Каковы типичные значения удельного сопротивления для металлов полупроводников и диэлектриков
В зависимости от ширины запрещенной зоны (Eg) все твердые тела подразделяются на металлы (Eg < 0,08 эВ), диэлектрики (Eg > 3 эВ), полупроводники (0,08 эВ < Eg < 3 эВ).
Металл – кристалл, в котором либо имеется зона проводимости, в которой не все энергетические уровни заняты электронами, либо зона проводимости и валентная зона перекрываются. Ширина запрещенной зоны равна нулю, или ее величина меньше тепловой энергии кристалла, которая составляет величину порядка 3kT, что при T=300К примерно равно 0,08 эВ. В металлах число свободных электронов сравнимо с числом атомов в том же объеме (~10 22 атом/см 3 ), при этом концентрация электронов не зависит от температуры. Электропроводность при T»300K велика. Металлами являются кристаллические вещества с металлическим типом химической связи.
Диэлектрик и полупроводник имеют ширину запрещенной зоны больше, чем энергия тепловых колебаний решетки. Если ширина запрещенной зоны не слишком велика, то существует вероятность перехода электронов из валентной зоны в зону проводимости за счет тепловых колебаний решетки, либо за счет поглощения кванта света. Условной границей подразделения кристаллов на полупроводники и диэлектрики является ширина запрещенной зоны, при которой возможен переход электрона из валентной зоны в зону проводимости при поглощении кванта видимого света. Энергия кванта, соответствующего коротковолновой границе видимой области света (l ~ 400 нм), составляет величину hn ~ 3 эВ.
В полупроводниковых кристаллических веществах химическая связь относится к ковалентному или смешанному ионно-ковалентному типу.
Диэлектрик – кристалл, имеющий ширину запрещенной зоны много больше, чем энергия тепловых колебаний (Е>>kT), концентрация свободных электронов равна нулю. Электропроводность незначительна, слабо зависит от температуры. Как правило, это молекулярные кристаллы и вещества с ионным или ион-ковалентным типом химической связи.
Пример 1. Металлический кристалл Li. Валентные электроны 2s 1 . 2s-атомные орбитали образуют зону, которая заполнена только наполовину.
Пример 2. Металлический кристалл Mg. Валентные электроны 3s 2 . Валентная зона магния заполнена электронами полностью, свободные уровни, которые могли бы обеспечить перемещение электронов в валентной зоне, отсутствуют. Ближайшая по энергии зона, зона проводимости, образованная свободными 3p атомными орбиталями, перекрывается с валентной зоной.
Пример 3. Кристалл Si. Валентные электроны 3s 2 3p 2 . Кремний – ковалентный кристалл, связи осуществляются электронами, располагающимися на sp 3 -гибридных орбиталях, которые образуют как валентную зону, так и зону проводимости. Каждый атом кремния имеет 4 sp 3 -гибридные орбитали, то есть в кристалле, состоящем из N атомов, имеется 8N энергетических состояний электронов. Нижняя по энергии половина из них при Т=0 К полностью заселена, образуя валентную зону, а верхняя свободна, образуя зону проводимости. В отличие от магния, в кристалле кремния валентная зона и зона проводимости не перекрываются. Ширина запрещенной зоны составляет величину Eg=1,12 эВ. Кристалл кремния – полупроводник.
Пример 4. Кристалл NaCl. Химическая связь в этом кристалле относится к ионному типу. Валентную зону образуют заполненные орбитали Cl - – 3s 2 3p 6 , а зону проводимости свободные орбитали Na + – 3s 0 . В кристалле хлорида натрия, так же как и в случае с кристаллом кремния, валентная зона и зона проводимости не перекрываются. Но ширина запрещенной зоны много больше, чем у кремния, Eg = 7,7 эВ, хлорид натрия – диэлектрик.
Кристаллические материалы
Наиболее близким к идеальному понятию кристалл является монокристаллический материал. Монокристалл (монос – один) – твердое вещество с непрерывной кристаллической решеткой во всем объеме физического тела. Линейные размеры монокристаллов могут составлять доли микрометра и доходить до ~1 м. Монокристаллы, в силу своего внутреннего строения, обладают анизотропными свойствами. Анизотропия (анизос – неравный, тропос – направление) – зависимость физических и физико-химических свойств тела от направления в кристалле. Если в рассматриваемом физическом теле имеется несколько различным образом ориентированных, связанных между собой сильными химическими связями монокристаллов, то данное тело представляет собою блочный монокристалл. Границы отдельных блоков (монокристаллов) – дефекты кристаллической структуры.
Гораздо более распространены в природе твердые тела, состоящие из большого числа произвольно ориентированных относительно друг друга мелких монокристаллов, сцепленных как сильными, так и слабыми химическими связями. Такие тела называются поликристаллами (полис – многочисленный). Поликристаллические тела, вследствие усреднения анизотропных свойств отдельных произвольно ориентированных монокристаллов, обладают изотропией физических и физико-химических свойств.
Дефекты кристаллической решетки.
Другим типом дефектов являются нарушения регулярности решетки, связанные с примесями, которые появились в кристалле случайно (химические примеси) или были введены в него преднамеренно (легирующие добавки). С дефектами связаны многие физические и химические свойства кристаллов (электропроводность, прочность, оптические свойства, коррозионная стойкость и др.).
Различают точечные дефекты, одномерные (дислокации) и двумерные (поверхности, границы кристаллических зерен), объемные (пузыри). Дефекты возникают как в процессе кристаллизации, так и в результате внешних воздействий на кристалл. Создание дефектов связано с разрывом имеющихся химических связей между атомами кристалла или образованием дополнительных связей.
Точечные дефекты.
Простейшими из точечных дефектов в полупроводниках являются электроны проводимости и дырки. Электронно-дырочная пара образуются в результате асимметричного разрыва химической связи между атомами кристалла при поглощении тепловой энергии. При этом один из атомов приобретает избыточный отрицательный заряд за счет дополнительного валентного электрона (электрон проводимости), а другой – избыточный положительный заряд (дырка). Оба дефекта могут перемещаться по кристаллу независимо друг от друга. Электрон проводимости перемещается путем эстафетной передачи избыточного электрона от атома к атому, а дырка – путем эстафетного захвата электрона от атома к атому.
В процессе образования электронно-дырочных пар большую роль играют примесные атомы, находящиеся в узлах кристаллической решетки. Атомы примеси, имеющие число валентных электронов большее, чем число связей с ближайшими соседями (электронно-избыточные примеси), являются источником электронов проводимости. Образующиеся при этом дырки локализованы на примесном атоме и не могут мигрировать по кристаллу. Атомы примеси, имеющие число валентных электронов меньше, чем число связей с ближайшими соседями (электронно-дефицитные примеси), являются источником дырок, а электрон будет локализован на атоме примеси.
Энергия, необходимая для образования электронно-дырочных пар, может быть сообщена кристаллу не только нагреванием, но и при поглощении электромагнитного излучения. Причем энергия кванта электромагнитного излучения должна быть больше, чем ширина запрещенной зоны (энергии ионизации химической связи).
Необходимо отметить, что в кристаллах диэлектриков электронно-дырочные пары не образуются при подводе тепловой энергии из-за большой величины ширины запрещенной зоны. Они могут быть образованы при поглощении электромагнитного излучения достаточной энергии или ионизирующего излучения.
В кристаллах могут быть дефекты, образованные без разрыва химической связи, напримерэкситоны(от лат. excito – возбуждаю) – квазичастицы, представляющие собою возбужденные состояния атомов кристаллической решетки. Возбуждения могут передаваться от атома к атому, мигрируя по кристаллу.
Точечные дефекты, связанные с нарушением регулярности расположения частиц в кристалле, могут быть собственными – разупорядочение решетки, и примесными – присутствие в кристалле посторонних атомов (рис. 4.14).
Рис. 4‑14 Точечные дефекты в решетке ионного кристалла: A + G – катионы в узлах решетки; B - G − анионы в узлах решетки; вакансии: Vc – катионные; Va – анионные; межузельные ионы: A + I – катион; B - I − анион; примесные ионы в узле решетки: катион (P + G) или анион (P - G); примесный атом или ион в межузельном положении (PI)
Собственные дефекты: вакансия – отсутствие в узле решетки частицы, образующей кристалл; межузельные атомы или ионы.
В ионных кристаллах отсутствие в узле решетки катиона или аниона (катионные и анионные вакансии) нарушает баланс электрических зарядов в кристалле. Поэтому в кристалле должно быть либо равное количество катионных и анионных вакансий (дефекты Шоттки), либо на каждую ионную вакансию необходимо равное количество межузельных частиц того же знака (дефекты Френкеля).
Собственные дефекты образуются в кристалле в результате теплового движения частиц при температурах выше 0 К. Для создания собственного дефекта частица должна перейти из узла решетки в междоузлие, для этого частице необходимо преодолеть потенциальный барьер, который называется энергией образования дефекта (Ед). Вероятность преодоления потенциального барьера и образования дефекта определяется количеством частиц, имеющих энергию большую, чем энергия Ед. Из молекулярно-кинетической теории известно, что доля таких частиц зависит от температуры и пропорциональна множителю . Таким образом, каждой температуре соответствует равновесная концентрация собственных дефектов (n), которая экспоненциально увеличивается с ростом температуры:
где А – предэкспоненциальный множитель, k – константа Больцмана; T – температура, К.
Точечные примесные дефекты связаны с присутствием в твердом веществе химических примесей. Примесный атом или ион может находиться в узле решетки или в межузельном положении. Где будет находиться примесная частица, как правило, зависит от соотношения ее размеров и размеров частиц, образующих решетку.
Точечные дефекты вызывают нарушение регулярного расположения частиц кристалла в их ближайшем окружении (искажение кристаллической решетки), тем самым увеличивая энергию кристаллической решетки (рис. 4.15).
Рис. 4‑15. Искажение кристаллической решетки точечными дефектами. Электронные возбуждения: электроны (e - ) A+ē®A - , дырки (p + ) A-ē®A + , экситоны (ex 0 ) A * . Собственные точечные дефекты: вакансии (V), межузельные атомы (I) Примесный точечный дефект: решеточный примесный атом (PG), межузельный примесный атом (PI)
Дефекты могут захватывать электрон или отдавать его (захватывать дырки), могут взаимодействовать друг с другом, образовывая более сложные структуры (ассоциаты). Например, в щелочно-галоидных кристаллах (А + В - ) анионная вакансия может захватить электрон Vaē (электрон располагается на орбиталях катионов, окружающих анионную вакансию), и образуется так называемый F-центр. Если межузельный анион отдает электрон (захватывает дырку), то образуется H-центр (В 0 ), который может с ближайшим решеточным анионом образовать молекулярный ион В2 - (Vк-центр).
Линейные дефекты кристаллической решетки – дислокации.
Дислокации – дефекты кристаллической решетки, представляющие собой линии, вдоль которых нарушено правильное чередование атомных плоскостей. Дислокации появляются в кристалле в результате пластической деформации или в процессе роста кристалла. Простейшими типами дислокаций являются краевые и винтовые дислокации (рис. 4.16).
Рис. 4‑16 Краевая (а) и винтовая (б) дислокации.
Кристаллическая решетка в непосредственной близости от дислокации находится в искаженном состоянии, поскольку в ней размещается дополнительное число атомов. Нормальный порядок расположения атомов восстанавливается в обоих направлениях от дислокации на расстоянии нескольких постоянных решетки.
Плотность дислокаций (концентрация дислокаций) в кристалле бывает очень велика, достигая 10 6 дислокаций на 1 см 2 .
Аморфные твердые тела
В аморфных твердых телах, в отличие от кристаллов, в которых существует пространственная периодичность в равновесных положениях атомов, атомы колеблются около хаотически расположенных точек. Основные отличия свойств аморфных веществ от кристаллических связаны именно с нерегулярностью расположения частиц. Хотя в аморфных веществах отсутствует дальний порядок, на расстояниях, сравнимых с длиной химических связей, пространственное расположение ближайших соседних частиц сохраняется, то есть имеется ближний порядок.
Такая разупорядоченность структуры является следствием недостаточной подвижности частиц при кристаллизации. Частицы при достаточно быстром охлаждении теряют подвижность и не успевают образовать кристаллическую решетку, то есть занять места в пространстве, отвечающие минимуму энергии. Таким образом, аморфное состояние вещества является нестабильным, обладающим избыточной энергией, и при определенных условиях может самопроизвольно переходить в кристаллическое состояние. В отличие от кристаллов, для которых существует фиксированная температура плавления, переход аморфного вещества из твердого состояния в жидкое происходит в некотором температурном интервале. Аморфные тела обладают изотропностью физико-химических свойств.
Аморфное вещество, которое образуется при охлаждении жидкости и переходе ее в твердое состояние без кристаллизации, называется стеклом.
В стеклообразное состояние переходят вещества с преимущественно ковалентным типом связи, например, некоторые оксиды (SiO2, P2O5, B2O3). Стеклами являются также и большинство органических полимеров.
Для описания строения стеклообразного состояния вещества существуют две основные модели.
Теория кристаллитов рассматривает стекло как совокупность мельчайших монокристаллических областей – кристаллитов.
Теория непрерывной неправильной сетки предполагает, что в стекле, как и в монокристалле, существует пространственная сетка из химически связанных атомов. Но, в отличие от монокристалла, отсутствует строгое периодическое повторение фрагментов сетки.
Пример. Диоксид кремния (SiO2) может существовать как в кристаллическом состоянии – кварц, так и в стеклообразном - кварцевое стекло (плавленый кварц). И в том и в другом состоянии структурной единицей является тетраэдр SiO2, в центре которого находится ион кремния, а в вершинах – ионы кислорода. Тетраэдры связаны между собой через ионы кислорода, которые одновременно принадлежат двум тетраэдрам. В кристаллическом состоянии структура периодически повторяется, а в стеклообразном состоянии она искажена и не повторяется в объеме (рис. 4.17).
Рис. 4‑17 Проекция структуры кристаллического и стеклообразного SiO2: ● - атом кремния, ○ - атом кислорода
К аморфным веществам относятся также и мелкодисперсные порошки, состоящие из частиц, размер которых составляет величину порядка 10÷100 длин химической связи (наночастицы), например сажа – мелкодисперсный углерод. Вещество в таком состоянии, в отличие от поликристаллов, не имеет фиксированной температуры плавления.
Удельное электрическое сопротивление – формула, таблица
Величина электрического тока, возникающего в образце вещества под воздействием электрического поля, зависит от геометрических размеров образца и от величины удельного электрического сопротивления вещества. Удельное сопротивление характеризует способность различных веществ по разному проводить электрический ток. Чем больше величина удельного сопротивления вещества, тем меньше будет значение электрического тока, протекающего через образец (провод) при одинаковых величинах электрического поля и размерах образца.
Напряжение, сила тока, сопротивление
Сила тока I, протекающего через участок цепи, к которому приложено электрическое напряжение U, определяется по формуле закона Ома:
где R — сопротивление.
Измеряя на образцах из различных материалов вольт-амперные характеристики I(U), немецкий физик Георг Ом обнаружил, что величина сопротивления R разная у одинаковых по размерам образцов из различных материалов. Количественная характеристика вещества, указывающая на это свойство, называется удельным электрическим сопротивлением.
Рис. 1. Вольт-амперные характеристики проводников.
Как рассчитать сопротивление
Экспериментальные данные на большом количестве образцов показали, что:
- Сопротивление R , обратно пропорционально поперечной площади образца S, то есть $ R ∼ $;
- Сопротивление R прямо пропорциональна длине образца, то есть чем больше длина образца L, тем больше его сопротивление, то есть $ R∼ L$;
- Так как значения R у образцов из разных материалов с одинаковыми размерами S и L отличались, то была введена новая физическая величина, названная удельным электрическим сопротивлением ρ.
Полученные данные хорошо описывались формулой:
Из уравнения (2) следует формула удельного электрического сопротивления:
Значения ρ для большинства веществ можно найти, воспользовавшись справочниками в печатном или электронном виде.
Рис. 2. Таблица удельных электрических сопротивлений различных веществ при температуре 200С.
Единицы измерения удельного сопротивления
Из уравнения (3) следует, что в Международной системе СИ единицей измерения ρ будет (Ом*м), так как сопротивление измеряется в омах, а длина и площадь — в метрах и метрах квадратных соответственно. То есть единица удельного сопротивления равна сопротивлению образца площадью 1 м2 и длиной 1 м. Но на практике эта единица оказалась не очень удобной из-за слишком больших числовых значений. Поэтому для электротехнических расчетов чаще используют внесистемную единицу (Ом*мм2/м), для которой площадь поперечного сечения берется в мм2. Характерные размеры сечений соединительных проводов и кабелей лежат в диапазоне 1-15 мм2, чем и объясняется удобство применения внесистемной единицы.
Алюминиевые провода устойчивы к коррозии, имеют низкое удельное сопротивление 0,026 (Ом*мм2/м) и небольшой вес на метр длины, что делает этот материал очень востребованным при изготовлении проводов и кабелей, работающих за пределами помещений. Недостатком чисто алюминиевой проводки является потеря прочности (целостности) при изгибах и скручиваниях. Решение этой проблемы было найдено путем вплетения в провода высоковольтных линий электропередач небольшого количества токопроводящих стальных нитей, имеющих высокие показатели прочности ко всем видам нагрузок. Это особенно важно при сильных порывах ветра, и при образовании наледи на проводах в зимнее время.
Проводники, полупроводники, диэлектрики
По величине удельного сопротивления все вещества разделяют на три основные вида: проводники, полупроводники, диэлектрики. Кроме значительной разницы в величине ρ, вещества, относящиеся к разным видам, имеют разные температурные зависимости ρ(Т). Основные моменты, присущие каждому виду веществ отражены в таблице:
Удельное сопротивление
Удельное сопротивление – это свойство материала, характеризующее его способность препятствовать прохождению электрического тока.
Характеристики электротехнических материалов
Главной характеристикой в электротехнике считается удельная электропроводность, измеряемая в См/м. Она служит коэффициентом пропорциональности между вектором напряжённости поля и плотностью тока. Обозначается часто греческой буквой гамма γ. Удельное сопротивление признано величиной, обратной электропроводности. В результате формула, упомянутая выше, обретает вид: плотность тока прямо пропорциональна напряжённости поля и обратно пропорциональна удельному сопротивлению среды. Единицей измерения становится Ом м.
Рассматриваемое понятие сохраняет актуальность не только для твёрдых сред. К примеру, ток проводят жидкости-электролиты и ионизированные газы. Следовательно, в каждом случае допустимо ввести понятие удельного сопротивления, ведь через среду проходит электрический заряд. Найти в справочниках значения, к примеру, для сварочной дуги сложно по простой причине – подобными задачами не занимаются в достаточной степени. Это не востребовано. С момента обнаружением Дэви накала платиновой пластины электрическим током до внедрения в обиход лампочек накала прошло столетие – по схожей причине не сразу осознали важность, значимость открытия.
В зависимости от значения величины удельного сопротивления материалы делятся:
- У проводников – менее 1/10000 Ом м.
- У диэлектриков – свыше 100 млн. Ом м.
- Полупроводники по значениям удельного сопротивления находятся между диэлектриками и проводниками.
Эти значения характеризуют исключительно способность тела сопротивляться прохождению электрического тока и не влияют на прочие аспекты (упругость, термостойкость). К примеру, магнитные материалы бывают проводниками, диэлектриками и полупроводниками.
Как образуется в материале проводимость
В современной физике сопротивление и проводимость принято объяснять зонной теорией. Она применима для твёрдых кристаллических тел, атомы решётки которого принимаются неподвижными. Согласно указанной концепции энергия электронов и прочих типов носителей заряда определяется установленными правилами. Выделяют три основные зоны, присущие материалу:
- Валентная зона содержит электроны, связанные с атомами. В этой области энергия электронов градируется ступенями, а число уровней ограничено. Внешняя из слоёв атома.
- Запрещённая зона. В этой области носители заряда находиться не вправе. Служит границей раздела двух других зон. У металлов часто отсутствует.
- Свободная зона расположена выше двух предыдущих. Здесь электроны участвуют свободно в создании электрического тока, а энергия любая. Нет уровней.
Диэлектрики характеризуются высочайшим расположением свободной зоны. При любых мыслимых на Земле естественных условиях материалы электрический ток не проводят. Велика ширина и запрещённой зоны. У металлов масса свободных электронов. А валентная зона одновременно считается областью проводимости – запрещённых состояний нет. В результате подобные материалы обладают малым удельным сопротивлением.
Расчёт уд. сопротивления
На границе контактов атомов образуются промежуточные энергетические уровни, возникают необычные эффекты, используемые физикой полупроводников. Неоднородности создаются намеренно внедрением примесей (акцепторов и доноров). В результате образуются новые энергетические состояния, проявляющие в процессе протекания электрического тока новые свойства, которыми не владел исходный материал.
У полупроводников ширина запрещённой зоны невелика. Под действием внешних сил электроны способны покидать валентную область. Причиной становится электрическое напряжение, нагрев, облучение, прочие типы воздействий. У диэлектриков и полупроводников по мере понижения температуры электроны переходят на пониженные уровни, в результате валентная зона заполняется, а зона проводимости остаётся свободна. Электрический ток не течёт. В соответствии с квантовой теорией класс полупроводников характеризуется как материалы с шириной запрещённой зоны менее 3 эВ.
Энергия Ферми
Важное место в теории проводимости, объяснениях явлений, происходящих в полупроводниках, занимает энергия Ферми. Скрытности добавляют туманную определения термина в литературе. В зарубежной литературе говорится, что уровень Ферми – некое значение в эВ, а энергия Ферми – разница между ним и наименьшим в кристалле. Приведём избранные общие и понятные предложения:
- Уровень Ферми – максимальный из всех, присущих электрону в металлах при температуре 0 К. Следовательно, энергией Ферми считается разница между этой цифрой и минимальным уровнем при абсолютном нуле.
- Энергетический уровень Ферми – вероятность нахождения электронов составляет 50% при всех температурах, кроме абсолютного нуля.
Энергия Ферми определятся исключительно для температуры 0 К, тогда как уровень существует при любых условиях. В термодинамике понятие характеризует полный химический потенциал всех электронов. Уровень Ферми определяют как работу, затраченную на дополнение объекта единственным электроном. Параметр определяет проводимость материала, помогает понять физику полупроводников.
Уровень Ферми не обязательно существует физически. Известны случаи, когда место пролегания находилось в середине запрещённой зоны. Физически уровень не существует, там нет электронов. Однако параметр заметен при помощи вольтметра: разница потенциалов между двумя точками цепи (показания на дисплее) пропорциональна разнице уровней Ферми этих точек и обратно пропорциональна заряду электрона. Простая зависимость. Допустимо увязать эти параметры с проводимостью и удельным сопротивлением, пользуясь законом Ома для участка цепи.
Материалы с низким удельным сопротивлением
К проводникам относят большинство металлов, графит, электролиты. Такие материалы обладают низким удельным сопротивлением. В металлах положительно заряженные ионы образуют узлы кристаллической решётки, окружённые облаком электронов. Их принято называть общими за вхождение в состав зоны проводимости.
Хотя не до конца понятно, что такое электрон, его принято описывать как частицу, движущуюся внутри кристалла с тепловой скоростью в сотни км/с. Это намного больше, чем нужно, чтобы вывести космический корабль на орбиту. Одновременно скорость дрейфа, образующая электрический ток под действием вектора напряжённости, едва достигает сантиметра в минуту. Поле распространяется в среде со скоростью света (100 тыс. км/ с).
В результате указанных соотношений становится возможным выразить удельную проводимость через физические величины (см. рисунок):
Формула для расчётов
- Заряд электрона, e.
- Концентрация свободных носителей, n.
- Масса электрона, me.
- Тепловая скорость носителей,
- Длина свободного пробега электрона, l.
Уровень Ферми для металлов лежит в пределах 3 – 15 эВ, а концентрация свободных носителей почти не зависит от температуры. Поэтому удельная проводимость, а значит, и сопротивление определяется строением молекулярной решётки и её близостью к идеалу, свободой от дефектов. Параметры определяют длину свободного пробега электронов, легко найти в справочниках, если требуется произвести вычисления (к примеру, с целью определения удельного сопротивления).
Лучшей проводимостью обладают металлы с кубической решёткой. Сюда относят и медь. Переходные металлы характеризуются гораздо большим удельным сопротивлением. Проводимость падает с ростом температуры и при высоких частотах переменного тока. В последнем случае наблюдается скин-эффект. Зависимость от температуры линейная выше некого предела, носящего имя нидерландского физика Петера Дебая.
Отмечаются и не столь прямолинейные зависимости. К примеру, температурная обработка стали повышает количество дефектов, что закономерно снижает удельную проводимость материала. Исключением из правила стал отжиг. Процесс снижает плотность дефектов, что за счёт чего удельное сопротивление уменьшается. Яркое влияние оказывает деформация. Для некоторых сплавов механическая обработка приводит к заметному повышению удельного сопротивления.
Объёмное представление свойства
Материалы с высоким удельным сопротивлением
Порой требуется специально удельное сопротивление повысить. Подобная ситуация встречается в случаях с нагревательными приборами и резисторами электронных схем. Вот тогда приходит черед сплавов с высоким удельным сопротивлением (более 0,3 мкОм м). При использовании в составе измерительных приборов предъявляется требование минимального потенциала на границе стыковки с медным контактом.
Наибольшую известность получил нихром. Нередко нагревательные приборы конструируют из дешёвого фехраля (хрупкий, но дешёвый). В зависимости от назначения в сплавы входит медь, марганец и прочие металлы. Это дорогое удовольствие. К примеру, резистор из манганина стоит 30 центов на Алиэкспресс, где цены традиционно ниже магазинных. Встречается даже сплав палладия с иридием. О цене материала не следует говорить вслух.
Резисторы печатных плат часто изготавливают из чистых металлов в виде плёнок методом напыления. Массово применяются хром, тантал, вольфрам, сплавы, среди прочего, нихром.
Вещества, не проводящие электрический ток
Диэлектрики характеризуются впечатляющим удельным сопротивлением. Это не ключевая черта. К диэлектрикам относят материалы, способные перераспределять заряд под действием электрического поля. В результате происходит накопление, что используется в конденсаторах. Степень перераспределения заряда характеризуется диэлектрической проницаемостью. Параметр показывает, во сколько раз возрастает ёмкость конденсатора, где вместо воздуха использован конкретный материал. Отдельные диэлектрики способны проводить и излучать колебания под действием переменного тока. Известно сегнетоэлектричество, обусловленное сменой температур.
В процессе смены направления поля возникают потери. Подобно тому, как магнитная напряжённость частично преобразуется в тепло при воздействии на мягкую сталь. Диэлектрические потери зависят преимущественно от частоты. При необходимости в качестве материалов используют неполярные изоляторы, молекулы которых симметричны, без ярко выраженного электрического момента. Поляризация возникает, если заряды прочно связаны с кристаллической решёткой. Типы поляризации:
Удельное сопротивление для распространенных материалов: таблица
Приведенная ниже таблица удельного электрического сопротивления содержит значения удельного сопротивления для многих веществ, широко используемых в электрике и электронике. В частности, она включает в себя удельное сопротивление меди, алюминия, нихрома, стали, никеля и так далее.
Удельное электрическое сопротивление особенно важно, поскольку оно определяет электрические характеристики и, следовательно, пригодность материала для использования во многих электрических компонентах. Например, можно увидеть, что удельное сопротивление меди, удельное сопротивление алюминия, а также нихрома, никеля, серебра, золота и т.д. определяет, где эти металлы используются.
Для того чтобы сравнить способность различных материалов проводить электрический ток, используются показатели удельного сопротивления.
Что означают показатели удельного сопротивления?
Для того чтобы иметь возможность сравнивать удельное сопротивление различных материалов, от таких изделий, как медь и алюминий, до других металлов и веществ, включая висмут, латунь и даже полупроводники, необходимо использовать стандартное измерение.
Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м.
Единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м 2 , изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м 2
[1]
Таблица удельного сопротивления для распространенных проводников
В таблице ниже приведены показатели удельного сопротивления для различных материалов, в частности металлов, используемых для электропроводности.
Показатели удельного сопротивления приведены для таких “популярных” материалов, как медь, алюминий, нихром, сталь, свинец, золото и других.
Материал | Удельное сопротивление, ρ, при 20 °C (Ом·м) | Источник |
---|---|---|
Латунь | ~0.6 – 0.9 x 10 -7 | |
Серебро | 1.59×10 −8 | [3][4] |
Медь | 1.68×10 −8 | [5][6] |
Обожжённая медь | 1.72×10 −8 | [7] |
Золото | 2.44×10 −8 | [3] |
Алюминий | 2.65×10 −8 | [3] |
Кальций | 3.36×10 −8 | |
Вольфрам | 5.60×10 −8 | [3] |
Цинк | 5.90×10 −8 | |
Кобальт | 6.24×10 −8 | |
Никель | 6.99×10 −8 | |
Рутений | 7.10×10 −8 | |
Литий | 9.28×10 −8 | |
Железо | 9.70×10 −8 | [3] |
Платина | 1.06×10 −7 | [3] |
Олово | 1.09×10 −7 | |
Тантал | 1.3×10 −7 | |
Галлий | 1.40×10 −7 | |
Ниобий | 1.40×10 −7 | [8] |
Углеродистая сталь (1010) | 1.43×10 −7 | [9] |
Свинец | 2.20×10 −7 | [2][3] |
Галинстан | 2.89×10 −7 | [10] |
Титан | 4.20×10 −7 | |
Электротехническая сталь | 4.60×10 −7 | [11] |
Манганин (сплав) | 4.82×10 −7 | [2] |
Константан (сплав) | 4.90×10 −7 | [2] |
Нержавеющая сталь | 6.90×10 −7 | |
Ртуть | 9.80×10 −7 | [2] |
Марганец | 1.44×10 −6 | |
Нихром (сплав) | 1.10×10 −6 | [2][3] |
Углерод (аморфный) | 5×10 −4 – 8×10 −4 | [3] |
Углерод (графит) параллельно-базальная плоскость | 2.5×10 −6 – 5.0×10 −6 | |
Углерод (графит) перпендикулярно-базальная плоскость | 3×10 −3 | |
Арсенид галлия | 10 −3 to 10 8 | |
Германий | 4.6×10 −1 | [3][4] |
Морская вода | 2.1×10 −1 | |
Вода в плавательном бассейне | 3.3×10 −1 – 4.0×10 −1 | |
Питьевая вода | 2×10 1 – 2×10 3 | |
Кремний | 2.3×10 3 | [2][3] |
Древесина (влажная) | 10 3 – 10 4 | |
Деионизированная вода | 1.8×10 5 | |
Стекло | 10 11 – 10 15 | [3][4] |
Углерод (алмаз) | 10 12 | |
Твердая резина | 10 13 | [3] |
Воздух | 10 9 – 10 15 | |
Древесина (сухая) | 10 14 – 10 16 | |
Сера | 10 15 | [3] |
Плавленый кварц | 7.5×10 17 | [3] |
ПЭТ | 10 21 | |
Тефлон | 10 23 – 10 25 |
Видно, что удельное сопротивление меди и удельное сопротивление латуни оба низкие, и с учетом их стоимости, относительно серебра и золота, они становятся экономически эффективными материалами для использования для многих проводов. Удельное сопротивление меди и простота ее использования привели к тому, что она также используется крайне часто в качестве материала для проводников на печатных платах.
Изредка алюминий и особенно медь используются из-за их низкого удельного сопротивления. Большинство проводов, используемых в наши дни для межсоединений, изготовлены из меди, поскольку она обеспечивает низкий уровень удельного сопротивления при приемлемой стоимости.
Удельное сопротивление золота также важно, поскольку золото используется в некоторых критических областях, несмотря на его стоимость. Часто золотое покрытие встречается на высококачественных слаботочных разъемах, где оно обеспечивает самое низкое сопротивление контактов. Золотое покрытие очень тонкое, но даже в этом случае оно способно обеспечить требуемые характеристики разъемов.
Серебро имеет очень низкий уровень удельного сопротивления, но оно не так широко используется из-за его стоимости и из-за того, что оно тускнеет, что может привести к более высокому сопротивлению контактов.
Однако оно используется в некоторых катушках для радиопередатчиков, где низкое удельное электрическое сопротивление серебра снижает потери. При использовании в таких целях серебро обычно наносилось только на существующий медный провод. Покрытие провода серебром позволило значительно снизить затраты по сравнению с цельным серебряным проводом без существенного снижения производительности.
Другие материалы в таблице удельного электрического сопротивления могут не иметь такого очевидного применения. Тантал фигурирует в таблице, поскольку используется в конденсаторах – никель и палладий используются в торцевых соединениях многих компонентов поверхностного монтажа, таких как конденсаторы.
Кварц находит свое основное применение в качестве пьезоэлектрического резонансного элемента. Кварцевые кристаллы используются в качестве частотоопределяющих элементов во многих осцилляторах, где высокое значение Q позволяет создавать очень стабильные по частоте схемы. Аналогичным образом они используются в высокоэффективных фильтрах. Кварц имеет очень высокий уровень удельного сопротивления и не является хорошим проводником электричества, то есть его относят к категории диэлектрикам.
Читайте также: