Кинетическая энергия фотоэлектронов вылетевшего с поверхности металла
Максимальная кинетическая энергия фотоэлектронов, вылетающих из металлической пластинки при её освещении монохроматическим светом, равна 0,8 эВ. Красная граница фотоэффекта для этого металла 495 нм. Установите соответствие между физическими величинами и их численными значениями, выраженными в СИ. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
А) работа выхода металла
Б) энергия фотона в световом потоке, падающем на пластинку
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
«Красная граница» фотоэффекта — это максимальная длина волны при которой ещё происходит фотоэффект и она зависит от работы выхода, не зависит от энергии налетающих фотонов.
Энергия налетающих фотонов передаётся электронам и расходуется на преодоление электронами работы выхода из металла и увеличение кинетической энергии электронов
Тип 26 № 16867Максимальная кинетическая энергия фотоэлектронов, вылетающих из металлической пластинки под действием света, равна 2 эВ. Длина волны падающего монохроматического света составляет длины волны, соответствующей «красной границе» фотоэффекта для этого металла. Какова работа выхода электронов? Ответ приведите в электрон-вольтах.
Если длина волны падающего света равна длине «красной границы» фотоэффекта, то работа выхода равна энергии падающих фотонов, то есть для фотонов имеющих длину волны, соответствующую «красной границе» фотоэффекта верно соотношение Длина волны света, его частота и скорость света связаны соотношением: Следовательно, частота падающего света в раза больше То есть Для первого уравнения получаем:
Задания Д21 № 3158Квант света выбивает электрон из металла. Как изменятся при увеличении энергии фотона в этом опыте следующие три величины: работа выхода электрона из металла, максимальная возможная скорость фотоэлектрона, его максимальная кинетическая энергия?
Для каждой величины определите соответствующий характер изменения:
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Тип 18 № 2304Поток фотонов с энергией 15 эВ выбивает из металла фотоэлектроны, максимальная кинетическая энергия которых в 2 раза меньше работы выхода. Какова максимальная кинетическая энергия образовавшихся фотоэлектронов? (Ответ дать в электрон-вольтах.)
В условии сказано, что максимальная кинетическая энергия в 2 раза меньше работы выхода т.е. Авых=0,5Екин, тогда hv=1,5Екин, Екин=10эВ
Задания Д21 № 12870На поверхность металлической пластинки падает свет. Работа выхода электрона с поверхности этого металла равна A. В первом опыте энергия фотона падающего света равна E, а максимальная кинетическая энергия вылетающего фотоэлектрона равна K. Во втором опыте частоту света увеличивают в 1,5 раза, при этом максимальная кинетическая энергия фотоэлектрона увеличивается в 3 раза. Установите соответствие между отношением указанных в таблице физических величин и значениями этих отношений. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
В первом опыте во втором опыте Вычитая из второго уравнения первое, получим:
Подставляя это соотношение в первое уравнение, получим:
Тип 18 № 7075Пластина, изготовленная из материала, для которого работа выхода равна 2 эВ, освещается монохроматическим светом. Какова энергия фотонов падающего света, если максимальная кинетическая энергия фотоэлектронов равна 1,5 эВ? (Ответ дайте в электрон-вольтах.)
Уравнение фотоэффекта: где — энергия фотона.
Тип 26 № 6835Металлическую пластинку облучают монохроматическим светом, длина волны которого составляет 2/3 длины волны, соответствующей красной границе фотоэффекта для этого металла. Работа выхода электронов для исследуемого металла равна 4 эВ. Определите максимальную кинетическую энергию фотоэлектронов, вылетающих из металлической пластинки под действием этого света. Ответ приведите в электрон-вольтах.
При длине волны, равной красной границе фотоэффекта энергия волны равна работе выходе из металла. Следовательно, откуда
Тип 26 № 3294Один из способов измерения постоянной Планка основан на определении максимальной кинетической энергии фотоэлектронов с помощью измерения задерживающего напряжения. В таблице представлены результаты одного из первых таких опытов.
Задерживающее напряжение U, В
По результатам данного эксперимента определите постоянную Планка с точностью до первого знака после запятой. В ответе приведите значение, умноженное на 10 - 34.
Запишем уравнение Эйнштейна для фотоэффекта для обоих значений задерживающего напряжения: Вычтя из второго равенства первое, получим соотношение, из которого уже легко оценить постоянную Планка:
Таким образом, ответ: 5,7.
Задания Д32 C3 № 4758Уровни энергии электрона в атоме водорода задаются формулой где . При переходе атома из состояния в состояние атом испускает фотон. Попав на поверхность фотокатода, фотон выбивает фотоэлектрон. Длина волны света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода, Чему равна максимально возможная кинетическая энергия фотоэлектрона?
Согласно постулатам Бора, свет излучается при переходе атома на более низкие уровни энергии, при этом фотоны несут энергию, равную разности энергий начального и конечного состояний. Таким образом, испущенный фотон имел энергию
Согласно уравнению фотоэффекта, максимальная кинетическая энергия вылетающих фотоэлектронов связана с энергией фотона и работой выхода соотношением
Работа выхода связана с длиной волны красной границы соотношением:
Таким образом, максимально возможная кинетическая энергия фотоэлектрон равна
Задания Д32 C3 № 4898Уровни   энергии   электрона   в   атоме    водорода   задаются    формулой
 эВ, где . При переходе атома из состояния в состояние атом испускает фотон. Попав на поверхность фотокатода,этот фотон выбивает фотоэлектрон. Частота света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода, Гц. Чему равна максимальная возможная кинетическая энергия фотоэлектрона?
Согласно постулатам Бора, свет излучается при переходе атома на более низкие уровни энергии, при этом фотоны несут энергию, равную разности энергий начального и конечного состояний. Таким образом, испущенный фотон имел нес энергию
Работа выхода связана с частотой красной границы соотношением:
Источник: ЕГЭ по физике 06.06.2013. Основная волна. Сибирь. Вариант 5., ЕГЭ по физике 06.06.2013. Основная волна. Сибирь. Вариант 6.
Тип 18 № 2302Металлическую пластину освещают светом с энергией фотонов 6,2 эВ. Работа выхода для металла пластины равна 2,5 эВ. Какова максимальная кинетическая энергия образовавшихся фотоэлектронов? (Ответ дать в электрон-вольтах.)
Тип 26 № 4608Поток фотонов выбивает из металла фотоэлектроны, максимальная кинетическая энергия которых 10 эВ. Энергия фотонов в 3 раза больше работы выхода фотоэлектронов. Какова энергия фотонов? Ответ приведите в электрон-вольтах.
Согласно уравнению фотоэффекта, энергия фотона, работа выхода и максимальная кинетическая энергия электрона связаны соотношением: По условию, Следовательно, энергия фотонов равна
Задания Д21 № 3760Для наблюдения фотоэффекта поверхность некоторого металла облучают светом, частота которого равна Затем частоту света увеличивают вдвое. Как изменятся следующие физические величины: длина волны падающего света, работа выхода электрона, максимальная кинетическая энергия вылетающих электронов?
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться
кинетическая энергия
вылетающих электронов
Длина волны связана с частотой излучения и скоростью света соотношением Следовательно, излучение с вдвое большей частотой имеет вдвое меньшую длину волны.
Работа выхода является характеристикой металла и не зависит от частоты падающего излучения, поэтому работа выхода останется неизменной. Следовательно, увеличение частоты света приведет увеличению максимальной кинетической энергии вылетающих электронов.
Почему длина волны уменьшается? Длина воны=скорость света/частота света. Частота уменьшается, следовательно длина волны увеличивается.
В условии написано: «Затем частоту света увеличивают вдвое».
Задания Д21 № 10651На рисунке изображена зависимость максимальной кинетической энергии Eэ электрона, вылетающего с поверхности металлической пластинки, от энергии Eф падающего на пластинку фотона.
Пусть на поверхность этой пластинки падает свет, энергия фотона которого равна 5 эВ.
Установите соответствие между физическими величинами, указанными в таблице, и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
А) кинетическая энергия электрона, вылетающего с поверхности пластинки
Б) работа выхода электронов с поверхности металла пластинки
Работа выхода является характеристикой металла и не зависит от частоты падающего излучения. Из графика видно, что работа выхода равна 2 эВ. Тогда кинетическая энергия фотоэлектронов равна 5 − 2 = 3 эВ.
Тип 26 № 4573Поток фотонов выбивает из металла фотоэлектроны, максимальная кинетическая энергия которых 10 эВ. Энергия фотонов в 3 раза больше работы выхода. Какова работа выхода? Ответ приведите в электрон-вольтах.
Задания Д23 № 2513При изучении явления фотоэффекта исследовалась зависимость максимальной кинетической энергии вылетающих с поверхности освещенной пластины фото-электронов от частоты падающего света. Погрешности измерения частоты света и энергии фотоэлектронов составляли соответственно и Результаты измерений с учетом их погрешности представлены на рисунке. Согласно этим измерениям, чему приблизительно равна постоянная Планка? (Ответ дайте в с точностью до )
Из рисунка имеем,
Угловой же коэффициент полученной кривой даст приблизительное значение постоянной Планка:
Разве решение не сводится к тому что мы должны найти приблизительное значение h поделив значение E на значения v(ню) где на графике изображена почти линейная зависимость (с 6 и выше по значению частоты) где получаем постоянно число приблизительно равное второму варианту ответа
Во-первых, нельзя выкидывать из рассмотрения первую точку, поскольку они все равноправны, погрешности измерений у всех одинаковые.
Во-вторых, вы предлагаете искать значение постоянной Планка по формуле , тем самым Вы пренебрегаете работой выхода электрона. Перед тем как чем-либо пренебрегать, обязательно надо оценить величину, у меня получилось, что она дает ощутимый вклад.
Зависимость ЭКСПЕРИМЕНТАЛЬНАЯ тогда, когда величины этой зависимости иЗМЕРЕНЫ. Интересно, каким прибором Вы измеряли частоту света и максимальную скорость фотоэлектронов? Автор этой задачи не имеет ни малейшего понятия о физическом научном эксперименте.
Конечно, тут идет речь не о прямых измерениях. Мне кажется, сейчас в физике никто ничего линейкой уже давно не мерит. Максимальную частоту можно измерять, подбирая задерживающий потенциал. Да и с частотой, я полагаю, особых проблем нет, пучок света можно исследовать например при помощи дифракционной решетки.
Это тангенс угла наклона красной линии. Соответственно, числа взяты с графика.
Задания Д32 C3 № 4793Уровни   энергии   электрона   в   атоме    водорода   задаются    формулой
эВ, где . При переходе атома из состояния в состояние атом испускает фотон. Попав на поверхность фотокатода,этот фотон выбивает фотоэлектрон. Частота света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода, Гц. Чему равен максимально возможный импульс фотоэлектрона?
Таким образом, максимально возможный импульс фотоэлектрон равен
Тип 26 № 3428Красная граница фотоэффекта исследуемого металла соответствует длине волны нм. При освещении этого металла светом длиной волны максимальная кинетическая энергия выбитых из него фотоэлектронов в 3 раза меньше энергии падающего света. Какова длина волны падающего света? Ответ приведите в нанометрах.
Найдем работу выхода для данного металла: Выпишем уравнение Эйнштейна для фотоэффекта: Согласно условию, Скомбинировав все уравнения для длины волны света получаем
Задания Д32 C3 № 11646Катод из ниобия облучают светом частотой соответствующей красной границе фотоэффекта для германия. При этом максимальная кинетическая энергия вылетевших фотоэлектронов в два раза меньше, чем работа выхода для ниобия. Найдите частоту красной границы фотоэффекта для ниобия.
Запишем уравнение фотоэффекта: Заметим, что работа выхода и частота красной границы фотоэффекта связанны уравнением: Получаем: откуда
Тип 26 № 2036График на рисунке представляет зависимость максимальной энергии фотоэлектронов от частоты падающих на катод фотонов. Определите по графику энергию фотона с частотой Ответ приведите в электрон-вольтах.
То есть если фотоэффект не происходит,значит энергия падающего фотона равна нулю, а отсюда следовательно и частота равна нулю?
Под частотой с индексом ноль подразумевается красная граница?
Нет, не совсем так.
Если фотоэффект не наблюдается, это вовсе не значит, что энергия падающего фотона и, соответственно, его частота равны нулю. Эти величины, конечно же, по-прежнему отличны от нуля. Просто энергии фотона недостаточно для того, чтобы выбить электроны из металла, для этого, как минимум, нужно, чтобы фотон нес энергию, равную работе выхода.
Кроме того, по-видимому, следует сделать следующий комментарий. На самом деле, приведенный в данном задании график не вполне соответствует действительности, так как на нем отмечены отрицательные значения кинетической энергии, которая существенно положительна. Частота здесь — это действительно частота красной границы. При частоте ниже фотоэффект не наблюдается, поэтому говорить об энергии фотоэлектронов в этой области просто не имеет смысла, и рисовать на графике при таких частотах вообще ничего не нужно. Автор рисунка просто продолжил линию в нефизическую область, чтобы указать пересечение с вертикальной осью, конечно, лучше бы это сделать пунктиром, но, как есть.
Кинетическая энергия фотоэлектронов вылетевшего с поверхности металла
Задачи на тему «Фотоны и фотоэффект» с решением
В сегодняшней статье нашей традиционной рубрики «физика» разбираем задачи на фотоэффект.
Доверь свою работу кандидату наук!
Узнать стоимость бесплатно
Задачи на фотоэффект с решениями
Прежде чем приступать к решению задач, напоминаем про памятку и формулы. Эти материалы пригодятся при решении задач по любой теме.
Задача на фотоны и фотоэффект №1
Условие
Найти энергию фотона ε (в Дж) для электромагнитного излучения с частотой ϑ = 100 · 10 14 Г ц .
Решение
Это типичная задача на энергию фотона. Применим формулу:
Здесь h - постоянная Планка. Произведем расчет:
ε = 6 , 63 · 10 - 34 · 10 · 10 14 = 6 , 63 · 10 - 18 Д ж
Ответ: ε = 6 , 63 · 10 - 18 Д ж .
Задача на фотоны и фотоэффект №2
При фиксированной частоте падающего света в опытах №1 и №2 получены вольтамперные характеристики фотоэффекта (см. рис.). Величины фототоков насыщения равны I 1 и I 2 , соответственно. Найти отношение числа фотоэлектронов N 1 к N 2 в этих двух опытах.
I 1 = 13 , 5 м к А I 2 = 10 , 6 м к А
Вольтамперная характеристика фотоэффекта показывает зависимость тока от напряжения между электродами. При выходе тока на насыщение все фотоэлектроны, выбитые из фотокатода, попадают на анод. Таким образом, величина тока насыщения пропорциональна числу фотоэлектронов. Тогда:
N 1 N 2 = I 1 I 2 = 13 , 5 10 , 6 = 1 , 27
Ответ: 1 , 27 .
Задача на фотоны и фотоэффект №3
Энергия падающего фотона равна:
Далее для решения задачи примененим уравнение Эйнштейна для фотоэффекта, которое можно записать в виде:
h c λ = h c λ 0 + E к
Отсюда найдем кинетическую энергию:
E к = h c λ - h c λ 0 = h c λ 0 - λ λ λ 0
Чтобы найти искомую долю, разделим кинетическую энергию на энергию фотона:
W = E к ε = h c λ 0 - λ λ h c · λ λ 0 = λ 0 - λ λ 0 = 3 · 10 - 7 - 10 - 7 3 · 10 - 7 = 0 , 667
Ответ: W = 0 , 667 .
Задача на фотоны и фотоэффект №4
Максимальная энергия фотоэлектронов, вылетающих из металла при его освещении лучами с длиной волны 325 нм, равна T т a x = 2 , 3 · 10 - 19 Д ж . Определите работу выхода и красную границу фотоэффекта.
Формула Эйнштейна для фотоэффекта имеет вид:
h ϑ = h c λ = A + T m a x
Отсюда работа выхода A равна:
A = h c λ - T m a x
Красная граница фотоэффекта определяется условием T m a x = 0 , поэтому получаем:
A = h c λ 0 λ 0 = h c A
A = 6 , 63 · 10 - 34 · 3 · 10 8 3 , 25 · 10 - 7 - 2 , 3 · 10 - 9 = 3 , 81 · 10 - 19 Д ж
λ 0 = 6 , 63 · 10 - 34 · 3 · 10 8 3 , 81 · 10 - 19 = 520 н м
Ответ: A = 3 , 81 · 10 - 19 Д ж ; λ 0 = 520 н м .
Задача на фотоны и фотоэффект №5
Наибольшая длина волны света λ 0 , при которой еще может наблюдаться фотоэффект на сурьме, равна 310 нм. Найдите скорость электронов, выбитых из калия светом с длиной волны 140 нм.
Красная граница фотоэффекта определяется условием T m a x = 0 , поэтому для работы выхода получаем:
h c λ = A + T m a x
Учитывая, что T m a x = m v 2 m a x 2 , определим максимальную скорость электронов при фотоэффекте:
v m a x = 2 h c m 1 λ - 1 λ 0
v m a x = 2 · 6 , 63 · 10 - 34 9 , 1 · 10 - 31 1 1 , 4 · 10 - 7 - 1 3 , 1 · 10 - 7 = 1 , 3 · 10 6 м с
Ответ: 1 , 3 · 10 6 м с .
Вопросы с ответами на тему «Фотоны и фотоэффект»
Вопрос 1. В чем суть фотоэффекта?
Ответ. Фотоэффект — это явление «выбивания» электронов из вещества под действием света (электромагнитного излучения).
Вопрос 2. Что такое ток насыщения?
Ответ. Ток насыщения при фотоэффекте — максимальное значение фототока.
Вопрос 3. Что такое красная граница фотоэффекта?
Ответ. Это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.
Вопрос 4. Что такое работа выхода?
Ответ. Это минимальная энергия, которую надо сообщить электрону, чтобы выбить его из металла.
Вопрос 5. Что такое квант?
Ответ. Неделимая порция какой-либо величины в физике.
Нужна помощь в решении задач и выполнении других типов заданий? Обращайтесь в профессиональный сервис для учащихся по любому вопросу.
Фотоэффект
Начало теории электромагнитной природы света заложил Максвелл, который заметил сходство в скоростях распространения электромагнитных и световых волн. Но согласно электродинамической теории Максвелла любое тело, излучающее электромагнитные волны, должно в итоге остынуть до абсолютного нуля. В действительности этого не происходит. Противоречия между теорией и опытными наблюдениями были разрешены в начале XX века, вскоре после того, как был открыт фотоэффект.
Что такое фотоэффект
Фотоэффект — испускание электронов из вещества под действием падающего на него света.
Явление фотоэффекта было открыто в 1887 году Генрихом Герцем. Фотоэффект также был подробно изучен русским физиком Александром Столетовым в период с 1888 до 1890 годы. Этому явлению он посвятил 6 научных работ.
Для наблюдения фотоэффекта нужно провести опыт. Для этого понадобится электрометр и подсоединенная к нему пластинка из цинка (см. рисунок ниже). Если дать пластинке положительный заряд, то при ее освещении электрической дугой скорость разрядки электрометра не изменится. Но если цинковую пластинку зарядить отрицательно, то свет от дуги заставить электрометр разрядиться очень быстро.
Наблюдаемое во время этого эксперимента явление имеет простое объяснение. Свет вырывает электроны с поверхности цинковой пластинки. Если она имеет отрицательный заряд, электроны отталкиваются от нее, что приводит к полному разряжению электрометра. Причем при повышении интенсивности освещения скорость разрядки увеличивается, ровно, как и наоборот: при уменьшении интенсивности освещения электрометр разряжается медленно. Если же зарядить пластинку положительно, то электроны, которые вырываются светом, притягиваются к ней. Поэтому они оседают на ней, не изменяя заряд электрометра.
Если между световым пучком и отрицательно заряженной пластиной поставить лист стекла, пластинка перестанет терять электроны независимо от интенсивности излучения. Это связано с тем, что стекло задерживает ультрафиолетовое излучение. Отсюда можно сделать следующий вывод:
Явление фотоэффекта может вызвать только ультрафиолетовый участок спектра.
Волновая теория света не может объяснить, почему электроны могут вырываться только под действием ультрафиолета. Ведь даже при большой амплитуде и силе волн электроны остаются на месте, когда, казалось бы, они должны непременно быть вырванными.
Законы фотоэффекта
Чтобы получить более полное представление о фотоэффекте, выясним, от чего зависит количество электронов, вырванных светом с поверхности вещества, а также, от чего зависит их скорость, или кинетическая энергия. Выяснить все это нам помогут эксперименты.
Первый закон фотоэффекта
Возьмем стеклянный баллон и выкачаем из него воздух (смотрите рисунок выше). Затем поместим в него два электрода. На электроды подадим напряжение и будем регулировать его с помощью потенциометра и измерять при помощи вольтметра.
В верхней части нашего баллона есть небольшое кварцевое окошко, которое пропускает весь свет, в том числе ультрафиолетовый. Через него падает свет на один из электродов (в нашем случае на левый электрод, к которому присоединен отрицательный полюс батареи). Мы увидим, что под действием света этот электрод начнет испускать электроны, которые при движении в электрическом поле будут создавать электрический ток. Вырванные электроны будут направляться ко второму электроду. Но если напряжение небольшое, второго электрода достигнут не все электроны. Если интенсивность излучения сохранить, но увеличить между электродами разность потенциалов, то сила тока будет увеличиваться. Но как только она достигнет некоторого максимального значения, рост силы тока при дальнейшем увеличении напряжения прекратится. Максимальное значение силы тока будем называть током насыщения.
Ток насыщения — максимальное значение силы тока, также называемое предельным значением силы фототока.
Ток насыщения обозначается как I н . Единица измерения — А (Кл/с). Численно величина равна отношению суммарному заряду вырванных электронов в единицу времени:
Если же мы начнем изменять интенсивность излучения, то сможем заметить, что фототок насыщения также начинается меняться. Если интенсивность излучения ослабить, максимальное значение силы тока уменьшится. Если интенсивность светового потока увеличить, ток насыщения примет большее значение. Отсюда можно сделать вывод, который называют первым законом фотоэффекта.
Первый закон фотоэффекта:
Число электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. Иными словами, фототок насыщения прямо пропорционален падающему световому потоку Ф.
Второй закон фотоэффекта
Теперь произведем измерения кинетической энергии, то есть, скорости вырывания электронов. Взгляните на график, представленный ниже. Видно, что сила фототока выше нуля даже при нулевом напряжении. Это говорит о том, что даже при нулевой разности потенциалов часть электронов достигает второго электрода.
Если мы поменяем полярность батареи, то будем наблюдать уменьшение силы тока. Если подать на электроды некоторое значение напряжения, равное U з , сила тока станет равно нулю. Это значит, что электрическое поле тормозит вырванные электроны, останавливает их, а затем возвращает на тот же электрод.
Напряжение, равное U з , называют задерживающим напряжением. Оно зависит зависит от максимальной кинетической энергии электронов, которые вырываются под действием света. Измеряя задерживающее напряжение и применяя теорему о кинетической, можно найти максимальное значение кинетической энергии электронов. Оно будет равно:
m v 2 2 . . = e U з
Опыт показывает, что при изменении интенсивности света (плотности потока излучения) задерживающее напряжение не меняется. Значит, не меняется кинетическая энергия электронов. С точки зрения волновой теории света этот факт непонятен. Ведь чем больше интенсивность света, тем большие силы действуют на электроны со стороны электромагнитного поля световой волны и тем большая энергия, казалось бы, должна передаваться электронам. Но экспериментальным путем мы обнаруживаем, что кинетическая энергия вырываемых светом электронов зависит только от частоты света. Отсюда мы можем сделать вывод, являющийся вторым законом фотоэффекта.
Второй закон фотоэффекта:
Максимальная кинетическая энергия фотоэлектронов линейно растет с частотой света и не зависит от его интенсивности.
Причем, если частота света меньше определенной для данного вещества минимальной частоты νmin, фотоэффект наблюдаться не будет.
Теория фотоэффекта
Все попытки объяснить явление фотоэффекта электродинамической теорией Максвелла, согласно которой свет — это электромагнитная волна, непрерывно распределенная в пространстве, оказались тщетными. Нельзя было понять, почему энергия фотоэлектронов определяется только частотой света и почему свет способен вырывать электроны лишь при достаточно малой длине волны.
В попытках объяснить это явление физик Макс Планк предложил, что атомы испускают электромагнитную энергию отдельными порциями — квантами, или фотонами. И энергия каждой порции прямо пропорциональна частоте излучения:
h — коэффициент пропорциональности, который получил название постоянной Планка. Она равна 6,63∙10 –34 Дж∙с.
Пример №1. Определите энергию фотона, соответствующую длине волны λ = 5∙10 –7 м.
Энергия фотона равна:
Выразим частоту фотона через скорость света:
Идею Планка продолжил развивать Эйнштейн, которому удалось дать объяснение фотоэффекту в 1905 году. В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Причем энергия Е каждой порции излучения, по его расчетам, полностью соответствовала гипотезе Планка.
Из того, что свет излучается порциями, еще не вытекает вывода о прерывистости структуры самого света. Ведь и воду продают в бутылках, но отсюда не следует, что вода состоит из неделимых частиц. Лишь фотоэффект позволил доказать прерывистую структуру света: излученная порция световой энергии Е = hν сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.
h ν = A + m v 2 2 . .
Работа выхода — минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.
Полученное выражение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии hν в пучке света и поэтому определяет количество вырванных электронов. Скорость же электронов согласно зависит только от частоты света и работы выхода, которая определяется типом металла и состоянием его поверхности. От интенсивности освещения кинетическая энергия фотоэлектронов не зависит.
Предельную частоту νmin называют красной границей фотоэффекта. При этой частоте фотоэффект уже наблюдается.
Красная граница фотоэффекта равна:
Минимальной частоте, при которой возможен фотоэффект для данного вещества, соответствует максимальная длина волны, которая также носит название красной границы фотоэффекта. Это такая длина волны, при которой фотоэффект еще наблюдается. Обозначается она как λmах или λкр.
Максимальная длина волны, при которой еще наблюдается фотоэффект, равна:
Работа выхода А определяется родом вещества. Поэтому и предельная частота vmin фотоэффекта (красная граница) для разных веществ различна. Отсюда вытекает еще один закон фотоэффекта.
Третий закон фотоэффекта:
Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах волн фотоэффекта нет.
Вспомните опыт, который мы описали в самом начале. Когда между цинковой пластинкой и световым пучком мы поставили зеркало, фотоэффект был прекращен. Это связано с тем, что красная граница для цинка определяется величиной λmах = 3,7 ∙ 10 -7 м. Эта длина волны соответствует ультрафиолетовому излучению, которое не пропускало стекло.
Пример №2. Чему равна красная граница фотоэффекта νmin, если работа выхода электрона из металла равна A = 3,3∙10 –19 Дж?
Применим формулу для вычисления красной границы фотоэффекта:
Задание EF15717 При увеличении в 2 раза частоты света, падающего на поверхность металла, задерживающее напряжение для фотоэлектронов увеличилось в 3 раза. Первоначальная частота падающего света была равна 0,75 ⋅10 15 Гц. Какова длина волны, соответствующая «красной границе» фотоэффекта для этого металла? Ответ записать в нм.
Уравнение Эйнштейна для фотоэффекта
где - энергия фотона;
h = 6,62·10 –34 Дж·с - постоянная Планка.
ν - частота электромагнитного излучения (света)
λ - длина световой волны
Авых - работа выхода (это минимальное значение энергии, необходимой для
выхода электрона из металла);
кинетическая энергия вылетевшего фотоэлектрона;
m и v - масса и скорость фотоэлектрона
Законы фотоэффекта.
I. (Закон Столетова):при фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности Ее катода).
где п — число электронов, испускаемых катодом в 1 с.
II. Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой n.
III. Для каждого вещества существует красная границафотоэффекта, т. е. минимальная νmin частота света (или максимальная длина волны λmax ), при которой фотоэффект еще возможен.
Вольт-амперная зарактеристика (ВАХ) фотоэффекта
ВАХ – это зависимость фототока I, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между электродами.
Такая зависимость, соответствующая трем различным интенсивностям освещения (частота света для всех кривых одинакова), приведена ниже на рис.
Из вольт-амперных характеристик видно, что:
· а).При U = 0 фототок не равен нулю. Это означает, что фотоэлектроны при вылете обладают кинетической энергией, и даже в отсутствии электрического поля, способны самостоятельно достигать анода, создавая фототок.
· б).При некотором, не очень большом напряжении фототок перестает зависеть от напряжения и достигает насыщения. Это означает, что все электроны, испущенные катодом, попадают на анод.
Сила тока насыщения определяется количеством электронов, испускаемых катодом в единицу времени: ивозрастает с увеличением интенсивности света.
· в). Чтобы фототок стал равным нулю, к аноду нужно приложить отрицательное напряжение, которое называется задерживающим напряжением (Uз ).
Величина U3не зависит от интенсивности падающего света, при U=U3 ни один из электронов, даже обладающий при вылете из катода максимальной скоростью vmax , не может преодолеть задерживающего поля и достигнуть анода, т.е.
где е=1,6··10 -19 Кл – заряд электрона;
те =9,1 10 -31 кг – масса электрона;
- кинетическая энергия фотоэлектронов;
- работа электрического поля по торможению фотоэлектронов.
· г).Измеряя U3 , можно определить максимальную скорость фотоэлектронов, вылетающих из катода:
Применение фотоэффекта
На явлении фотоэффекта основано действие фотоэлектронных приборов, получивших разнообразное применение в различных областях науки и техники
· Вакуумные фотоэлементы-преобразуют энергию излучения в электрическую применяются для создания солнечных батарей
· Фотоэлектронные умножители – для усиления фотот ока.
· Разные виды фотоэффекта используются также в производстве для контроля, управления и автоматизации различных процессов, в военной технике для сигнализации и локации невидимым излучением, в технике звукового кино, в различных системах связи и т. д.
§ 5. Масса и импульс фотона. Давление света
Согласно гипотезе световых квантов Эйнштейна, свет испускается, поглощается и распространяется дискретными порциями (квантами), названнымифотонами.
Фотон, как и любая другая частица, характеризуется энергией, массой и импульсом
Выражения (1), (2) и (3) связывают корпускулярные характеристики фотона — массу, импульс и энергию — с волновой характеристикой света — его частотой n.
Если фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление. Согласно квантовой теории, давление света на поверхность обусловлено тем, что каждый фотон при соударении с поверхностью передает ей свой импульс.
Рассчитаем с точки зрения квантовой теории световое давление, оказываемое на поверхность тела потоком монохроматического излучения (частота n), падающего перпендикулярно поверхности. Если в единицу времени на единицу площади поверхности тела падает N фотонов, то при коэффициенте отражения r света от поверхности тела rN фотонов отразится, а (1–r )N — поглотится. Каждый поглощенный фотон передаст поверхности импульс pg=hn / c, а каждый отраженный — 2pg = 2hn / c (при отражении импульс фотона изменяется на –pg ). Давление света на поверхность равно импульсу, который передают поверхности в 1 с N фотонов:
Nhn = Ee есть энергия всех фотонов, падающих на единицу поверхности в единицу времени, т. е. энергетическая освещенность поверхности, a Ee / c = w — объемная плотность энергии излучения. Поэтому давление, производимое светом при нормальном падении на поверхность,
Формула (4), выведенная на основе квантовых представлений, совпадает с выражением, получаемым из электромагнитной (волновой) теории Максвелла. Таким образом, давление света одинаково успешно объясняется и волновой, и квантовой теорией.
Экспериментальное доказательство существования светового давления на твердые тела и газы дано в опытах П. И. Лебедева. Лебедев использовал легкий подвес на тонкой нити, по краям которого прикреплены легкие крылышки, одни из которых зачернены, а поверхности других зеркальные. Для исключения конвекции и радиометрического эффекта использовалась подвижная система зеркал, позволяющая направлять свет на обе поверхности крылышек, подвес помещался в откачанный баллон, крылышки подбиралась очень тонкими (чтобы температура обеих поверхностей была одинакова). Световое давление на крылышки определялось по углу закручивания нити подвеса и совпадало с теоретически рассчитанным. В частности оказалось, что давление света на зеркальную поверхность вдвое больше, чем на зачерненную (см. (4)).
Эффект Комптона
Это явлениеупругого рассеяния коротковолнового электромагнитного излучения (рентгеновского и g-излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны.
Эффект Комптона — это результат упругого столкновения рентгеновских фотонов со свободными электронами вещества (для легких атомов электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными). В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения.
Рассмотрим упругое столкновение двух частиц— налетающего фотона, обладающего импульсом pg = hn/c и энергией eg = hn, с покоящимся свободным электроном (энергия покоя W0 = m0c 2 ; т0—масса покоя электрона). Фотон, столкнувшись с электроном, передает ему часть своей энергии и импульса и изменяет направление движения (рассеивается). Уменьшение энергии фотона означает увеличение длины волны рассеянного излучения. При каждом столкновении выполняются законы сохранения энергии и импульса.
Согласно закону сохранения энергии,
а согласно закону сохранения импульса,
где W0 = m0c 2 — энергия электрона до столкновения,
eg = hn — энергия налетающего фотона,
W= — энергия электрона после столкновения,
— энергия рассеянного фотона.
Подставив значения этих величин в (1) и представив (2) в соответствии с рис., получим
Решая эти уравнения совместно, получим
Поскольку n = c/l, n ' = c/l' и Dl = l' – l, получим
Формула Комптона
Комптоновская длина волны
Разность Dl = l' – l, не зависит от длины волны падающего излучения и природы рассеивающего вещества, а определяется только величиной угла рассеивания(θ).
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!
Читайте также: