединительных элементов.

Поперечная сила, приходящаяся на планку одной грани (рис. 4.7) вычисляется по формуле

Сдвигающая сила в месте прикрепления планки к ветви колонны


Рис. 4.7. К расчету планок

Момент, изгибающий планку в ее плоскости:

Приварку планок толщиной tпл = 8 мм к полкам швеллеров производим механизированной сваркой в среде углекислого газа, принимая катет сварного шва k = 6 мм.

Учитывая, что несущая способность планки больше, чем несущая способность сварного шва с катетом kftпл, достаточно проверить прочность сварного шва. Расчет производится на равнодействующую напряжений в шве от изгибающего момента M1 и поперечной силы F (см. рис. 4.5).

Так как для механизированной сварки

прочность шва проверяем по металлу границы сплавления.

Напряжение в шве от изгиба

Напряжение от поперечной силы

где lw = hпл – 1 = 24 – 1 = 23 см – расчетная длина шва.

Проверяем прочность шва:

Прочность шва обеспечена, следовательно, несущая способность планки достаточна.

4.3.4. Сквозная колонна с треугольной решеткой

Расчет колонны относительно свободной оси y-y. Чтобы определить приведенную гибкость в колоннах с треугольной решеткой, задаемся сечением двух раскосов Ad1 = 2Ad (начиная с равнополочного уголка ∟50´50´5/ГОСТ 8509-93 с площадью Ad = 4,8 см 2 , в ходе расчета треугольной решетки размеры сечения при необходимости уточняются).

Для треугольной решетки, состоящей из одних раскосов, угол между раскосом и направлением поперечной силы α = 35 о (рис. 4.8), для треугольной решетки с дополнительными распорками – α = 45 о .


Рис. 4.8. К расчету треугольной решетки

Приравнивая λx = λef = λy =

где α1 = 10ld 3 /(bo 2 l1) = 10/(cos 2 α sinα) = 10 / (0,819 2 ∙ 0,574) = 26 при α = 35 о .

iy = ly/λy = 813 / 54,67 = 14,87 см.

Воспользовавшись приближенными значениями радиусов инерции по табл. 4.1, определяем ширину сечения:

Принимаем b = 340 мм и проверяем расстояние в свету между полками швеллеров:

Определяем расстояние между ветвями:

Проверка колонны на устойчивость относительно оси у-у. Момент инерции сечения колонны относительно оси у-у

Iy = 2[I1 + Ab(bо/2) 2 ] = 2 [513 + 53,4 (28,64 / 2) 2 ] = 22926,7 см 4 .

λy = ly/iy = 813 / 14,65 = 55,49.

По табл. 3.11 в зависимости от b″ определяем коэффициент устойчивости при центральном сжатии φ = 0,830.

Устойчивость колонны относительно оси y-y обеспечена.

что допустимо в составном сечении согласно СНиП [6].

В колоннах с решеткой должна быть также проверена устойчивость отдельной ветви на участке между смежными узлами решетки.

Nb = N/2 = 2067,18 / 2 =1033,59 кН.

Расчетная длина ветви (см. рис. 34)

l1 = 2botgα = 2 · 28,64 · 0,7 = 40,1 см.

Площадь сечения ветви Ab = 53,4 см 2 .

Радиус инерции сечения [36 относительно оси 1-1 i1 = 3,1 см.

Условная гибкость ветви

Коэффициент устойчивости при центральном сжатии для типа кривой устойчивости ″bφ = 0,984.

Проверяем устойчивость отдельной ветви:

Ветвь колонны на участке между смежными узлами решетки устойчива.

Расчет треугольной решетки. Расчет треугольной решетки сквозной колонны выполняется как расчет решетки фермы, элементы которой рассчитываются на осевое усилие от условной поперечной силы Qfic (см. рис. 4.8). При расчете перекрестных раскосов крестовой решетки с распорками следует учитывать дополнительное усилие, возникающее в каждом раскосе от обжатия ветвей колонны. Усилие в раскосе определяем по формуле

Сечение раскоса из равнополочного уголка ∟50×50×5, предварительно принятое при расчете стержня сквозной колонны (Ad = 4,8 см 2 ), проверяем на устойчивость, для этого вычисляем:

– расчетную длину раскоса

ld = bo/cosα = 28,64 / 0,819 = 34,97 см;

– максимальную гибкость раскоса

где iyo = 0,98 см – минимальный радиус инерции сечения уголка относительно оси yо-yо (по сортаменту);

– условную гибкость раскоса

– φmin = 0,925 – минимальный коэффициент устойчивости для типа кривой устойчивости ″b″;

γс = 0,75 – коэффициент условий работы, учитывающий одностороннее прикрепление раскоса из одиночного уголка (см. табл. 1.3).

Производим проверку сжатого раскоса на устойчивость по формуле

Устойчивость раскоса обеспечена.

Распорки служат для уменьшения расчетной длины ветви колонны и рассчитываются на усилие, равное условной поперечной силе в основном сжатом элементе (Qfic/2). Обычно они принимаются такого же сечения, как и раскосы. Рассчитываем узел крепления раскоса к ветви колонны механизированной сваркой на усилие в раскосе Nd = 16,37 кН. Расчет сварного шва производим по металлу границы сплавления.

Усилия, воспринимаемые швами, вычисляются по следующим формулам

Nоб = (1 – α)Nd = (1 – 0,3) 16,37 = 11,46 кН;

Nп = αNd = 0,3 · 16,37 = 4,91 кН.

Задаваясь минимальным катетом шва у пера kf = tуг – 1 = 5 – 1 = 4 мм, находим расчетные длины шва:

lw,об = Nоб/(βzRwzγwzγc) = 11,46 / (1,05 · 0,4 · 16,65 · 1 · 1) = 1,64 см;

Рекомендуем посмотреть лекцию "Введение".

lw,п = Nп/(βzRwzγwzγc) = 4,91 / (1,05 · 0,4 · 16,65 · 1 · 1) = 0,7 см.

Принимаем минимальную конструктивную длину сварного шва у обушка и пера lw,об = lw,п = 40 + 1 = 50 мм.

Если не удается разместить сварные швы в пределах ширины ветви, то для увеличения длины швов возможно центрирование раскосов на грань колонны.

При делении колонны на отправочные марки, вызванном условиями транспортирования, отправочные элементы сквозных колонн с решетками в двух плоскостях следует укреплять диафрагмами, располагаемыми у концов отправочного элемента. В сквозных колоннах с соединительной решеткой в одной плоскости диафрагмы следует располагать по всей длине колонны не реже, чем через 4 м. Толщину диафрагмы принимают 8 – 14 мм (рис. 4.9).

Читайте также: