Классическая электронная теория электропроводности металлов и ее опытные обоснования

Обновлено: 05.01.2025

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристалличе­ской решетки металла. Это представление о природе носителей тока в металлах осно­вывается на электронной теории проводи­мости металлов, созданной немецким фи­зиком П. Друде (1863—1906) и разрабо­танной впоследствии нидерландским фи­зиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов — опыт Рикке(1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Сu, Аl, Сu) одинакового ради­уса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3,5•10 6 Кл), ни­каких, даже микроскопических, следов пе­реноса вещества не обнаружилось. Это явилось экспериментальным доказательст­вом того, что ионы в металлах не участву­ют в переносе электричества, а перенос заряда в металлах осуществляется части­цами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны. Для доказательства этого предполо­жения необходимо было определить знак и величину удельного заряда но­сителей (отношение заряда носителя к его массе). Идея подобных опытов за­ключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы дол­жны по инерции смещаться вперед, как

смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно опреде­лить знак носителей тока, а зная размеры и сопротивление проводника, можно вы­числить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат советским физи­кам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опыты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881 —1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах заряжены отрицательно, а их удельный заряд приблизительно оди­наков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удель­ного заряда и массы носителей тока и электронов, движущихся в вакууме, со­впадали. Таким образом, было оконча­тельно доказано, что носителями электри­ческого тока в металлах являются свобод­ные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристалличе­ской решетки металла (в результате сбли­жения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от ато­мов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решет­ки, в результате чего устанавливается тер-

модинамическое равновесие между элек­тронным газом и решеткой. По теории Друде — Лоренца, электроны обладают такой же энергией теплового движения, как и мо­лекулы одноатомного газа. Поэтому, при­меняя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T=300 К равна 1,1•10 5 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возник­новению тока.

При наложении внешнего электриче­ского поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Сред­нюю скорость упорядоченного движе­ния электронов можно оценить согласно формуле (96.1) для плотности тока: j=ne. Выбрав допустимую плотность тока, например для медных проводов 10 7 А/м 2 , получим, что при концентрации носителей тока n=8•10 28 м -3 средняя скорость (v) упорядоченного движения электронов равна 7,8•10 -4 м/с. Следова­тельно, , т. е. даже при очень больших плотностях тока средняя ско­рость упорядоченного движения электро­нов, обусловливающего электрический ток, значительно меньше их скорости теплово­го движения. Поэтому при вычислениях результирующую скорость ( +) можно заменять скоростью теплового дви­жения .

Казалось бы, полученный результат противоречит факту практически мгновен­ной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (с=3•10 8 м/с). Через время t=l/c (l — длина цепи) вдоль цепи установится стационарное электри­ческое поле и в ней начнется упорядо­ченное движение электронов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыка­нием.

Классическая электронная теория проводимости Друде-Лоренца

Теория Друде была разработана в 1900 году, через три года после открытия электрона. Затем теория была доработана Лоренцом, и сейчас она является классической и актуальной теорией проводимости металлов.

Электронная теория Друде-Лоренца

Согласно теории, носителями тока в металлах являются свободные электроны.

Друде предположил, что электроны в металле подчиняются и могут быть описаны уравнениями молекулярно-кинетической теории. Другими словами, свободные электроны в металле подчиняются законам МКТ и образуют "электронный газ".

Двигаясь в металле, электроны соударяются между собой и с кристаллической решеткой (это и есть проявление электрического сопротивления проводника). Между соударениями электроны, по аналогии с длиной свободного пробега молекул идеального газа, успевают преодолеть средний путь λ .

Без действия электрического поля, ускоряющего электроны, кристаллическая решетка и электронный газ стремятся к состоянию теплового равновесия.

Приведем основные положения теории Друде:

  1. Взаимодействие электрона с другими электронами и ионами не учитывается между столкновениями.
  2. Столкновения являются мгновенными событиями, внезапно меняющими скорость электрона.
  3. Вероятность для электрона испытать столкновение за единицу времени равна 1 τ .
  4. Состояние термодинамического равновесия достигается благодаря столкновениям.

Несмотря на множество допущений, теория Друде-Лорецна хорошо объясняет эффект Холла, явление удельной проводимости и теплопроводность металлов. Именно поэтому она актуальна по сей день, хотя ответы на многие вопросы (например, почему в металле существуют свободные ионы и электроны) смогла дать только квантовая теория твердого тела.

В рамках теории Друде объясняется сопротивление металлов. Оно обусловлено соударениями электронов с узлами кристаллической решетки.

Выделение тепла, согласно закону Джоуля-Ленца, также происходит по причине соударения электронов с ионами решетки.

Теплопередача в металлах также осуществляется электронами, а не кристаллической решеткой.

Терия Друде не объясняет многих явлений, как например сверхпроводимость, и не применима в сильных магнитных полях, в слабых магнитных полях может терять применимость из-за квантовых явлений.

Среднюю скорость электронов можно вычислить по формуле для идеального газа:

Здесь k - постоянная Больцмана, T - температура металла, m - масса электрона.

При включении внешнего электрического поля, на хаотичное движение частиц "электронного газа" накладывается упорядоченное движение электронов под действием сил поля, когда электроны начинают упорядоченно двигаться со средней скоростью u . Величину этой скорости можно оценить из соотношения:

где j - плотность тока, n - концентрация свободных электронов, q - заряд электрона.

При больших плотностях тока рассчеты дают следующий результат: средняя скорость хаотичного движения электронов во много раз ( ≈ 10 8 ) больше скорости упорядоченного движения под действием поля. При вычислении суммарной скорости полагают, что

Формула Друде

Формула Друде выводится из кинетического уравнения Больцмана и имеет вид:

Здесь m * - эффективная масса электрона, τ - время релаксации, то есть время, за которое электрон "забывает" о том, в какую сторону двигался после соударения.

Друде вывел закон Ома для токов в металле:

Опыт Толмена и Стюарта

В 1916 году опыт Толмена и Стюарта дал прямое доказательство тому, что носителями тока в металлах являются электроны.

Суть опыта была в следующем.

Опыт Толмена и Стюарта

Проводящая катушка с проводом длиной L вращалась вокруг своей оси с большой скоростью, а ее концы были замкнуты на гальванометр. Когда катушку резко тормозили, свободные электроны в металле продолжали двигаться по инерции, и гальванометр регистрировал импульс тока.

Считая, что свободные электроны подчиняются законам механики Ньютона, можно записать, что при остановке проводника электрон приобретает ускорение v ' (в катушке направлено вдоль проводов). При этом на электрон действует сила, направленная противоположно ускорению.

Под воздействием этой силы электрон ведет себя так, как если бы на него действовало поле E = - m v ' q . Эдс, возникающую в катушке при торможении можно записать, как:

ε = ∫ L E d l = - m v ' q ∫ L d l = - m v ' q L

Считая, что ускорение одинаково в каждом витке, можно записать закон Ома для катушки, а затем вычислить заряд, проходящий в ней за время d t :

d q = I d t = - m L d v q R d t d t = - m L d v q R

Заряд, прошедший от момента начала торможения до остановки:

q = - m L q R ∫ v 0 0 d v = - m L v 0 q R

Опыт Толмена и Стюарта получил хорошее согласование с теорией, полученное экспериментально отношение q m соответствовало отношению заряда электрона к его массе.

При T = 300 К вычислите среднюю скорость теплового движения свободных электронов.

Основы классической электронной теории

Электронная теория проводимости металлов была впервые создана П. Друде в 1900 г. и получила дальнейшее развитие в работах Г. Лоренца. С точки зрения классической электронной теории высокая электропроводность металлов объясняется наличием огромного числа носителей тока - электронов проводимости, перемещающихся по всему объему проводника. Друде предположил, что электроны проводимости в металле можно рассматривать как электронный газ, обладающий свойствами идеального одноатомного газа. При своем движении электроны проводимости сталкиваются с ионами кристаллической решетки металла. Поэтому можно говорить о средней длине свободного пробега электронов см.

Пользуясь закономерностями кинетической теории газов, определим среднюю кинетическую энергию теплового движения электронов:

где m - масса, а vкв средняя квадратичная скорость электронов. При температуре 0°С vкв »110 км/сек. Таков же порядок величины средней арифметической скорости uар теплового движения электронов.

Тепловое движение электронов вследствие своей хаотичности не может привести к возникновению электрического тока.

Под действием внешнего электрического поля в металлическом проводнике возникает упорядоченное движение электронов, т. е. возникает электрический ток. Плотность тока j равна общему заряду всех электронов, которые проходят за одну секунду через единицу площади поперечного сечения проводника. Эти электроны заключены в объеме цилиндра, площадь основания которого равна единице, а высота - средней скорости no электронов, то численное значение плотности тока выразится формулой

Оценим порядок величины средней скорости мм 2 наибольшая допустимая плотность тока равна 11 • 10 6 A/м 2 . Так как для меди объемная плотность электронов про­водимости no » 8,5×10 28 м -3 , а абсолютная величина заряда электрона е = 1,6×10 -19 Кл, то по формуле (20.23) средняя скорость движения электронов при этих условиях оказывается равной:

Таким образом, средняя скорость упорядоченного движения электронов, обусловливающая наличие электрического тока в проводнике, чрезвычайно мала по сравнению со средней скоростью их теплового движения при обычных температурах. Незначительная величина средней скорости

Как согласовать очень малую величину этой скорости электронов с практически мгновенной передачей электрических, например, телеграфных, сигналов на очень большие расстояния?

Замыкание электрической цепи на станции отправления влечет за собой распространение электрического поля в проводах и вокруг них. Всякое изменение электрического поля передается вдоль проводов с огромной скоростью с, равной 3×10 8 м/сек (скорости света). Таким образом, спустя время L -длина провода, вдоль цепи установится стационарное поле и в ней начнется упорядоченное движение электронов проводимости. Если L = 1000 м, то t = 0,3 • 10 - 5 сек. Поэтому движение электронов под действием внешнего электрического поля возникает на всем протяжении провода практически одновременно с подачей сигнала.

Классическая электронная теория электропроводности металлов

Если металлическую пластинку, вдоль которой течет постоянный электрический ток, поместить в перпендикулярное к ней магнитное поле, то между гранями, параллельными направлениям тока и поля возникает разность потенциалов U=j1-j2. Она называется Холловской разностью потенциалов.

Основная идея этой теории состоит в том, что электроны в металле свободны и образуют своеобразный электронный газ, подобный идеальному газу.

При столь большой концентрации электронов их взаимодействие между собой, как и с ионами решётки металла, очень велико. Однако средняя сила, действующая на каждый электрон со стороны всех остальных электронов и ионов, равных нулю, и поэтому в известном приближении такой электрон можно рассматривать как свободный, который взаимодействует с ионами решётки только при упругих соударениях. Следовательно, электронный газ, подобно идеальному газу, обладает лишь кинетической энергией mv 2 T/2=3/2kT, где m - масса электрона; v 2 T - средняя квадратичная скорость его движения; k -постоянная Больцмана; Т - абсолютная температура. Это выражение позволяет определить среднюю квадратичную скорость теплового движения электрона:

Хаотическое тепловое движение электронов и непрерывные столкновения с ионами кристаллической решётки приводят к тому, что нельзя указать преимущественного направления движения заряда - в проводнике нет электрического тока. Следовательно, ток может появиться лишь при наличии электрического поля, сообщающего всем электронам некоторую добавочную, «дрейфовую» скорость, направленную вдоль поля.

Одним из успехов классической электронной теории является также объяснения связи между электропроводностью металлов и их теплопроводностью. Действительно, обладая энергией теплового движения, электроны проводимости участвуют в переносе тепла в металле, и, чем выше концентрация электронов, от которой зависит электропроводность, тем больше и теплопроводность металла. Прямая пропорциональная зависимость электропроводности и теплопроводности была установлена опытным путём И.Видеманом и Р.Францем ещё в 1853г. Открытый ими закон имеет вид: x/γ=AT, х - коэффициент теплопроводности; Т- абсолютная температура; А-константа. На основе электронной теории Лоренца вычислил величину этой константы.

В 1901 г. Физик Э.Рике поставил следующий опыт. Через три металлических цилиндра (медный, алюминиевый, медный), одинакового радиуса, которые плотно соприкасались друг с другом хорошо отшлифованными торцевыми поверхностями, в течении очень долгого времени пропускали ток. При этом через цилиндры прошёл заряд 3,5*10 -6 к. тщательное взвешивание цилиндров до опыта и после него показало, что масса их не изменилась. Это позволило установить, что электропроводность металлов обусловлена перемещением таких заряжённых частиц, которые являются общими для всех металлов.

В 1912 году советские физики Л.И.Мандельштам и Н.Д.Папалекси на опыте по наблюдению инерционного движения заряжённых частиц в металлическом проводнике подтвердили, что в металле имеются такие частицы, которые слабо связаны с кристаллической решёткой.

В 1916 году американские физики Толмен и Стюарт, применив чувствительный гальванометр вместо телефона, показали, что частицы, образующие инерционный ток при торможении катушки, имеют отрицательный электрический заряд, а также вычислили удельный заряд этих частиц e/m. Они получили 4,8*10 17 ед., что оказалось близким к значению удельного заряда электрона, вычисленному в опытах по отклонению пучка электронов в электрических и магнитных полях. Таким образом, в работах Толмена и Стюарта электронная теория проводимости металлов получила строгое экспериментальное обоснование.

Однако было обнаружено, что основная идея этой теории - наличие в металле электронного газа, подобно идеальному, - находится в противоречии с некоторыми опытными фактами.

Молярная теплоёмкость металла, вычисленная на основе электронной теории, должна быть равна 37,5дж/(моль*град), а та же теплоёмкость, полученная экспериментально,- 25 дж/моль*град. Такой же результат можно получить и теоретически, если предположить, что электронный газ не обладает теплоёмкостью. Подобное предположение выглядит очень странным, так как согласно электронной теории температура металла определяется не только энергией колебания атомов в решётке. Но и энергией движения электронов.

Диэлектрики

В 1880 г. французские учёные-физики Пьер и Жак Кюри открыли пьезоэлектрический эффект.

Пьезоэлектрический эффект заключается в следующем. Если из кристалла кварца (кварц-диэлектрик) вырезать определённым образом пластинку и поместить её между двумя электродами, то при сжатии кварцевой пластинки на электродах появятся равные по величине, но различные по знаку заряды.

Если изменить направление силы, действующей на пластинку (вместо того чтоб сдавить кварц его будут растягивать), то изменяются и знаки зарядов на электродах: на том электроде, где при сжатии возникал положительный заряд, при растяжении появится отрицательный. При этом, чем больше сила, сжимающая или растягивающая пластинку, тем больше и величина зарядов, возникающая на электродах.

В середине XIX в. были также обнаружены диэлектрики, которые подобно остаточной поляризацией. Такие диэлектрики по аналогии с термином «магнит» назвали электретами.

Самое характерное свойство электретов - способность нести на своих противоположных сторонах заряды различного знака, которые могут сохраняться в течение весьма длительного времени. Так, для электретов из карнаубского воска и его смесей это время составляет годы, керамические электреты сохраняют заряд в течение двух лет, электреты из полимеров имеют время жизни месяцы.

Объяснить этот обширный экспериментальный материал об электрических свойствах диэлектриков стало возможным тогда, когда появилась теория, объясняющая строение твёрдых тел, связи между их структурными частицами.

Есть такие твёрдые тела, у которых центры положительных и отрицательных зарядов отдельных атомов или молекул совпадают.

Если такие вещества поместить в электрическое поле, то возникает «электрическая деформация» структурных частиц, т.е. электрическое поле смещает электрические заряды, входящие в состав диэлектрика, от тех положений, которые они занимали в отсутствие поля. Так, например, если диэлектрик состоит из нейтральных атомов, то в присутствии поля их электронные оболочки смещаются относительно положительно заряжённых ядер. Если кристаллическая решётка твёрдого тела состоит из положительно и отрицательно заряжённых ионов, например, решетка NaCl, то в электрическом поле ионы равных знаков смещаются относительно друг друга. В результате упругого смещения каждой пары зарядов образуется система, обладающая некоторым дополнительным моментом p=ql, а весь диэлектрик поляризуется.

Поляризация диэлектрика численно характеризуется дипольным моментом единицы объёма Р, который равен произведению числа элементарных диполей N, содержащих в единице объёма вещества, на величину момента элементарного диполя.Что дипольный момент единицы объёма диэлектрика пропорционален напряжённости электрического поля внутри диэлектрика.

Помимо неполярных диэлектриков, существует большой класс диэлектриков, молекула которых и при отсутствии внешнего электрического поля обладают дипольным моментом. Постоянный дипольный момент могут иметь многие молекулы, у которых центры симметрии составляющих их положительных и отрицательных зарядов не совпадают друг с другом. Типичными представителями полярного твёрдого диэлектрика служат лед, твердая соляная кислота, органическое стекло и др.

При помещении полярного диэлектрика в электрическое поле происходит ориентация полярных молекул так, чтобы их оси совпадали с направлением линий напряжённости электрического поля. Однако тепловое движение частиц вещества препятствует такой ориентации. В результате действия поля и теплового движения устанавливается равновесное состояние, при котором полярные молекулы приобретают в среднем некоторую направленную ориентацию, а весь диэлектрик благодаря этому приобретает дипольный момент в направлении поля, т.е. поляризуется.

Рассмотренный вид поляризации называют ориентационной или дипольной. В этом виде поляризации, в отличие от поляризации смещения, существенную роль играет температура диэлектрика.

Диэлектрическая проницаемость полярных диэлектриков больше, чем у неполярных, так как у них по существу наблюдаются оба вида поляризации: ориентационная и упругая поляризация смещения.

Если внешнее поле убрать, то полярные и неполярные диэлектрики деполяризуются, т.е. поляризация их практически исчезает.

Существует третий тип диэлектриков, у которых наблюдается самопроизвольная поляризация. В этом случае внутри диэлектрика, без какого бы то ни было воздействия внешнего поля, самопроизвольно возникают однородно поляризованные области, так называемые домены. В отсутствии внешнего поля направления дипольных моментов областей различны. При наложении поля происходит «ориентация» доменов и весь диэлектрик поляризуется. Так как каждый домен имеет большой дипольный момент, то диэлектрическая проницаемость таких диэлектриков обычно очень велика, порядка 10 4 . диэлектрики такого типа называют сегнетоэлектриками.

Сегнетоэлектрики отличаются от других диэлектриков рядом специфических свойств.

Если у полярных и неполярных диэлектриков дипольный момент единицы объёма вещества пропорционален напряжённости электрического поля Е, то у сегнетоэлектриков такая линейная зависимость между Р и Е существует только в слабых полях (рис 30). При увеличении напряжённости поля дипольный момент Р возрастает в соответствии с кривой АВ, а при некотором значении Е изменение дипольного момента прекращается. Это состояние называют насыщением. В состоянии насыщения все домены сегнетоэлектрика располагаются вдоль поля, и дальнейшее увеличение поля Е уже не приводит к увеличению поляризации. Если после этого начать уменьшать величину напряжённости поля до нуля, то поляризация кристалла будет изменяться не по начальной кривой ОВ, а по кривой ВD и при напряжённости поля, равной нулю, кристалл останется поляризованным.

Такое явление называется диэлектрическим гистерезисом. Величину поляризации, определяемую отрезком ОD при Е=0, называют остаточной поляризацией.

Таким образом, зависимость поляризации от напряжённости переменного электрического поля для сегнетоэлектриков описывается кривой BDFLHB, называемой петлей гистерезиса. По петле гистерезиса можно определить величину спонтанной поляризации.

Однако при увеличении температуры свойства сегнетоэлектриков изменяются и при некоторой температуре, называемой температурой Кюри, происходит исчезновение спонтанной поляризации.

Сегнетоэлектрики применяют при изготовлении лазеров и в запоминающих устройствах электронно-вычислительных машин.

Читайте также: