Классификация цветных металлов и сплавов

Обновлено: 22.01.2025

Ценные свойства цветных металлов обусловили их широкое применение в различных машинах современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники.

1. Медь и ее сплавы

В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, радио- и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Большое количество меди идет на производство бронзы, латуни и других медных, а также алюминиевых и железных сплавов.

Обладая замечательными свойствами, медь в то же время как конструкционный материал не удовлетворяет требованиям машиностроения, поэтому ее легируют, т.е. вводят в ее состав такие металлы, как цинк, олово, алюминий, никель и др., за счет чего улучшаются ее механические и технологические свойства.

По химическому составу медные сплавы подразделяют на латуни, бронзы и медноникелевые, по технологическому назначению — на деформируемые, используемые для производства полуфабрикатов (проволоки, листа, полос, профиля), и литейные, применяемые для литья деталей.

2. Латунь

Латунь — сплав меди с цинком и другими компонентами. Латуни, содержащие кроме цинка другие легирующие элементы, называются сложными, или специальными, и именуются по вводимым, кроме цинка, легирующим компонентам. Например: железомарганцовая (ЛЖМц59-1-1), алюминиевоникелькремнистомарганцовая (ЛАНКМц75-2-2,5-0,5-0,5) и др.

В обозначении марок латуней принята буквенно-цифровая система. Первая буква означает «латунь», остальные буквы соответствуют условным обозначениям химических элементов, входящих в латунь; первая цифра указывает на содержание меди, остальные цифры — на содержание других легирующих элементов. Содержание цинка в обозначении марки не указывается. Для того чтобы определить содержание цинка в латуни, необходимо от 100% вычесть процентное содержание меди и других химических элементов, входящих в данную латунь. Например: томпак Л90 — это латунь, содержащая 90% меди, остальное — цинк; латунь алюминиевая ЛА77-2 – 77% меди, 2% алюминия, остальное — цинк; латунь алюминиевоникелькремнистомарганцовая ЛАНКМц75-2-2,5-0,5-0,5 – 75% меди, 2% алюминия, 2,5% никеля, 0,5% кремния, 0,5% марганца, остальное – цинк.

Детали получают литьем, давлением и резанием. Латуни, обрабатываемые давлением, нормируются ГОСТ 15527-2004. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, прутки, фольгу, поковки, штамповки), медали и значки, художественные изделия, музыкальные инструменты, сильфоны, гибкие шланги, застежки-молнии, подшипники скольжения и разную фурнитуру.

3. Бронза

Бронза — сплав на основе меди, в котором в качестве добавок используются олово, алюминий, бериллий, кремний, свинец, хром и другие элементы. Как и латуни, бронзы подразделяются на литейные и деформируемые. В обозначении марок бронз принята та же система, что и у латуней, только в начале проставляются буквы Бр, означающие — «бронза».

Основные составы сплавов бронз, применяемых в качестве исходного материала для изготовления деталей:

Безоловянные литейные бронзы

  • БрА9Мц2Л, БрА10Мц2Л – антифрикционные детали и арматура, работающая в пресной воде, жидком топливе и паре при температурах до 250о С; и др.

Оловянные литейные бронзы

  • БрОЗЦ12С5 – арматура общего назначения;
  • БрОЗЦ7С5Н1 – детали, работающие в масле, паре и в пресной воде;
  • БрО4Ц7С5 – арматура и антифрикционные детали и др.
  • БрА5 – деформируется в холодном и горячем состояниях, коррозионностойкая, жаропрочная, стойкая к истиранию; предназначена для изготовления монет, деталей машин, работающих в морской воде и в химических средах;
  • БрА7 – деформируется в холодном состоянии, жаропрочная, стойкая к истиранию, коррозионностойкая к серной и уксусной кислотам; применяется для изготовления деталей химического машиностроения и скользящих контактов;
  • БрАЖМц10-3-1,5, БрАЖН10-4-4, БрАЖНМц9-4-4-1 – деформируются в горячем состоянии, обладают высокой прочностью при повышенных температурах, хорошей эрозионной, кавитационной и коррозионной стойкостью; из этих бронз производят трубные доски конденсаторов и детали химической аппаратуры; БрАМц9-2 – характеризуется высоким сопротивлением при знакопеременной нагрузке; рекомендуется для изготовления износостойких деталей, винтов, валов, деталей гидравлических установок и трубных досок конденсаторов;
  • БрАМц10-2 – имеет высокое сопротивление при знакопеременной нагрузке; пригодна для выполнения заготовок и фасонного литья в судостроении;
  • БрАЖ9-4 – обладает высокими механическими и антифрикционными свойствами, коррозионностойкая; рекомендуется для производства шестерен, втулок и седел клапанов для авиапромышленности, отливки массивных деталей для машиностроения.
  • БрБ2 ,БрБНТ1,7, БрБНТ1,9, БрБНТ1,9Мг – обладают высокой прочностью и износостойкостью, хорошими пружинящими и антифрикционными свойствами, средней электропроводностью и теплопроводностью, деформируются в закаленном состоянии. Из этих бронз изготовляют пружины и пружинящие детали ответственного назначения, износостойкие детали всех видов, неискрящий инструмент.
  • БрКМц3-1 — коррозионностойкая, жаропрочная, имеет высокое сопротивление сжатию, пригодна для сварки; применяется для изготовления деталей для химических аппаратов, пружин и пружинящих деталей, сварных конструкций и деталей для судостроения;
  • БрКШ-3 – обладает высокими механическими, технологическими и антифрикционными свойствами, коррозионностойкая; предназначена для производства ответственных деталей в моторостроении, а также направляющих втулок.
  • БрМц6 – имеет высокие механические свойства, хорошо деформируется в горячем и холодном состояниях, коррозионностойкая, жаропрочная. Из этой бронзы изготовляют детали, работающие при повышенных температурах.

Кадмиевая и магниевая бронзы

  • БрКд1 и БрМг0,3 – отличаются высокой электропроводностью и жаропрочностью. Их используют при производстве коллекторов электродвигателей и деталей машин контактной сварки.
  • БрСр0,1 – предназначена для изготовления коммутаторов, коллекторных колец и обмотки роторов турбогенераторов.
  • CuCrl – предназначена для производства сварочных электродов, электродеталей и оборудования сварочных машин.
  • CuFeP – выполняют детали, обрабатываемые на автоматах, элементы телетехнических, радиотехнических, электротехнических и электронных устройств.

4. Алюминий и его сплавы

Алюминий по распространенности в природе занимает третье место после кислорода и кремния и первое место среди металлов. По использованию в технике он занимает второе место после железа.

Алюминий представляет собой серебристо-белый пластичный металл. В воздушной среде он быстро покрывается окисной пленкой, которая надежно защищает его от коррозии. Алюминий химически стоек против азотной и органических кислот, но разрушается щелочами, а также соляной и серной кислотами. Важнейшее свойство алюминия — небольшая плотность — 2,7 г/см3, т.е. он в три раза легче железа. Температура плавления его 660°С, теплоемкость — 0,222 кал/г, теплопроводность при 20°С – 0,52 кал/(см·с·оС), удельное электрическое сопротивление при 0°С – 0,286 Ом/(мм2·м). Механические свойства алюминия невысоки: сопротивление на разрыв – 50– 90 МПа (5–9 кгс/мм2), относительное удлинение – 25–45%, твердость – 13–28 НВ. Высокая пластичность (максимальная пластичность достигается отжигом при температурах 350–410°С) этого металла позволяет прокатывать его в очень тонкие листы (фольга имеет толщину до 0,005 мм). Алюминий хорошо сваривается, однако трудно обрабатывается резанием, имеет большую линейную усадку – 1,8%. Для повышения прочности в алюминий вводят кремний, марганец, медь и другие компоненты. Кристаллическая решетка алюминия — куб с центрированными гранями, а=0,404 Нм (4,04 А).

Алюминий и его сплавы необходимы для самолето- и машиностроения, строительства зданий, линий электропередач, подвижного состава железных дорог. В металлургии алюминий служит для получения чистых и редких металлов, а также для раскисления стали. Из него изготовляют различные емкости и арматуру для химической промышленности. В пищевой промышленности применяется упаковочная фольга из алюминия и его сплавов (для обертки кондитерских и молочных изделий). Широкое применение получила алюминиевая посуда. Алюминий хорошо подвергается различным тонким покрытиям и окраске, поэтому его используют как декоративный материал.

Исходным материалом для получения алюминиевых сплавов является первичный алюминий. Марки первичного алюминия: особой чистоты — А999, высокой чистоты — А995, А99, А97, А95, технической чистоты — А85, А8, А7, А7Е, А6, А5 ,А5Е, А0.

Механические свойства сплавов зависят от их химического состава и способов получения. Химический состав основных компонентов, входящих в сплав, можно определить по марке. Например: сплав АК7М2п – 7% кремния, 2% меди, остальное – алюминий, АК21М2,5Н2,5 – 21% кремния, 2,5% меди, 2,5% никеля, остальное – алюминий.

Для изготовления фасонных отливок предусмотрено пять групп алюминиевых литейных сплавов:

  • на основе алюминий — кремний — АЛ2, АЛ4, АЛ4-1, АЛ9, АЛ9- 1, АЛ34, АК9, АК7;
  • на основе алюминий — кремний — медь — АЛЗ, АЛ5, АЛ5-1, АЛ6, АЛ32, АК5М2, АК5М7, АК7М2, АК4М4;
  • на основе алюминий — медь — АЛ7, АЛ19,АЛЗЗ;
  • на основе алюминий — магний — АЛ8, АЛ13, АЛ22, АЛ23, АЛ23- 1, АЛ27, АЛ27-1, АЛ28;
  • на основе алюминий — прочие компоненты — АЛ1, АЛ11, АЛ21, АЛ24, АЛ25, АЛЗ0, АК21М2,5Н2,5, АК4М2Ц6.

Сплав алюминия с кремнием — силумин (в чушках), используемый для производства литейных и обрабатываемых давлением алюминиевых сплавов.

Силумин изготовляется четырех марок — СИЛ-00, СИЛ-0, СИЛ-1 и СИЛ-2. Увеличение номера в обозначении марки сплава указывает на рост примесей в нем.

На поверхность чушек силумина несмываемой и невыцветаемой цветной краской наносится буква С, цвет которой соответствует определенной марке: синий – СИЛ-00, белый – СИЛ-0, красный – СИЛ-1, черный – СИЛ-2.

Алюминий и алюминиевые деформируемые сплавы, предназначенные для изготовления полуфабрикатов (листов, лент, полос, плит, профилей, панелей, прутков, труб, проволоки, штамповок и поковок) методом горячей и холодной деформации, а также слитков и слябов.

Алюминиевые антифрикционные сплавы, применяемые для изготовления монометаллических и биметаллических подшипников методом литья, а также монометаллических и биметаллических лент и полос путем прокатки с последующей штамповкой из них вкладышей, нормируются ГОСТ 14113-78. В зависимости от химического состава стандартом предусмотрены следующие марки этих сплавов с указанием назначения каждого сплава:

  • АОЗ-7, АО9-2 – отливки монометаллических вкладышей и втулок;
  • АО6-1, АО9-1, АО20-1 – биметаллические ленты и вкладыши; толщина антифрикционного слоя — 1 мм;
  • АН2-5 – отливки вкладышей, монометаллические и биметаллические ленты; толщина антифрикционного слоя — менее 0,5 мм;
  • АСМ, АМСТ – биметаллические ленты и вкладыши; толщина антифрикционного слоя — менее 0,5 мм.

5. Цинк и его сплавы

Сплав цинка с медью — латунь. Цинк — металл светло-сероголубоватого цвета, хрупкий при комнатной температуре и при 200°С, при нагревании до 100–150°С становится пластичным. В промышленности широко применяются цинковые сплавы: латуни, цинковые бронзы, сплавы для покрытия стальных изделий, изготовления гальванических элементов, типографские и др.

Цинковые сплавы используются в автомобиле- и приборостроении и других отраслях промышленности. Марки этих сплавов:

  • ЦАМ4-10 — особо ответственные детали;
  • ЦАМ4-1 — ответственные детали;
  • ЦАМ4-1в — неответственные детали;
  • ЦА4о — ответственные детали с устойчивыми размерами;
  • ЦА4 — неответственные детали с устойчивыми размерами.

Цинковые антифрикционные сплавы, предназначенные для производства монометаллических и биметаллических изделий. Марки этих сплавов:

  • ЦАМ9-1,5Л — отливка монометаллических вкладышей, втулок и ползунов; допустимые нагрузка — 10 МПа (100 кгс/см2), скорость скольжения — 8 м/с, температура 80 оС; если биметаллические детали получают методом литья при наличии металлического каркаса, то нагрузка, скорость скольжения и температура могут быть увеличены до 20 МПа (200 кгс/см2), 10 м/с и 100о С соответственно;
  • ЦАМ9-1,5 — получение биметаллической ленты (сплав цинка со сталью и дюралюминием) методом прокатки, лента предназначена для изготовления вкладышей путем штамповки; допустимые нагрузка — до МПа (250 кгс/см2), скорость скольжения — до 15 м/с, температура 100о С;
  • ЦАМ10-5Л — отливка подшипников и втулок; допустимыя нагрузка – 10 МПа (100 кгс/см2), скорость скольжения — 8 м/с, температура 80о С;
  • ЦАМ10-5 – прокатка полос для направляющих скольжения металлорежущих станков и других изделий; рабочие нагрузка до 20 МПа (200 кгс/см2), скорость скольжения — до 8 м/с, температура 80о С.

6. Титан и его сплавы

Титан — металл серебристо-белого цвета, один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61%) он занимает десятое место. Титан легок (плотность его 4,5 г/см3), тугоплавок (температура плавления 1665°С), весьма прочен и пластичен. На поверхности его образуется стойкая окисная пленка, за счет которой он хорошо сопротивляется коррозии в пресной и морской воде, а также в некоторых кислотах. Титан устойчив против кавитационной коррозии и под напряжением. При температурах до 882°С он имеет гексагональную плотно упакованную решетку, при более высоких температурах — объемно-центрированный куб. Механические свойства листового титана зависят от химического состава и способа термической обработки. Предел прочности его – 300–1200 МПа (30–120 кгс/мм2), относительное удлинение – 4–30%. Предел прочности титановых сплавов – 350–1000 МПа (35–100 кгс/мм2), относительное удлинение – 4–10%.

Благодаря своим замечательным свойствам титан и его сплавы нашли широкое применение в самолето-, ракето- и судостроении. Из титана и его сплавов изготовляют полуфабрикаты: листы, трубы, прутки и проволоку. Двуокись титана применяется при производстве белил и эмалей.

Для изготовления полуфабрикатов предназначены титан и титановые сплавы, обрабатываемые давлением. В зависимости от химического состава предусмотрены следующие марки: ВТ1-00, ВТ1-0, ОТ4-0, ОТ4-1, ОТ4, ВТ5, ВТ5-1, ВТ6, ВT3-1, ВТ9, ВТ14, ВТ16, ВТ20, ВТ22, ПТ-7М, ПТ-ЭВ, ПT-1M. Железо, кремний и цирконий в зависимости от марки сплава могут быть основными компонентами или примесями.

7. Припои

Припои — металл или сплав, предназначенный для соединения деталей пайкой. Температура плавления припоев должна быть ниже температуры плавления материалов паяемых деталей.

Припои разделяют на мягкие (tпл≤400 °С) и твердые (tпл >400 °С). Основные материалы мягких припоев — сплавы олова и свинца. Их обозначение (например, ПОС 61) расшифровывается так: П — припой, ОС — оловянно-свинцовый, 61 — содержание олова в процентах. Твердые припои выполняют на серебряной основе (например, ПСр 72, где 72 — содержание серебра, %) или на медно-латунной и медно-никелевой основах. Серебряные припои применяют для пайки черных и цветных металлов, кроме сплавов алюминия и магния, а припои на медной основе — для пайки углеродистых и легированных сталей, никеля и его сплавов.

Таблица 4. Области применения оловянно-свинцовых припоев

Общая характеристика цветных металлов

Цветные металлы имеют огромное значение для современной экономики. Практически ни один механизм и ни одно электронное устройство не может быть изготовлено без использования цветных металлов. Более того – изделия из цветных металлов широко используются в быту. Значительная часть металлической посуды и столовых приборов изготавливается из цветных металлов (прежде всего, из алюминия).

С каждым годом промышленности требуется все больше цветных металлов. Между тем, сырье для их производства – это полезные ископаемые, запасы которых в земных недрах не возобновляются. Все больше становится рудников и карьеров, где запасы полностью выработаны, и все труднее находить и разрабатывать новые месторождения.

Современный мир нуждается в применении цветных металлов, как в быту, так и в промышленных масштабах, товароведная характеристика цветных металлов и изделий из них недостаточно раскрыта в современной литературе, где больше делается акцент на частное нежели на всю металлургическую отрасль в целом. Для изготовления любых изделий, предназначенных к восприятию внешних сил, применяют не чистый алюминий, а его сплавы, которых в настоящее время разработано достаточно много марок.

Цель курсовой работы – дать товароведную характеристику цветных металлов и изделий из них.

Поставленная цель определила задачи работы:

· ознакомится со сведениями о металлах и их видах;

· описать существующие технические требования к цветным металлам;

· проанализировать товароведную характеристику металлохозяйственных изделий;

· изучить особенности классификации цветных металлов и изделий из них в ТН ВЭД.

Глава 1. Характеристика цветных металлов и изделий из них

Общая характеристика цветных металлов

Цветные металлы - это медь, алюминий, цинк, олово, свинец, никель, хром, серебро и другие металлы, кроме железа и его сплавов. Они имеют общее свойство образовывать на поверхности окислительную пленку, которая предотвращает дальнейшую коррозию металла.

Медь (Сu) - обозначается от М00 (99,99 % чистой меди) до М4 (содержит 99,0 % чистой меди). Медь марок МФ1, МФ2 и МФЗ имеет примесь фосфора, который добавляет ей свойство упругости и хорошей текучести в расплавленном виде.

Серебро (Ag) - благородный металл белого цвета с синеватым оттенком. Температура плавления 960 °С. Теплопроводность у серебра высочайшая среди металлов. На воздухе и во влажной среде серебро не окисляется. Хорошо растворяется в подогретых серной или азотной кислотах. При плавлении серебро активно поглощает из воздуха кислород, а при охлаждении выделяет его. Поэтому лучше всего серебро плавить под слоем древесного угля. Из серебра 916, 900, 875 и 800 пробы изготовляют украшения (перстни, браслеты, серьги) и бытовые предметы (вилки, ложки и т.п.). Контакты разных переключающих устройств (например, рубильники), покрытые тонким слоем серебра, работают без загорания долго и надежно. Ионы серебра, раскрытого в воде, обеззараживают ее. Такая «серебряная вода» продолжительное время сохраняется без порчи, а употребление ее положительно влияет на организм. В продаже есть специальные аппараты для серебрения воды[1].

Серебро широко используют в ювелирном производстве для примесей к золоту (согласно пробе), а также приготовления фотографических материалов, припоев и т.п.

Никель (Ni) - серебристо-белый цветной металл. Сравнительно с хромом имеет желтоватый оттенок. Температура плавления 1455 °С. На воздухе и во влажной среде не окисляется и за этими свойствами приближается к благородным металлам. Концентрированные серная и соляная кислоты действуют на никель слабо, но азотная его растворяет.

Используют никель для защитного и декоративного покрытия металлов (никелирование), а также для приготовления нержавеющий сталей. Сплав никеля с хромом называют нихромом. Из него изготовляют спирали электронагревательных приборов.

Хром (Сг) - блестящий цветной металл с синеватым оттенком, за удельным весом близкий к железу. Он довольно твердый (на единицу меньше от алмаза), тем не менее, хрупкий. Температура плавления 1910 °С. Стойкий против окисления в атмосфере и в воде. Азотная кислота его не растворяют. В растворах соляной и серной кислот растворяется постепенно, но более активно в крепкой соляной кислоте. В чистом виде хром широко используют для декоративного и антикоррозийного покрытия других металлов (хромирование). Тем не менее, пленка хрома пористая, через нее проникает влага и черные металлы под хромом со временем ржавеют. Поэтому черные металлы сначала покрывают медью, потом никелем, а уже сверху хромом, т.е. делают трехслойное покрытие. Иногда черный металл покрывают никелем, а уже потом хромом. Хром довольно крепкий против стирания, но на нем плохо содержится смазочное масло, поэтому сначала наносят пленку пористого хрома, которая хорошо удерживает масло и довольно хорошо защищает поверхность от стирания. В промышленности хром широко используют для изготовления легированных хромистых сталей высокой прочности.

Сурьма (Sb) - металл серебристо-белого цвета с голубоватым оттенком, хрупкий. Плавится при температуре 630 °С, но при добавлении к другим металлам уменьшает температуру их плавления. Особенностью сурьмы является то, что в сплавах с мягкими металлами (оловом, свинцом и т.п.) она прибавляет им твердости. Сурьма входит в состав баббитов (антифрикционный сплав для подшипников скольжения) и печатного сплава (сурьма - 3 части за массой, олово - 12, медь - 2), из которого отливают шрифты, матрицы.

Висмут (Ві) - серебристо-белый с красноватым оттенком металл. Используется для приготовления припоев, так как с другими металлами уменьшает их температуру плавления.

Кадмий (Cd) за механическими свойствами подобный олову, серебряно-синего цвета, но более мягкий в отличии от него. В чистом виде применяют мало, его часто прибавляют в припои, поскольку он уменьшает температуру плавления.

Свинец (РЬ) - тяжелый, мягкий, синевато-серого цвета, блестящий металл с температурой плавления 327,4 °С. Он очень пластичный, стойкий против влаги и агрессивных сред грунта, поэтому в чистом виде его используют для защиты кабелей, которые укладывают в землю, для уплотнения соединений чугунных труб, где его запрессовывают с помощью специальных оправок, для уплотнений крышек котлов, вода в которых не используется для питья и приготовления пищи. Из него также отливают рыбацкие грузила. Свинец стойкий против соляной и серной кислоты. Азотная и плавиковая кислоты хорошо его растворяют. В основном же свинец используют для приготовления припоев в сплаве с оловом и другими легкоплавкими металлами.

Олово (Sn) - тяжелый мягкий цветной металл серебристого цвета с температурой плавления 232°С. В чистом виде олово не окисляется, стойкое против действия пищевых кислот. Пруток чистого олова при изгибании хрустит, так как происходит разрыв кристаллов. Раньше им покрывали кухонную посуду, молочные бидоны. Теперь для этого преимущественно применяют нержавеющий сталь или «пищевой алюминий».

Используют олово в чистом виде для паяния или приготовления разных припоев (преимущественно со свинцом). Днище и крылья автомобиля, покрытые оловом или его сплавом, не подвергаются коррозии, но эту луженую поверхность нужно защитить от ударов камешков, песка, твердых предметов - мягкой мастикой.

Если олово хранится при температуре ниже -13 °С, оно постепенно превращается в серый порошок. Такое явление называют «оловянной чумой». Поэтому прутки чистого олова нужно хранить при плюсовой температуре.

Титан (Те) - почти вдвое более легкий чем сталь, но с такой же прочностью, он имеет высшую температуру плавления, низкую теплопроводность и плохие антифрикционные свойства, но легко куется и штампуется. При нагревании до 500 °С на воздухе он не окисляется, а при высшей температуре на его поверхности образовывается крепкая защитная пленка. Поэтому из титана и его сплавов изготовляют обшивку сверхзвуковых самолетов, компрессоры реактивных двигателей, в турбостроении - лопате и диски турбин и т.п.

Из листового титана можно изготовить (с применением аргонового сваривания) легкие глушители для автомобилей, которые не ржавеют и не прогорают.

СТАТЬИ

К цветным металлам относятся все металлы, кроме железа и сплавов на его основе – сталей и чугунов, которые называются черными. Сплавы на основе цветных металлов используют в основном как конструкционные материалы со специальными свойствами: коррозионно-стойкие, подшипниковые (обладающие низким коэффициентом трения), тепло- и жаропрочные и др.

В маркировке цветных металлов и сплавов на их основе нет единой системы. Во всех случаях принята буквенно-цифровая система. Буквы указывают на принадлежность сплавов к определенной группе, а цифры в разных группах материалов имеют разное значение. В одном случае они указывают на степень чистоты металла (для чистых металлов), в другом – на количество легирующих элементов, а в третьем обозначают номер сплава, которому по гос. стандарту должны соответствовать определенный состав или свойства.
Медь и ее сплавы
Техническая медь маркируется буквой М, после которой идут цифры, связанные с количеством примесей (показывают степень чистоты материала). Медь марки М3 содержит примесей больше, чем М000. Буквы в конце марки означают: к – катодная, б – безкислородная, р – раскисленная. Высокая электропроводность меди обуславливает ее преимущественное применение в электротехнике как проводникового материала. Медь хорошо деформируется, хорошо сваривается и паяется. Ее недостатком является плохая обрабатываемость резанием.
К основным сплавам на основе меди относятся латуни и бронзы. В сплавах на основе меди принята буквенно-цифровая система, характеризующая химический состав сплава. Легирующие элементы обозначаются русской буквой, соответствующей начальной букве названия элемента. Причем часто эти буквы не совпадают с обозначением тех же легирующих элементов при маркировке стали. Алюминий – А; Кремний – К; Марганец – Мц; Медь – М; Никель – Н; Титан –Т; Фосфор – Ф; Хром –Х; Бериллий – Б; Железо – Ж; Магний – Мг; Олово – О; Свинец – С; Цинк - Ц.
Порядок маркировки литейных и деформируемых латуней разный.
Латунь - сплав меди с цинком (Zn от 5 до 45%). Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), с содержанием 20–36% Zn – желтой. На практике редко используют латуни, в которых концентрация цинка превышает 45%. Обычно латуни делят на:
- двухкомпонентные латуни или простые, состоящие только из меди, цинка и, в незначительных количествах, примесей;
-многокомпонентные латуни или специальные – кроме меди и цинка присутствуют дополнительные легирующие элементы.
Деформируемые латуни маркируются по ГОСТ 15527-70.
Марка простой латуни состоит из буквы «Л», указывающей тип сплава - латунь, и двузначной цифры, характеризующей среднее содержание меди. Например, марка Л80 - латунь, содержащая 80 % Cu и 20 % Zn. Все двухкомпонентные латуни хорошо обрабатываются давлением. Их поставляют в виде труб и трубок разной формы сечения, листов, полос, ленты, проволоки и прутков различного профиля. Латунные изделия с большим внутренним напряжением (например, нагартованные) подвержены растрескиванию. При длительном хранении на воздухе на них образуются продольные и поперечные трещины. Чтобы избежать этого, перед длительным хранением необходимо снять внутреннее напряжение, проведя низкотемпературный отжиг при 200-300 C.
В многокомпонентных латунях после буквы Л пишут ряд букв, указывающих, какие легирующие элементы, кроме цинка, входят в эту латунь. Затем через дефисы следуют цифры, первая из которых характеризует среднее содержание меди в процентах, а последующие - каждого из легирующих элементов в той же последовательности, как и в буквенной части марки. Порядок букв и цифр устанавливается по содержанию соответствующего элемента: сначала идет тот элемент, которого больше, а далее по нисходящей. Содержание цинка определяется по разности от 100%.
Латуни в основном применяются как деформируемый коррозионно-стойкий материал. Из них изготавливают листы, трубы, прутки, полосы и некоторые детали: гайки, винты, втулки и др.
Литейные латуни маркируются в соответствии с ГОСТ 1711-30. В начале марки тоже пишут букву Л (латунь), после которой пишут букву Ц, что означает цинк, и число, указывающее на его содержание в процентах. В легированных латунях дополнительно пишут буквы, соответствующие введенным легирующим элементам, и следующие за ними числа указывают на содержание этих элементов в процентах. Остаток, недостающий до 100 %, соответствует содержанию меди. Литейные латуни используют для изготовления арматуры и деталей для судостроения, втулок, вкладышей и подшипников.
Бронзы (сплавы меди с различными элементами, где цинк не является основным). Они подобно латуням подразделяются на литейные и деформируемые. Маркировка всех бронз начинается с букв Бр, что сокращенно означает бронза.
В литейных бронзах после Бр пишут буквы с последующими цифрами, которые символически обозначают элементы, введенные в сплав (в соответствии с таблицей 1), а последующие цифры обозначают содержание этих элементов в процентах. Остальное (до 100 %) – подразумевается медь. Иногда в некоторых марках литейных бронз в конце пишут букву «Л», что означает литейная.
Большинство бронз обладает хорошими литейными свойствами. Их применяют для различного фасонного литья. Чаще всего их используют как коррозионно-стойкий и антифрикционный материал: арматура, ободы, втулки, зубчатые колеса, седла клапанов, червячные колеса и т.д. Все сплавы на основе меди имеют высокую хладостойкость.
Алюминий и сплавы на его основе
Алюминий выпускают в виде чушек, слитков, катанки и т.п. (первичный алюминий) по ГОСТ 11069-74 и в виде деформируемого полуфабриката (листы, профили, прутки и т.п.) по ГОСТ 4784-74. По степени загрязненности тот и другой алюминий подразделяется на алюминий особой чистоты, высокой чистоты и технической чистоты. Первичный алюминий по ГОСТ 11069-74 маркируют буквой А и числом, по которому можно определить содержание примесей в алюминии. Алюминий хорошо деформируется, но плохо обрабатывается резанием. Прокаткой из него можно получить фольгу.

Сплавы на основе алюминия подразделяются на литейные и деформируемые.
Литейные сплавы на основе алюминиямаркируются по ГОСТ 1583-93. Марка отражает основной состав сплава. Большинство марок литейных сплавов начинаются с буквы А, что означает алюминиевый сплав. Затем пишут буквы и цифры, отражающие состав сплава. В ряде случаев алюминиевые сплавы маркируют буквами АЛ (что означает литейный сплав алюминия) и цифрой, означающей номер сплава. Буква В, стоящая в начале марки показывает, что сплав высокопрочный.
Применение алюминия и сплавов на его основе очень разнообразно. Технический алюминий применяют в основном в электротехнике в качестве проводника электрического тока, как заменитель меди. Литейные сплавы на основе алюминия широко применяются в холодильной и пищевой промышленности при изготовлении деталей сложной формы (различными методами литья), от которых требуется повышенная коррозионная стойкость в сочетании с небольшой плотностью, например, поршни некоторых компрессоров, рычаги и другие детали.
Деформируемые сплавы на основе алюминия также находят широкое применение в пищевой и холодильной технике для изготовления различных деталей методом обработки давлением, к которым предъявляются также повышенные требования к коррозионной стойкости и плотности: различные емкости, заклепки и т.п. Важным достоинством всех сплавов на основе алюминия является их высокая хладостойкость.
Титан и сплавы на его основе
Титан и сплавы на его основе маркируются в соответствии с ГОСТ 19807-74 по буквенно-цифровой системе. Однако какой-либо закономерности в маркировке не имеется. Единственной особенностью является наличие во всех марках буквы Т, которая свидетельствует о принадлежности к титану. Числа в марке означают условный номер сплава.
Технический титан маркируется: ВТ1-00; ВТ1-0. Все остальные марки относятся к сплавам на основе титана (ВТ16, АТ4, ОТ4, ПТ21 и др). Главным достоинством титана и его сплавов является хорошее сочетание свойств: относительно низкой плотности, высокой механической прочности и очень высокой коррозионной стойкости (во многих агрессивных средах). Основной недостаток – высокая стоимость и дефицитность. Эти недостатки сдерживают применение их в пищевой и холодильной технике.

Сплавы титана применяются в ракетной, авиационной технике, химическом машиностроении, в судостроении и транспортном машиностроении. Они могут использоваться при повышенных температурах до 500-550 градусов. Изделия из сплавов титана изготавливают обработкой давлением, но могут быть изготовлены и литьем. Состав литейных сплавов обычно соответствует составу деформируемых сплавов. В конце марки литейного сплава стоит буква Л.
Магний и сплавы на его основе
Технический магний из-за его неудовлетворительных свойств не находит применения в качестве конструкционного материала. Сплавы на основе магния в соответствии с гос. стандартом делятся на литейные и деформируемые.
Литейные сплавы магнияв соответствии с ГОСТ 2856-79 маркируют буквами МЛ и числом, которое обозначает условный номер сплава. Иногда после числа пишут строчные буквы: пч – повышенной чистоты; он – общего назначения. Деформируемые сплавы магния маркируют в соответствии с ГОСТ 14957-76 буквами МА и числом, обозначающим условный номер сплава. Иногда после числа могут быть строчные буквы пч, что означает повышенной чистоты.

Сплавы на основе магния обладают подобно сплавам на основе алюминия хорошим сочетанием свойств: низкой плотностью, повышенной коррозионной стойкостью, относительно высокой прочностью (особенно удельной) при хороших технологических свойствах. Поэтому из сплавов магния изготавливают как простые, так и сложные по форме детали, от которых требуется повышенная коррозионная стойкость: горловины, бензиновые баки, арматура, корпусы насосов, барабаны тормозных колес, фермы, штурвалы и многие другие изделия.
Олово, свинец и сплавы на их основе
Свинец в чистом виде практически не используется в пищевой и холодильной технике. Олово применяется в пищевой промышленности в качестве покрытий пищевой тары (например лужение консервной жести). Маркируется олово в соответствии с ГОСТ 860-75. Имеются марки О1пч; О1; О2; О3; О4. Буква О обозначает олово, а цифры – условный номер. С увеличением номера увеличивается количество примесей. Буквы пч в конце марки означают – повышенной чистоты. В пищевой промышленности для лужения консервной жести применяют олово чаще всего марок О1 и О2.
Сплавы на основе олова и свинца в зависимости от назначения подразделяются на две большие группы: баббиты и припои.
Баббиты – сложные сплавы на основе олова и свинца, которые дополнительно содержат сурьму, медь и другие добавки. Они маркируются по ГОСТ 1320-74 буквой Б, что означает баббит, и числом, которое показывает содержание олова в процентах. Иногда кроме буквы Б может быть другая буква, которая указывает на особые добавки. Например, буква Н обозначает добавку никеля (никелевый баббит), буква С – свинцовый баббит и др. Следует иметь в виду, что по марке баббита нельзя установить его полный химический состав. В некоторых случаях даже не указывается содержание олова, например в марке БН, хотя здесь его содержится около 10 %. Имеются и безоловянистые баббиты (например свинцово-кальциевые), которые маркируются по ГОСТ 1209-78 и в данной работе не изучаются.

1. Особолегкоплавкие (температура плавления tпл ≤ 145 °С);

2. Легкоплавкие (температура плавления tпл > 145 °С ≤ 450 °С );

3. Среднеплавкие (температура плавления tпл > 450 °С ≤ 1100 °С );

4. Высокоплавкие (температура плавления tпл > 1100 °С ≤ 1850 °С );

5. Тугоплавкие (температура плавления tпл > 1850 °С).

Первые две группы применяются для низкотемпературной (мягкой) пайки, остальные – высокотемпературной (твердой) пайки. По основному компоненту припои подразделяют на: галлиевые, висмутовые, оловянно-свинцовые, оловянные, кадмиевые, свинцовые, цинковые, алюминиевые, германиевые, магниевые, серебряные, медно-цинковые, медные, кобальтовые, никелевые, марганцевые, золотые, палладиевые, платиновые, титановые, железные, циркониевые, ниобиевые, молибденоыве, ванадиевые.

Общая классификация и потребительские свойства черных и цветных металлов

Все применяемые в технике металлы делятся на черные и цветные.

К черным металлам относятся железо и его сплавы (сталь и чугун). Все остальные металлы и сплавы составляют группу цвет­ных металлов.

Наибольшее распространение в технике получили черные ме­таллы. Это обусловлено большими запасами железных руд в земной коре, сравнительной простотой технологии выплавки черных метал­лов, их высокой прочностью,

Основными металлическими материалами современной техники являются сплавы железа с углеродом. В зависимости от содержа­ния углерода эти сплавы делятся на стали и чугуны.

Сталь - желозоуглеродистый сплав, в котором углерода со­держится до 2,14%.

Стали присущи свойства, делающие ее незаме­нимым материалом в машиностроении. Она обладает высокой проч­ностью и твердостью, хорошо сопротивляется ударным нагрузкам, Сталь можно ковать, прокатывать, легко обрабатывать на метал­лорежущих станках. Стальные изделия хорошо свариваются.

Чугун - железоуглеродистый сплав с содержанием углерода свыше 2,14%.

В технике наибольшее применение получили чугуны, имеющие от 2,4 до 3,8% углерода.

Чугун более хрупок, чем сталь, он хуже сваривается, но обладает лучшими литейными свойствами. Поэтому изделия из чу­гуна получают исключительно литьем. Большая часть чугуна идет на переплавку в сталь.

Диаграмма состояния – это графическое изображение состояния любого сплава изучаемой системы в зависимости от его концентрации и температуры. Пользуясь диаграммой, можно изучить фазы и структурные составляющие сплава, установить возможность проведения термической обработки и ее режимы, температуры литья, горячей пластической деформации и т.д.

При изучении черных металлов совершенно обязательным является знание диаграммы состояния «железо-углерод», связывающей количественные изменения содержания углерода в стали и чугуне с их структурой при различных температурах, а следовательно, и со свойствами.

Диаграмма состояния железо-углерод построена на основании кри­вых охлаждения сплавов железа с углеродом. Основными структурными составляющими сплавов железа с углеродом являются аустенит, феррит, циментит, ледебурит и графит.

Аустенит (А) – твердый раствор углерода в -железе. Предельная растворимость углерода в -железе 2,14% при 1130 0 С. Нижняя температура существования аустенита равна 723 0 С. При этой температуре в нем растворяется 0,8% С. Аустенит мягкий и пластичный. Его твердость НВ 170-220. Он немагнитный.

Феррит (Ф) – твердый раствор углерода в -железе. Его растворимость в -железе ничтожно мала (0,02% при 723 0 С).Феррит характеризуется малой прочностью, малой твердостью (НВ<80) и высокой пластичностью. При комнатной температуре феррит обладает ярко выраженными магнитными свойствами.

Цементит (Ц) – химическое соединение железа с углеродом – карбид железа Fe3C содержащее 6,67% С. Температура плавления цементита точно не определена в связи с возможностью его распада и принимается примерно равной 1550 0 С. Цементит весьма тверд и хрупок. Его твердость НВ 800. Он обладает металлическими свойствами.

Перлит (П) – продукт распада аустенита при 723 0 С, представляющий эвтектоидную механическую смесь феррита с цементитом. Содержание углерода в перлите всегда равно 0,8%. Твердость его за­висит от размера цементитных частиц и может колебаться от НВ 150 до НВ 220. Перлит может быть пластинчатым, в котором цементит име­ет форму пластин, и зернистым, где он находится в форме округлых зернышек.

Ледебурит (Л) - эвтектическая механическая смесь (эв­тектика) аустенита с цементитом, образующаяся при кристаллизации жидкого сплава, содержащего 4,3% С, при температуре 1147 0 С. Ниж­няя граница существования ледебурита 723 0 С, при этой температуре аустенит претерпевает перлитное превращение. Охлажденный ледебурит представляет собой механическую смесь перлита с цементитом. Ледебурит очень хрупок и тверд, так как основной его составной частью является цементит.

Графит (Г) - полиморфная модификация углерода. Графит мягок и обладает низкой прочностью.

Ледебурит и графит является структурной составляющей чугунов.

Углерод с железом образует устойчивое химическое соединение - цементит или может находится в сплаве в свободном состоянии в ви­де графита. Соответственно существует две диаграммы состояния сплавов железа-углерод: цементитная и графитная.

На рис. 7 приведен упрощенный вид цементитной диаграммы. На­ибольшее количество углерода по диаграмме (6,67%) соответствует массовому содержанию углерода в химическом соединении - цементите.


Рис.7 Диаграмма состояния «железо-углерод»

Следовательно, компонентами, составляющими сплавы этой системы, будут, с одной стороны, чистое железо, с другой - цементит.

На горизонтальной оси диаграммы откладывается процентное со­держание составляющих компонентов: в начальной точке – 100% желе­за и 0% углерода. Затем концентрация углерода увеличивается, а железа - уменьшается. Диаграмма заканчивается при содержании угле­рода 6,67%.

На вертикальных осях откладываются температуры. На начальной и конечной вертикалях указаны критические точки чистого железа и цементита. На вертикалях, соответствующих сплавам с промежуточны­ми концентрациями составляющих компонентов, отмечены их критические точки. Критические точки, соответствующие одинаковым превращениям, соединены плавными линиями.

Буквенные обозначения характерных точек диаграммы являются общепринятыми во всех странах.Превращение из жидкого состояния в твердое (первичная кристаллизация). Линия АСД-ликвидус, а линия АЕСF-солидус. Выше линии АС сплавы системы находятся в жидком состоянии (ж). По линии АС из жидкого сплава начинает кристаллизоваться аустенит (А), следовательно, в области АСЕ будут находиться смесь двух фаз – жидкого сплава (ж) и аустенита (А). По линии СД из жидкого сплава начинают выпадать кристаллы цементита (Ц); в области диаграммы СFD находится смесь двух фаз – жидкого сплава (ж) и цементита (Ц). В точке С при массовом содержании углерода 4,3% и температуре 1147 0 С происходит одновременно кристаллизация аустенита и цементита и образуется их тонкая механическая смесь эвтектика, называемая в этой системе ледебуритом (Л). Ледебурит присутствует во всех сплавах с массовым содержанием углерода от 2,14 до 6,67%. Эти сплавы относятся к группе чугуна.

Точка Е соответствует предельному насыщению железа углеродом (2,14%). Сплавы, лежащие левее этой точки относятся к груп­пе стали.

Превращения в твердом состоянии (вторичная кристаллизация). Линии GSE, PSK показывают, что в сплавах системы в твердом состоянии происходят изменения структу­ры. Превращения в твердом состоянии происходят вследствие перехо­да железа из одной модификации в другую, в такие в связи с изме­нением растворимости углерода в железе.

В области диаграммы АGSE находится аустенит (А). При охлаж­дении сплава аустенит распадается с выделением по линии GS ферри­та (Ф) - твердого раствора углерода в -железе и перлита, а по линии SE-цементита и перлита. Цементит, выпадающий из твердого раствора, называется вторичным (ЦП) в отличие от первичного цемен­тита (ЦI), выпадающего из жидкого сплава. В области диаграммы GSР находится смесь двух фаз - феррита (Ф) и распадающегося аустенита (А), а в области SEе1 - смесь вторичного цементита и распадающегося аустенита. В точке S при массовом содержании углерода 0,8% и при температуре 723 0 С весь аустенит распадается и одновременно кристаллизуется тонкая механическая смесь феррита и цементита вторичного - эвтектоид (т.е. подобный эвтектике), который в этой системе называется перлитом (Д). Сталь, содержащая 0,8% С называется эвтектоидной, менее 0,8% - доэвтектоидной, от 0,8 до 2,14% углерода - заэвтектоидной.

При охлаждении сплавов по линии РSК происходит распад аустенита, оставшегося в любом сплаве системы, с образованием перлита; поэтому линия РSК называется линией перлитного (эвтектоидного) прев­ращения.

Сравнивая между собой превращения в точках С и S диаграммы можно отметить следующее:

1) выше точки С находится жидкий расплав, выше точки S - твердый раствор - аустенит;

2) в точке С сходятся ветви АС и СД, которые указывают на начало выделения кристаллов из жидкого раствора (первичной кристалли­зации); в точке S сходятся ветви GS и SE, указывающие на на­чало выделения кристаллов из твердого раствора (вторичной крис­таллизации);

3) в точке С жидкий раствор, содержащий 4,3% углерода, кристаллизуется с образованием эвтектики - ледебурита, в точке S твердый раствор, содержащий 0,8% углерода перекристаллизуется с образованием эвтектоида - перлита;

4) на уровне точки С лежит прямая EF эвтектического (ледебуритного) превращения, на уровне точки S - прямая РК эвтектоидного (перлитного) превращения.

Цветные металлы применяются в технике реже, чем черные. Это объясняется незначительным содержанием многих цветных ме­таллов в земной коре, сложностью процесса их выплавки из руд, недостаточной прочностью.

Цветные металлы дороже черных. Во всех случаях, когда это возможно, их заменяют черными металла­ми, пластмассами и другими материалами.

Однако цветные метал­лы имеют ценные свойства, которые делают их применение в тех­нике неизбежным.

Например, медь и алюминий обладают высокой электро- и теплопроводностью и применяются в электропромышлен­ности. Сплавы магния, алюминия и титана благодаря малому удель­ному весу широко применяются в самолетостроении и т.д.

Из большого числа цветных металлов и сплавов наибольшее распространение получили сплавы меди, алюминия и магния, а также подшипниковые сплавы.

В последний годы бурными темпами развивается производство титана и его сплавов, которые широко применяются в химической промышленности, в самолето- и ракетостроении, в космической технике.

Охарактеризуем подробнее важнейших представителей черных и цветных металлов, а также основы технологии их производства.

Читайте также: