Кислота для травления металла
Травление осуществляют двумя способами — химическим и электрохимическим.
Химическое травление. При химическом травлении с поверхности изделий, изготовленных из черных металлов, действием травильных растворов удаляют окалину и ржавчину. Травление осуществляют в растворах серной или соляной кислот, иногда с добавками азотной, плавиковой и других кислот. Для понимания сущности химического травления рассмотрим воздействие водорода на поверхность с окисью железа, т. е. окалиной.
В серной, соляной, азотной и других кислотах атомы водорода являются составляющей частью. Например, молекула серной кислоты состоит из двух атомов водорода, одного атома серы и четырех атомов кислорода. Атомы водорода обладают свойством выделяться из кислоты, как только в нее будет помещен черный металл. Образующаяся на поверхности изделий из черных металлов окалина имеет поры и, кроме того, она покрывает поверхность металла неравномерно, поэтому серная кислота через поры достигает верхних слоев основного металла и действует на основной металл растворяющим образом, и от действия кислоты на основной металл происходит энергичное выделение водорода. Образовавшийся под коркой окалины водород вследствие все увеличивающегося давления разрыхляет на поверхности изделия окалину и сбивает ее с поверхности, что способствует очистке поверхности металла, т. е. осуществлению травления.
При травлении поверхности изделия с плотной пленкой окалины, препятствующей проникновению кислоты внутрь металла, пользуются обычно растворами соляной кислоты, так как растворы серной кислоты на такую окалину действуют значительно медленнее. Содержание серной и соляной кислот в травильных растворах не превышает 20%, применение более концентрированных растворов может привести к значительному растворению (перетравлению) основной части металла. При перетравлении металл имеет черную и глубоко изъеденную поверхность.
Водород, проникая в верхние слои металла, способствует образованию травильной хрупкости, из-за этого ухудшается качество металла.
В целях устранения травильной хрупкости и уменьшения возможности перетравливания металла в процессе травления в растворы добавляют либо так называемые травильные присадки (КС, ЧМ, УНИКОЛ), полученные путем специальной обработки отходов мясных комбинатов и других пищевых предприятий, либо органические вещества, называемые ингибиторами (замедлителями). В процессе травления пленка присадки или ингибитор закрывает доступ водороду в межкристаллические промежутки металла и прекращает химическое действие кислоты на металл.
Химическое травление поверхности изделий, изготовленных из углеродистых сталей, осуществляют в растворах серной или соляной кислот. Для травления поверхности изделий из низкоуглеродистых сталей применяют травильные растворы следующих двух составов: первый— серная кислота до 20%, присадка КС 0,1—0,2%, вода — остальное; температура нагрева первого раствора наименьшая 16—20° С, наибольшая 50—60° С; второй— соляная кислота до 20%, присадка КС 0,1—0,2%, вода — остальное; температура нагрева этого раствора 30—40° С.
Для травления поверхности изделий из углеродистых сталей часто применяют раствор следующего состава: серная кислота 200 г, хлористый натрий 50 г, присадка КС жидкая 10 г, вода 1 л. Температура нагрева этого раствора 50—60° С.
Для этой цели применяют также травильный раствор, состоящий из соляной кислоты 150 г, присадки КС жидкой 10 г, воды 1 л. Температура нагрева раствора 30— 40° С.
Для травления поверхности изделий, изготовляемых из нержавеющих и жаропрочных сталей, применяют травильный раствор следующего состава в весовых частях: серная кислота 14, соляная кислота 13, азотная кислота 1, вода 75. Температура нагрева раствора 50—70°С.
Травление поверхности изделий, изготовляемых из углеродистых сталей, выполняют в такой последовательности: заправка ванны, загрузка ванны, травление изделия, промывка изделия, контроль качества травления.
Как травить сталь кислотами
wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали авторы-волонтеры.
Поскольку медь и цинк в последнее время довольно сильно выросли в цене, многие художники, специализирующиеся на вытравливании узоров на металле, перешли на сталь. Хотя сталь и не настолько изысканный металл, как медь, она лучше цинка и является к тому же более устойчивой, особенно при использовании в качестве печатной платы. Кислотой можно травить несколько видов стали, включая малоуглеродистую и нержавеющую. При травлении стали придерживайтесь данной инструкции.
Выберите тип стали, на которой вы хотите вытравить узор. Вы можете вытравливать на нержавеющей, мало- или высокоуглеродистой стали. Тип стали будет определять наиболее подходящую кислоту для травления.
Снимите все заусенцы на краях стальной детали. Счистите любые заусенцы по краям стальной детали, на которой вы планируете вытравливать узор. Если вы вытравливаете узор на стальной пластине, то заусенцы на обратной стороне можно оставить.
Очистите сталь. Используйте хлорсодержащее чистящее средство на абразивной губке, щетку с металлической щетиной, тонкую металлическую мочалку, мокрую наждачную бумагу марки 600 или корундовую бумагу; трите поверхность круговые движения. Вам нужно, чтобы поверхность была достаточно шероховатой для того, чтобы материал резиста держался не ней, но не поцарапанной, иначе у вас будут вытравлены лишние линии, которые не являются частью узора.
- Если вы планируете воспроизвести существующий узор, то выберите что-то с высоким контрастом черного и белого.
- Если вы планируете делать и продавать отпечатки ваших вытравленных узоров, выберите изображение с публичным доступом или получите разрешение от владельца авторских прав, если они существуют.
- Старейший метод перевода изображений – это нанести на сталь покрытия из жидкого лака или воскоподобной субстанции (например, пчелиного воска), или даже эмалевой краски или лака для ногтей. Такое покрытие называется грунтом. Вы можете процарапать ваше изображение прямо на грунте с помощью иголок или режущих инструментов. (Данный процесс напоминает резьбу по дереву.) Грунт будет служить резистом, изолирующим от действия травильной кислоты те покрываемые им участки стали.
- Другой метод – покрыть поверхность стали следами перманентных маркеров в тех местах, которые вы не хотите протравливать. Чтобы определить самый лучший резист, вам придется поэкспериментировать с несколькими перманентными маркерами различных брендов и цветов.
- Третий метод заключается в создании трафарета, переносимого на сталь с помощью утюга, либо фотокопированием картинки на переводную бумагу, либо печатью его на глянцевой фотобумаге лазерным принтером. Положите бумагу на поверхность стали изображением вниз и выставленным на высокую температуру утюгом разглаживайте ее плавными круговыми движениями в течение 2–5 минут. (Если вы используете переводную бумагу, то давите на нее аккуратно, а если используете фотобумагу, то вдавливайте утюг с силой.) После этого вы можете снять бумагу. (Переводная бумага отслоится сама по себе, а для удаления фотобумаги требуется поместить ее в лоток с горячей водой для размягчения.) Переведенные чернила станут резистом для травильной кислоты.
Закройте края стального изделия. Вы можете наклеить на края стали клейкую ленту или закрасить их. Оба метода предотвращают травление кромок стального изделия
Безопасный общедоступный состав для травления меди в домашних условиях
Многие из нас занимаются травлением плат, пожалуй, с подросткового возраста. Рецепты предыдущих поколений известны и используются десятками лет.
Все известные методы обладают как индивидуальными, так и общими недостатками, усугубляемыми отсутствием собственной оборудованной мастерской, закрытой для доступа любопытных домашних питомцев и родственников. Практически не удаляемые пятна, неприятный запах, общая опасность некоторых используемых реактивов и прочие причины влекут за собой необходимость оправдываться и доказывать очевидную вещь – пользу от занятий радиолюбительством.
Помимо прочего в самый неподходящий момент, так сказать на взлёте деятельной активности, вдруг не оказывается нужных компонентов, или оказалось, что они уже пришли в негодность. Порой, быстро и в доступных точках продаж, найти привычные или, вообще, любые реактивы и вовсе не представляется возможным, что влечёт за собой потери целых дней творчества…
Однако всё в этой жизни меняется… Растём мы, растут и наши запросы, увеличиваются рабочие напряжения и токи. И вот мы уже меняем медь 32 мкм на медь 105 мкм и длительность, и расход реактивов, и качество процесса нас не устраивают.
Для начала, рассмотрим, так сказать классику. Нетерпеливые могут, конечно, пропустить
уже известное и много где упомянутое, и начать с п.5. Но, думаю, краткое изложение по схеме: уравнение реакции, анализ течения с указанием окислительно-восстановительных потенциалов (далее по тексту ОВП), достоинства и недостатки, создадут более полную картину.
Следует заметить, что мы ориентируемся на нормальный ОВП а именно рассчитанный по справочным данным при активности как самого реактива, так и продуктов реакции равной 1 экв./литр.
Итак, с п.1 по п.4 рассматриваем классику:
1. Травление меди раствором хлорного железа.
Рис. 1 1 -стандартная упаковка; 2 — шестиводное хлорное железо; 3 — безводное хлорное железо (растворяется в воде со спецэффектами, но получаемый раствор аналогичен раствору из водного железа); 4- раствор в начале травления; 5 — отработанный раствор хлорного железа; 6 — меднёный гвоздь.
Движущая сила (разность нормальных ОВП потенциалов) для этой реакции составляет:
Это не так уж и мало, но, потенциал и скорость процесса сильно уменьшаются по мере накопления в растворе продуктов реакции, что наверняка было всеми замечено. Поработавший раствор травит медь заметно медленнее, чем свежий.
Некоторые пытаются «оживить» отработанный раствор, осаждая из него медь гвоздями, скрепками и т.п., получая, сначала прозрачный зеленовато-голубоватый раствор, очень медленно превращающийся, при доступе воздуха, в ни к чему непригодную «чёрную жижу», которая, при утилизации, разукрашивает сантехнику в цвета ржавчины. Однако удаление меди из отработанного раствора, совершенно бесполезно, поскольку вместо неё в растворе прибавляется хлорид закисного железа FeCl2, который растворять медь не способен в принципе. Вопрос регенерации ХЖ решило бы добавление соляной кислоты, но если у вас она есть, и работать с ней вы согласны, то вам совершенно не нужно отработанное ХЖ, об этом ниже.
Достоинства:
— умеренная скорость травления меди.
— использование единственного основного компонента, а именно хлорного железа.
— простота изготовления раствора «на глаз», главное, что бы концентрация была достаточной.
— не критична температура окружающей среды.
Недостатки:
— Скорость травления и ОВП раствора заметно снижаются по ходу процесса.
— Большим минусом этого метода можно назвать невысокую доступность хлорного железа для рядового радиолюбителя.
— Относительная дороговизна, порой на рынках заламывают немалую цену за мелкую фасовку.
— Также, немалым минусом являются трудноудаляемые пятна, которые оставляет хлорное железо на всём, с чем только не соприкоснётся. Одежда портится, обычно, необратимо.
— ХЖ заметно летуче, особенно при нагревании, плохо хранится (гидролизуется) при доступе воздуха, склонно вылезать из негерметичной тары, загрязняя собой и продуктами своего гидролиза все окружающие предметы.
2. Травление медным купоросом с солью.
Рис. 2 1 — варианты фасовки; 2 — соль и медный купорос; 3 — раствор бирюзового цвета до травления; 4 — отработанный раствор медного купороса.
Тут ключевую роль играет хлорид натрия (соль), поскольку, медь с медным купоросом практически не реагирует.
Несмотря на то, что отработанный раствор напоминает «чёрную жижу», он поглощает кислород из воздуха, и при подкислении, может быть регенерирован.
Достоинства:
— доступность медного купороса, широко применяемого в сельском хозяйстве, как средство защиты растений.
— в отличие от ХЖ не оставляет таких пятен и разводов. Пятна получаются другого цвета – синие. Но, они легко удаляются уксусом.
Недостатки:
— Медный купорос ядовит.
— В последнее время цена медного купороса бьет рекорды, в отличие от размеров фасовки, которые систематически уменьшаются.
— Требуется подогрев раствора для быстрого протекания реакции.
— Невысокая скорость травления.
3. Травление персульфатами (персульфат аммония или персульфат натрия).
Рис. 3 1 — упаковка и персульфаты россыпью; 2 — раствор до травленя прозрачен, после травления голубой ибо является раствором медного купороса и сульфата натрия.
Весьма интересная система, поскольку, казалось бы, одно вещество (персульфат чего-нибудь) — на самом деле, в процессе травления, распадается на три: перекись водорода, серную кислоту и не участвующий ни в чем сульфат натрия или аммония. Об этом факте говорит необходимость существенного подогревания раствора персульфата, которое необходимо для его гидролиза.
Движущая сила процесса, казалось бы бьёт рекорд 1,43 В! Вот только, практически, такой потенциал не достигается, поскольку персульфат, даже при нагревании его раствора не гидролизуется мгновенно и полностью.
Достоинства
— Высокий ОВП
— Высокая скорость травления
— Не оставляет грязных пятен
— Однокомпонентный состав
Недостатки
— Доступность заметно ниже чем у ХЖ
— Вместо пятен, склонен отбеливать и делать дырки в ткани.
— Требуется подогрев
— Применяются растворы высоких концентраций, поскольку больше половины массы реактива, в итоге, составляет балластный сульфат.
4. Травление перекисью водорода в соляной кислоте
Рис. 4 1 — 3% раствор перикиси водорода (аптеки); 2 — таблетки гидроперита (помимо медицины используются для отбеливания волос крашеными блондинками); 3 — соляная кислота — отлично портит вещи и раздражает кожу в то же время содержится в желудке ввиде от 0,4 до 0,6% раствора.
Перекись водорода уже присутствует в своей максимальной концентрации, что позволяет достигнуть максимального ОВП в 1,43 В.
В присутствие соляной кислоты или хлоридов реакция растворения меди протекает через образование промежуточного продукта CuCl, который не успевает выпасть в осадок и быстро окисляется далее. Образование этого продукта заметно понижает потенциал окисления меди, что существенно облегчает течение реакции. т.е. хлориды в данной системе являются катализатором.
Достоинства
— Самая высокая скорость травления из всех рассматриваемых.
— Не оставляет грязных пятен
— Процесс быстро протекает при комнатной температуре.
— Высокая доступность: перекись можно купить в аптеке, а вместо соляной кислоты годится подсоленный аккумуляторный электролит.
Недостатки
— Использование сильных кислот неизбежно приводит к дыркам в штанах и последующему разбору полётов.
и вот тут мы подходим к самому интересному:
5. Травление меди перекисью водорода в присутствие лимонной кислоты.
Рис. 5 1 — 20ти грамововая упаковка; 2 — россыпь лимонной кислоты; 3 — 15ти граммовые упаковки.
Анализ двух предыдущих методов (см. п.3 и п.4) привёл меня к выводу, что природа, используемой совместно с перекисью водорода, кислоты имеет малосущественное значение, и будет оказывать влияние только на скорость травления меди. Это значит, что можно использовать любую походящую кислоту, которая не окисляется перекисью водорода, например (роюсь в кухонном шкафчике) лимонную, ну или уксусную – но отставим пока уксус из-за неприятного запаха.
Выбор лимонной кислоты вызван тем, что она: доступна, имеет достаточную силу и не пахнет. Более того, лимонная кислота образует прочнейший комплекс с медью, что исключает всякое влияние продуктов реакции на её скорость! А для ускорения процесса следует добавить не расходующийся хлорид натрия.
Движущая сила процесса, внимание: 1,775 В, что является абсолютным рекордом!
Достоинства
— Весьма высокая скорость травления.
— Не оставляет грязных пятен
— Процесс быстро протекает при комнатной температуре.
— Не требуется труднодоступных реактивов: 3% перекись продаётся в аптеке, лимонная кислота – в гастрономе, а соль можно найти на любой кухне
— Травильный раствор безопасен для тела и одежды
— Это самый дешевый метод травления меди!
Недостатки, куда же без них.
— Средний цитрат меди малорастворим и может выпасть в осадок в т.ч. на поверхность травления. Для предотвращения возникновения проблемы не следует экономить лимонную кислоту.
Рекомендуемый способ приготовления травильного раствора:
В 100 мл аптечной 3% перекиси водорода растворяется 30 г лимонной кислоты и 5 г поваренной соли. Этого раствора должно хватить для травления 100 см2 меди, толщиной 35мкм.
Соль при подготовке раствора можно не жалеть. Так как она играет роль катализатора, то в процессе травления практически не расходуется. Перекись 3% не стоит разбавлять дополнительно т.к. при добавлении остальных ингредиентов её концентрация снижается.
Чем больше будет добавлено перекиси водорода (гидроперита) тем быстрее пойдёт процесс, но не переусердствуйте — раствор не хранится, т.е. повторно не используется, а значит и гидроперит будет просто перерасходован. Избыток перекиси легко определить по обильному «пузырению» во время травления.
Однако добавление лимонной кислоты и перекиси вполне допустимо, но рациональнее приготовить свежий раствор.
Вы можете использовать вместо лимонной и уксусную кислоту, но неприятный запах и меньшая скорость травления могут вас не устроить. ОВП реакции с уксусной кислотой 1,35В – что в принципе не так уж и мало, например в сравнении с ХЖ.
Напомню для тех кто только начинает:
— Для приготовления всех травильных растворов необходимо использовать пластиковую либо стеклянную посуду.
— Подогрев растворов следует проводить на водяной бане или специально предназначенными приспособлениями.
— Все растворы полученные после травления ядовиты из-за высокого содержания меди.
— Соблюдайте технику безопасности при работе с сильными кислотами.
— Утилизация отработанных растворов допустима путём выливания в общую канализацию.
— После травления плату следует ополоснуть слабым раствором уксуса и тёплой водой.
Кислоты для травления металла
Для травления поверхности металлических изделий применяют травильные растворы, главным образом из серной, азотной и соляной кислот.
Серная кислота H2SO4 является продуктом соединения трехокиси серы SO3 с водой. Удельный вес 1,84. Химически чистая серная кислота представляет собой бесцветную маслянистую жидкость. В любых соотношениях серная кислота хорошо смешивается с водой, выделяя при этом значительное количество тепла. Обуглившиеся органические примеси, попадая в серную кислоту, окрашивают ее в коричневый цвет. На благородные металлы серная кислота не действует. Ее действие на остальные металлы зависит от концентрации.
Для травления поверхности металлических изделий употребляют несколько сортов технической серной кислоты, в частности камерную, содержащую не менее 65% серной кислоты, башенную и гловерную кислоты, содержащие не менее 75—76,5% серной кислоты. Для травления часто используют купоросное масло, содержащее не менее 92,5% серной кислоты.
Разводят серную кислоту водой, осторожно вливая ее в воду, а не наоборот. При вливании воды в серную кислоту происходит бурное кипение смеси, вызывающее сильное разбрызгивание кислоты. Температура смеси сильно повышается, и если кислоту вливать слишком быстро и много, то смесь нагревается так сильно, что стеклянные сосуды, в которых производят смешивание, могут лопнуть. При работе с серной кислотой на руки надевают рукавицы, чтобы избежать ожогов, которые очень болезненны и оставляют красные рубцы, на глаза надевают очки.
Серную кислоту хранят в герметически закрывающихся бутылях или свинцовых сосудах.
Соляная кислота HCl представляет собой водный раствор хлористого водорода. В чистом виде — бесцветная жидкость, сильно пахнущая, с большой упругостью паров уже при температуре 14—16° С.
Концентрированная соляная кислота обычно содержит около 37,4% хлористого водорода. Удельный вес 1,19.
Соляная кислота выпускается двух сортов: сорт А содержит не менее 30% хлористого водорода, а сорт Б — не менее 27,5%.
Соляная кислота ядовита, поэтому обращаться с ней надо очень осторожно. Пары соляной кислоты при вдыхании сильно раздражают верхние дыхательные органы. При разбавлении соляной кислоты водой придерживаются тех же правил, что и при разбавлении серной кислоты.
Соляную кислоту хранят в герметически закрывающихся стеклянных сосудах.
Азотная кислота HNO3 представляет собой бесцветную жидкость с удельным весом 1,52 при температуре 15° С. Температура кипения 84° С. При кипении и на свету разлагается и выделяет двуокись азота, которая окрашивает кислоту в желтый, а затем в красный цвет. Азотная кислота с водой смешивается в любых отношениях. Концентрированная азотная кислота действует на многие металлы, кроме благородных.
Плавиковая кислота. Чистая плавиковая кислота представляет собой бесцветную жидкость с резким запахом. Эта кислота содержит не менее 40% фтористого водорода. Пары фтористого водорода чрезвычайно ядовиты и едки. Поэтому при работе с плавиковой кислотой, как и с остальными кислотами, необходимо соблюдать меры предосторожности.
Травление в водных растворах кислот
Среди металлов по количеству подлежащей удалению окалины, в особенности перед горячими методами покрытий, первое место занимают железо и низколегированные стали. Основными травителями для удаления с них окалины являются серная и соляная кислоты. Каждая из этих кислот имеет свои преимущества и недостатки как технического, так и экономического характера. В трудах IV Международной конференции ассоциации по горячему цинкованию указывается, что из 22 английских фирм только одна осуществляет травление в серной кислоте, все остальные — в соляной, а в трудах V конференции той же организации, которая проходила в 1958 г. в Бельгии и Голландии, в качестве травителя рассматривалась только соляная кислота. Таким образом, можно считать, что по крайней мере на крупных предприятиях для удаления окалины имеется тенденция к преимущественному применению соляной кислоты. Указывается также на возможность травления соляной кислотой в замкнутом цикле, при котором расход кислоты определяется не столько реакциями, растворения окислов, сколько механическим уносом и остатком в отработанном растворе при регенерации.
При взаимодействии окисленного железа с разбавленными растворами кислот происходит растворение окислов и металлического железа. С растворами соляной кислоты протекают следующие реакции:
FeO + 2НCl → FeCl2 + H2O,
Fe2O3 + 6НCl → 2FeCl3 + 3H20,
Fe3O4 + 8НCl → 2FeCl3 + FeCl2 + 4H2O,
Fe + 2HCl → FeCl2 + 2H,
2FeCl3 + 2H → 2FeCl2 + 2HCl,
2FeCl3 + Fe → 3FeCl2.
Аналогично протекают реакции с серной кислотой.
Из этих реакций с наибольшей скоростью протекают реакция растворения металлического железа с выделением водорода и реакция растворения закиси железа.
Процессы травления окисленного железа путем непосредственного воздействия на него растворов кислот без применения электрического тока от внешнего источника принято называть химическим травлением, в отличие от электрохимического, которое осуществляется с применением электрического тока из внешней сети. Между тем есть основание считать, что так называемые химические методы травления по существу являются электрохимическими. С этой точки зрения имеются основания допускать, что в серной кислоте электрохимические процессы выражены более отчетливо, чем в соляной. Об этом можно судить по относительной скорости растворения железа и его окислов в соляной (табл. 5) и серной кислотах различной концентрации.
Концентрация HCl, % | Растворимость, г/ч на 100 г вещества | Концентрация HCl, % | Растворимость г/ч на 100 г вещества | ||||
Fe | Fe2O3 | FeO | Fe | Fe2O3 | FeO | ||
1 | 20,8 | 0,112 | 0,48 | 10 | 72 | — | — |
2 | 22,7 | 0,17 | 0,63 | 14 | 109,6 | — | — |
3 | 31,6 | 0,31 | 0,76 | 18 | 191,0 | 38,6 | 79,7 |
5 | 40,7 | 0,71 | 0,88 | 21 | 356,0 | 43,8 | 99 |
7 | 50,1 | 1,6 | 1.8 |
Из данных табл. 5 видно, что растворимость металлического железа в соляной кислоте любой концентрации больше растворимости его окислов, растворимость закиси железа больше, чем растворимость окиси и с повышением концентрации соляной кислоты скорость растворения его окислов возрастает в большей степени, чем скорость растворения металлического железа.
В серной кислоте наблюдаются другие соотношения между скоростью травления металлического железа и его окислов. Так, в 10%-ной H2SO4 при 40° С из 100 г вещества растворителя 97,7 г Fe, 0,9 г Fe2O3 и 1,4 FeO, т. е. в 10%-ной H2SO4 металлического железа растворяется примерно в 70 раз больше, чем FeO, а в 10%-ной НCl — только в 10 раз. Такое соотношение говорит о неодинаковом электрохимическом механизме растворения окалины в соляной и серной кислотах. Можно допустить, что растворяющееся с большей скоростью в серной кислоте металлическое железо выделяет такое количество водорода, которое способствует взрыхлению окалины и механическому отделению ее от основы. Fe3O4 представляет собой полупроводник и в контакте с металлическим железом в разбавленной H2SO4 возникает э. д. с. порядка 0,8—1,0 В при плотности тока 2 мА/см 2 . Выделяющийся на магнетитовом катоде водород восстанавливает Fe3O4 до FeO и Fe, которые значительно легче растворяются в кислотах.
Fe2O3 — плохой проводник электрического тока и не может рассматриваться подобно магнетиту как катод л короткозамкнутом элементе. Больше того, этот окисел образует тонкую пленку, затрудняющую доступ кислоты к железу и, следовательно, тормозит работу гальванического элемента.
Электрохимический механизм растворения железа, покрытого окалиной, заключается в следующем. Окисление железа сопровождается изменением объема, в результате чего в окалине образуются трещины, через которые травитель находит доступ к наиболее легко растворяющемуся металлическому железу. Это подтверждается следующими данными:
Железо и его окислы Fe FeO Fe2O3 Fe3O4
Плотность, г/см 3 . . . 7,8 5,9 5,1 5,2
Таким образом мы можем заключить, что процесс растворения железа с окалиной основан на работе короткозамкнутого многоэлектродного элемента, в котором металлическое железо состоит из анодных и катодных участков, а его окислы являются катодами. Схему трехэлектродного элемента можно представить в следующем виде:
Fe (анодные участки)
(катодные участки) окалина (катод)
Отслаивание окалины происходит в результате восстановления окислов железа до легкорастворяющейся в кислоте закиси железа, нарушения сцепления окислов с основным металлом после растворения закиси железа, а также из-за механического воздействия газообразного водорода, выделяющегося на поверхности стали. В результате соприкосновения электролита с металлом, находящимся под слоем окалины, выделяется газообразный водород. Следовательно, разряд ионов водорода на окалине невозможен. Он начинает выделяться только после проникновения электролита к основному металлу, причем главным образом в результате работы микропар. Концентрация и температура кислоты оказывают существенное влияние на скорость травления, однако отношении серной и соляной кислот они сказываются по-разному. В серной кислоте более сильное влияние оказывает повышение температуры; в соляной кислоте температура сказывается меньше, да и повышать ее из-за летучести кислоты выше 35—40° С нельзя. Так, например, скорость травления в 3%-ном растворе серной кислоты при 80° С в 10 раз больше, чем в 8%-ном растворе при 20° С. С повышением концентрации H2SO4 до 25%-ной скорость травления достигает максимума, после чего она уменьшается. При одинаковой концентрации скорость травления в соляной кислоте больше, чем в серной.
Кроме того, необходимо считаться с замедляющим действием солей железа в травильном растворе. Так, при повышении содержания FeSO4 от 50 до 200 г/л продолжительность травления в 5%-ной H2SO4 изменяется от 190 до 440 мин.
Читайте также: