Катионы металла и анионы

Обновлено: 07.01.2025

В уроке 6 «Простые ионы» из курса «Химия для чайников» познакомимся с простыми ионами и выясним, чему равен его заряд; также рассмотрим как образуется ионная химическая связь; научимся определять степень окисления и валентность элементов. Данный урок очень важный, и чтобы его лучше понять, обязательно просмотрите прошлые уроки, особое внимание уделяя уроку 1 «Схема строения атомов», а также уроку 3 «Схема образования молекул».


Ионная химическая связь

Мы уже кратко рассматривали ковалентную полярную химическую связь, в которой из-за незначительного различия в электроотрицательности атомов (0.4-2.0) электронная пара распределяется между ними не равномерно. Для тех, кто забыл, напоминаю, что электроотрицательность — это способность атомов притягивать к себе электроны.

Ионная химическая связь

Однако, если электроотрицательность атомов различается больше чем на 2 по таблице электроотрицательности, то электронная пара полностью переходит к более электроотрицательному атому, и в результате образуется ионная химическая связь. Ионная химическая связь образуется только между атомами типичных металлов (т.к. они легко теряют внешние электроны) и неметаллов (т.к. они обладают большой электроотрицательностью).

Таблица электроотрицательности

Положительные и отрицательные ионы

Наглядным примером ионной химической связи может служить обычная поваренная соль NaCl, которая присутствует на каждой кухне. Атомы натрия (и вообще всех металлов) слабо удерживают внешние электроны, тогда как атомы хлора напротив, обладают очень большой способностью притягивать к себе электроны, т.е обладают большой электроотрицательностью.

Положительный и отрицательный ион

Поэтому при образовании молекулы NaCl каждый атом Na теряет один электрон (e — ), образуя положительный ион натрия Na + , а каждый атом Cl, наоборот, приобретает этот потерянный электрон натрия, образуя отрицательный ион хлора Cl — . Это записывается в виде двух реакций:

Записать ½Cl2 пришлось потому, что газообразный хлор в природе состоит из двухатомных молекул, а не из свободных одиночных атомов хлора.

Положительный и отрицательный ион

На рисунке выше, изображена кристаллическая решетка NaCl, где каждый хлорид-ион Cl — окружен со всех сторон соседними положительными ионами натрия Na + ; ионы натрия Na + точно также окружены ближайшими хлорид-ионами Cl — . Подобное расположение ионов обладает высокой устойчивостью.

Положительно заряженные ионы называются катионами. К ним в основном относятся металлы, так как они легко отдают от одного до трех электронов. Ниже приведены примеры катионов:

Катионы металлов

Анионами являются неметаллы, поскольку с радостью присоединяют к себе электроны, превращаясь в отрицательно заряженные ионы. Примеры анионов:

Анионами являются

Степень окисления веществ

Заряд простого, одноатомного иона, например Mg 2+ или F 2- , называется его степенью окисления. Степень окисления — это такое число электронов, которое необходимо прибавить (восстановить) к иону или отнять (окислить) у него, чтобы он превратился обратно в нейтральный атом.

  • Реакция восстановления: Mg 2+ + 2e — → Mg
  • Реакция окисления: F 2- → F + 2e —

Процесс присоединения электронов к атому или просто их смещение в сторону данного атома называется реакцией восстановления, а оттягивание электронов от атома или их полное удаление называется реакцией окисления. Вот вам отличная шпаргалка со степенями окисления простых ионов:

Степень окисления веществ

Пример 12. Окисляется или восстанавливается хлор при образовании хлорид-иона? Какова степень окисления этого иона?
Решение: Хлор восстанавливается, поскольку к каждому атому хлора необходимо присоединить один электрон, чтобы образовался хлорид-ион. Хлорид-ион, Сl — , имеет степень окисления -1.

Пример 13. Окисляются или восстанавливаются металлы при образовании ими ионов? Какова степень окисления иона алюминия?
Решение: При образовании ионов металлов последние окисляются, поскольку при этом происходит удаление электронов от атомов металла. Ион алюминия, Аl 3+ , имеет степень окисления +3.

Валентность химических элементов

Валентностью называют число химических связей, которые данный атом образует с другими атомами в молекуле. Однако, если говорить простыми словами, то под валентностью понимается все та же степень окисления, но в отличии от нее валентность не имеет знака и не равна нулю.

Молекулярная формулаВалентностьСтепень окисления
H2OH(I), O(II)H +1 , O -2
CS2C(IV), S(II)C +4 , S -2
CH4C(IV), H(I)C -4 , H +1

Название ионов

Ионы металлов, которые имеют различные (переменные) степени окисления, записываются следующим образом:

  • Fe 2+ железо(II) или ион двухвалентного железа
  • Fe 3+ железо(III) или ион трехвалентного железа
  • Сu + медь(I) или ион одновалентной меди
  • Cu 2+ медь (II) или ион двухвалентной меди
  • Sn 2+ олово(II) или двухвалентного олова
  • Sn 4+ олово(IV) или ион четырехвалентного олова

Пример 2: Окисление или восстановление происходит при превращении иона трехвалентного железа в ион двухвалентного? Запишите уравнение этого процесса.

Решение: Уравнение реакции имеет следующий вид: Fe 3+ + e — → Fe 2+ . Она представляет собой процесс восстановления, поскольку к исходному иону присоединяется электрон.

Надеюсь урок 6 «Простые ионы» оказался для вас понятным и полезным. Если у вас возникли вопросы, пишите их в комментарии.

Катионы и анионы. Электролитическая диссоциация кислот, щелочей и солей (средних)


Катионами называют положительно заряженные ионы.

Анионами называют отрицательно заряженные ионы.

В процессе развития химии понятия «кислота» и «основание» претерпели серьёзные изменения. С точки зрения теории электролитической диссоциации кислотами называют электролиты, при диссоциации которых образуются ионы водорода H + , а основаниями — электролиты, при диссоциации которых образуются гидроксид-ионы OH – . Эти определения в химической литературе известны как определения кислот и оснований по Аррениусу.

В общем виде диссоциацию кислот представляют так:

где A – — кислотный остаток.

Такие свойства кислот, как взаимодействие с металлами, основаниями, основными и амфотерными оксидами, способность изменять окраску индикаторов, кислый вкус и т. д., обусловлены наличием в растворах кислот ионов H + . Число катионов водорода, которые образуются при диссоциации кислоты, называют её основностью. Так, например, HCl является одноосновной кислотой, H2SO4 — двухосновной, а H3PO4 — трёхосновной.

Многоосновные кислоты диссоциируют ступенчато, например:


От образовавшегося на первой ступени кислотного остатка H2PO4 – последующий отрыв иона H + происходит гораздо труднее из-за наличия отрицательного заряда на анионе, поэтому вторая ступень диссоциации протекает гораздо труднее, чем первая. На третьей ступени протон должен отщепляться от аниона HPO4 2– , поэтому третья ступень протекает лишь на 0,001%.

В общем виде диссоциацию основания можно представить так:

где M + — некий катион.

Такие свойства оснований, как взаимодействие с кислотами, кислотными оксидами, амфотерными гидроксидами и способность изменять окраску индикаторов, обусловлены наличием в растворах OH – -ионов.

Число гидроксильных групп, которые образуются при диссоциации основания, называют его кислотностью. Например, NaOH — однокислотное основание, Ba(OH)2 — двухкислотное и т. д.

Многокислотные основания диссоциируют ступенчато, например:


Большинство оснований в воде растворимо мало. Растворимые в воде основания называют щелочами.

Прочность связи М—ОН возрастает с увеличением заряда иона металла и увеличением его радиуса. Поэтому сила оснований, образуемых элементами в пределах одного и того же периода, уменьшается с возрастанием порядкового номера. Если один и тот же элемент образует несколько оснований, то степень диссоциации уменьшается с увеличением степени окисления металла. Поэтому, например, у Fe(OH)2 степень основной диссоциации больше, чем у Fe(OH)3.

Электролиты, при диссоциации которых одновременно могут образовываться катионы водорода и гидроксид-ионы, называют амфотерными. К ним относят воду, гидроксиды цинка, хрома и некоторые другие вещества. Их полный перечень приведён в уроке 6, а их свойства рассмотрены в уроке 16.

Солями называют электролиты, при диссоциации которых образуются катионы металлов (а также катион аммония NH4 + ) и анионы кислотных остатков.


Химические свойства солей будут описаны в уроке 18.

Тренировочные задания

1. К электролитам средней силы относится

2. К сильным электролитам относится

3. Сульфат-ион в значительном количестве образуется при диссоциации в водном растворе вещества, формула которого

4. При разбавлении раствора электролита степень диссоциации

1) остается неизменной
2) понижается
3) повышается
4) с начала повышается, потом понижается

5. Степень диссоциации при нагревании раствора слабого электролита

6. Только сильные электролиты перечислены в ряду:

7. Водные растворы глюкозы и сульфата калия соответственно являются:

1) с ильным и слабым электролитом
2) неэлектролитом и сильным электролитом
3) слабым и сильным электролитом
4) слабым электролитом и неэлектролитом

8. Степень диссоциации электролитов средней силы

1) больше 0,6
2) больше 0,3
3) лежит в пределах 0,03—0,3
4) менее 0,03

9. Степень диссоциации сильных электролитов

10. Степень диссоциации слабых электролитов

11. Электролитами являются оба вещества:

1) фосфорная кислота и глюкоза
2) хлорид натрия и сульфат натрия
3) фруктоза и хлорид калия
4) ацетон и сульфат натрия

12. В водном растворе фосфорной кислоты H3PO4 наименьшая концентрация частиц

13. Электролиты расположены в порядке увеличения степени диссоциации в ряду

14. Электролиты расположены в порядке уменьшения степени диссоциации в ряду

15. Практически необратимо диссоциирует в водном растворе

1) уксусная кислота
2) бромоводородная кислота
3) фосфорная кислота
4) гидроксид кальция

16. Электролитом, более сильным по сравнению с азотистой кислотой, будет

1) уксусная кислота
2) сернистая кислота
3) фосфорная кислота
4) гидроксид натрия

17. Ступенчатая диссоциация характерна для

1) фосфорной кислоты
2) соляной кислоты
3) гидроксида натрия
4) нитрата натрия

18. Только слабые электролиты представлены в ряду

1) сульфат натрия и азотная кислота
2) уксусная кислота, сероводородная кислота
3) сульфат натрия, глюкоза
4) хлорид натрия, ацетон

19. Каждое из двух веществ является сильным электролитом

1) нитрат кальция, фосфат натрия
2) азотная кислота, азотистая кислота
3) гидроксид бария, сернистая кислота
4) уксусная кислота, фосфат калия

20. Оба вещества являются электролитами средней силы

1) гидроксид натрия, хлорид калия
2) фосфорная кислота, азотистая кислота
3) хлорид натрия, уксусная кислота
4) глюкоза, ацетат калия

Катионы и анионы в химии, таблица растворимости

Таблица растворимости

В волшебном мире химии возможно любое превращение. Например, можно получить безопасное вещество, которым часто пользуются в быту, из нескольких опасных. Подобное взаимодействие элементов, в результате которого получается однородная система, в которой все вещества, вступающие в реакцию, распадаются на молекулы, атомы и ионы, называется растворимость. Для того чтобы разобраться с механизмом взаимодействия веществ, стоит обратить внимание на таблицу растворимости.

Показатели растворимости в воде

Показатели растворимости в воде

Таблица, в которой показана степень растворимости, является одним из пособий для изучения химии. Те, кто постигают науку, не всегда могут запомнить, как определённые вещества растворяются, поэтому под рукой всегда следует иметь таблицу.

Она помогает при решении химических уравнений, где участвуют ионные реакции. Если результатом будет получение нерастворимого вещества, то реакция возможна. Существует несколько вариантов:

  • Вещество хорошо растворяется;
  • Малорастворимо;
  • Практически не растворяется;
  • Нерастворимо;
  • Гидрализуется и не существует в контакте с водой;
  • Не существует.

Это интересно: металлы и неметаллы в периодической таблице Менделеева.

Электролиты

Это растворы или сплавы, проводящие электрический ток. Электропроводность их объясняется мобильностью ионов. Электролиты можно поделить на 2 группы:

  1. Сильные. Растворяются полностью, независимо от степени концентрации раствора.
  2. Слабые. Диссоциация проходит частично, зависит от концентрации. Уменьшается при большой концентрации.

Теория электролитической растворимости

Теория электролитической растворимости в химии

Во время растворения электролиты диссоциируют на имеющие разный заряд ионы: положительные и отрицательные. При воздействии тока положительные ионы направляются в сторону катода, тогда как отрицательные в сторону анода. Катод – положительный заряд, анод – отрицательный. В итоге происходит движение ионов.

Одновременно с диссоциацией проходит противоположный процесс – соединение ионов в молекулы. Кислоты – это такие электролиты, при распаде которых образуется катион – ион водорода. Основания – анионы – это гидроксид ионы. Щелочи – это основания, которые растворяются в воде. Электролиты, которые способны образовывать и катионы и анионы, называются амфотерными.

Это такая частица, в которой больше протонов или электронов, он будет называться анион или катион, в зависимости от того, чего больше: протонов или электронов. В качестве самостоятельных частиц они встречаются во многих агрегатных состояниях: газах, жидкостях, кристаллах и в плазме. Понятие и название ввёл в обиход Майкл Фарадей в 1834 году. Он изучал воздействие электричества на растворы кислот, щелочей и солей.

Простые ионы несут на себе ядро и электроны. Ядро составляет почти всю атомную массу и состоит из протонов и нейтронов. Количество протонов совпадает с порядковым номером атома в периодической системе и зарядом ядра. Ион не имеет определённых границ из-за волнового движения электронов, поэтому невозможно измерить их размеры.

Отрыв электрона от атома требует, в свою очередь, затрат энергии. Она называется энергия ионизации. Когда присоединяется электрон, происходит выделение энергии.

Катионы

Это частицы, носящие положительный заряд. Могут иметь разную величину заряда, например: Са2+ — двузарядный катион, Na+ — однозарядный катион. Мигрируют к отрицательному катоду в электрическом поле.

Анионы

Это элементы, имеющие отрицательный заряд. А также обладает различным количеством величины зарядов, например, CL- — однозарядный ион, SO42- — двухзарядный ион. Такие элементы входят в состав веществ, обладающих ионной кристаллической решёткой, в поваренной соли и многих органических соединениях.

  • Натр​ий. Щелочной металл. Отдав один электрон, находящийся на внешнем энергетическом уровне, атом превратится в положительный катион.
  • Хлор. Атом этого элемента принимает на последний энергетический уровень один электрон, он превратится в отрицательный хлорид анион.
  • Поваренная соль. Атом натрия отдаёт электрон хлору, вследствие этого в кристаллической решётке катион натрия окружён шестью анионами хлора и наоборот. В результате такой реакции образуется катион натрия и анион хлора. Благодаря взаимному притяжению формируется хлорид натрия. Между ними образуется прочная ионная связь. Соли — это кристаллические соединения с ионной связью.
  • Кислотный остаток. Это отрицательно заряженный ион, находящийся в сложном неорганическом соединении. Он встречается в формулах кислот и солей, стоит обычно после катиона. Практически для всех таких остатков есть своя кислота, например, SO4 – от серной кислоты. Кислот некоторых остатков не существует, и их записывают формально, но они образуют соли: фосфит ион.

Химия – наука, где возможно творить практически любые чудеса. Катион вы можете узнать по ссылке.

4.1.4. Качественные реакции на неорганические вещества и ионы.

Вы работаете в лаборатории и решили провести какой-либо эксперимент. Для этого вы открыли шкаф с реактивами и неожиданно увидели на одной из полок следующую картину. У двух баночек с реактивами отклеились этикетки, которые благополучно остались лежать неподалеку. При этом установить точно какой банке соответствует какая этикетка уже невозможно, а внешние признаки веществ, по которым их можно было бы различить, одинаковы.

В таком случае проблема может быть решена с использованием, так называемых, качественных реакций.

Качественными реакциями называют такие реакции, которые позволяют отличить одни вещества от других, а также узнать качественный состав неизвестных веществ.

Например, известно, что катионы некоторых металлов при внесении их солей в пламя горелки окрашивают его в определенный цвет:

цвет пламени ионы металлов

Данный метод может сработать только в том случае, если различаемые вещества по разному меняют цвет пламени, или же одно из них не меняет цвет вовсе.

Но, допустим, как назло, вам определяемые вещества цвет пламени не окрашивают, или окрашивают его в один и тот же цвет.

В этих случаях придется отличать вещества с применением других реагентов.

В каком случае мы можем отличить одно вещество от другого с помощью какого-либо реагента?

Возможны два варианта:

  • Одно вещество реагирует с добавленным реагентом, а второе нет. При этом обязательно, должно быть ясно видно, что реакция одного из исходных веществ с добавленным реагентом действительно прошла, то есть наблюдается какой-либо ее внешний признак — выпадал осадок, выделился газ, произошло изменение цвета и т.п.

Например, нельзя отличить воду от раствора гидроксида натрия с помощью соляной кислоты, не смотря на то, что щелочи с кислотами прекрасно реагируют:

NaOH + HCl = NaCl + H2O

Связано это с отсутствием каких-либо внешних признаков реакции. Прозрачный бесцветный раствор соляной кислоты при смешении с бесцветным раствором гидроксида образует такой же прозрачный раствор:

Но зато, можно воду от водного раствора щелочи можно различить, например, с помощью раствора хлорида магния – в данной реакции выпадает белый осадок:

2) также вещества можно отличить друг от друга, если они оба реагируют с добавляемым реагентом, но делают это по-разному.

Например, различить раствор карбоната натрия от раствора нитрата серебра можно с помощью раствора соляной кислоты.

с карбонатом натрия соляная кислота реагирует с выделением бесцветного газа без запаха — углекислого газа (СО2):

а с нитратом серебра с образованием белого творожистого осадка AgCl

Ниже в таблицах представлены различные варианты обнаружения конкретных ионов:

Качественные реакции на катионы

Выпадение белого осадка, не растворимого в кислотах:

1) Выпадение осадка голубого цвета:

2) Выпадение осадка черного цвета:

Выпадение осадка черного цвета:

Выпадение белого осадка, не растворимого в HNO3, но растворимого в аммиаке NH3·H2O:

2) Гексацианоферрат (III) калия (красная кровяная соль) K3[Fe(CN)6]

1) Выпадение белого осадка, зеленеющего на воздухе:

2) Выпадение синего осадка (турнбулева синь):

2) Гексацианоферрат (II) калия (желтая кровяная соль) K4[Fe(CN)6]

3) Роданид-ион SCN −

1) Выпадение осадка бурого цвета:

2) Выпадение синего осадка (берлинская лазурь):

3) Появление интенсивно-красного (кроваво-красного) окрашивания:

Fe 3+ + 3SCN − = Fe(SCN)3

Выпадение белого осадка гидроксида алюминия при приливании небольшого количества щелочи:

и его растворение при дальнейшем приливании:

Выделение газа с резким запахом:

Посинение влажной лакмусовой бумажки

Качественные реакции на анионы

1) Образование раствора синего цвета, содержащего ионы Cu 2+ , выделение газа бурого цвета (NO2)

2) Возникновение окраски сульфата нитрозо-железа (II) [Fe(H2O)5NO] 2+ . Окраска от фиолетовой до коричневой (реакция «бурого кольца»)

Выпадение светло-желтого осадка в нейтральной среде:

Выпадение желтого осадка, не растворимого в уксусной кислоте, но растворимого в HCl:

Выпадение черного осадка:

1) Выпадение белого осадка, растворимого в кислотах:

2) Выделение бесцветного газа («вскипание»), вызывающее помутнение известковой воды:

Выпадение белого осадка и его растворение при дальнейшем пропускании CO2:

Выделение газа SO2 с характерным резким запахом (SO2):

Выпадение белого осадка:

Выпадение белого творожистого осадка, не растворимого в HNO3, но растворимого в NH3·H2O(конц.):

Читайте также: