Какой металл окрашивает пламя в зеленый цвет
Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк. Цвет пламени спирта.
Про спирт: хотя чистый этиловый спирт горит синим пламенем, а метиловый спирт горит зелёным пламенем - технические присадки поменяют цвет в соответствии с таблицей ниже, что не позволяет достоверно отличить метиловый спирт от этилового по цвету пламени, да и остальные способы малонадежны. Не пейте неизвестно какой спирт - вероятность умереть, если это метанол, выше 80%.
Металл, входящий в соединение | Цвет пламени | |
Стронций Sr | Темно-красный | |
Литий Li | Малиновый | |
Кальций Ca | Кирпично-красный | |
Натрий Na | Желтый | |
Железо Fe | Светло-желтый | |
Молибден Mb | Желто-зеленоватый | |
Барий Ba | Желтовато-зеленый | |
Медь Cu | Ярко-зеленый или сине-зеленый | |
Бор B | Бледно-зеленый | |
Теллур Te | Зеленый | |
Таллий Tl | Изумрудный | |
Селен Se | Голубой | |
Мышьяк As | Бледно-синий | |
Индий in | Сине-фиолетовый | |
Цезий Cs | Розово-фиолетовый | |
Рубидий Rb | Красно-фиолетовый | |
Калий K | Фиолетовый | |
Свинец Pb | Голубой | |
Сурьма Sb | Зелено-синий | |
Цинк Zn | Бледно сине-зеленый |
Дополнительная информация от Инженерного cправочника DPVA, а именно - другие подразделы данного раздела:
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк. Цвет пламени спирта.
Опыты: Цветное пламя
Очень красивый научный эксперимент от профессора Николя "Цветное пламя" позволяет получить пламя четырех разных цветов, используя для этого законы химии.
Набор интереснейший, мы действительно на пламя насмотрелись, удивительное зрелище! Интересно всем: и взрослым, и детям, так что очень рекомендую! Плюс в том, что этот опыт с огнём можно провести и дома, не обязательно выходить на улицу. В наборе есть чашки-плошки, в которых горит таблетка сухого горючего, всё безопасно, и на деревянном полу (или столе) можно поставить. Из серии опытов профессора Николя.
Лучше, конечно, под присмотром взрослых опыт проводить. Даже если дети уже немаленькие. Огонь всё же - штука опасная, но при этом . жутко (тут именно это слово подходит очень точно!) интересная!
Фото упаковки набора смотрите в галерее в конце статьи.
Набор 'Цветное пламя' содержит все необходимое для проведения эксперимента. В набор входят:
- иодид калия,
- хлорид кальция,
- раствор соляной кислоты 10%,
- сульфат меди,
- нихромовая проволока,
- медная проволока,
- хлорид натрия,
- сухое горючее, чашка для выпаривания.
Единственное, есть у меня некоторые претензии к производителю - я ожидала найти в коробочке мини-брошюру с описанием химического процесса, который мы здесь наблюдаем, и объяснение, почему пламя становится цветным. Такого описания здесь не оказалось, так что придётся обратиться к энциклопедии по химии (обзор книг по химии здесь). Если, конечно, будет такое желание. А желание у старших детей, конечно, возникает! Младшим детям, конечно, никакие объяснения не нужны: им просто очень интересно смотреть, как меняется цвет пламени.
На обратной стороне коробки-упаковки написано, что нужно делать, чтобы пламя стало цветным. Сначала делали по инструкции, а потом стали просто пламя разными порошками из баночек посыпать (когда убедились, что всё безопасно) - эффект потрясающий. Всполохи красного пламени в жёлтом, ярко-салатовое пламя, зелёное, фиолетовое. зрелище просто завораживает.
Очень здорово покупать на какой-нибудь праздник, это гораздо интереснее любой петарды. И на новый год будет очень здорово. Мы жгли днём, в темноте было бы ещё эффектнее.
Реактивы у нас после сжигания одной таблетки ещё остались, так что, если взять другую таблетку (купить отдельно), можно повторить опыт. Глиняная чашка отмылась довольно хорошо, так что её на много опытов хватит. А если вы на даче, то порошок можно посыпать и на огонь в костре - он тогда, конечно, быстро кончится, но зрелище будет фантастическое!
Добавляю краткую информацию о реактивах, которые идут в комплекте с опытом. Для любознательных детишек, которым интересно узнать больше.
Окрашивание пламени
Стандартный способ окрашивания слабосветящегося газового пламени - введение в него соединений металлов в форме легколетучих солей (обычно, нитратов или хлоридов):
желтое - натрия,
красное - стронция, кальция,
зеленое - цезия (или бора, в виде борноэтилового или борнометилового эфира),
голубое - меди (в виде хлорида).
В синий окрашивает пламя селен, а в сине-зеленый - бор.
Температура внутри пламени различна и с течение времени она меняется (зависит от притока кислорода и горючего вещества). Синий цвет означает что температура очень высокая до 1400 С, желтый - температура чуть меньше, чем когда синее пламя. Цвет пламени может меняться в зависимости от химических примесей.
Цвет пламени определяется только его температурой, если не учитывать его химический (точнее, элементный) состав. Некоторые химические элементы способны окрашивать пламя в характерный для этого элемента цвет.
В лабораторных условиях можно добиться совершенно бесцветного огня, который можно определить лишь по колебанию воздуха в области горения. Бытовой же огонь всегда "цветной". Цвет огня определяется температурой пламени и тем, какие химические вещества в нём сгорают. Высокая температура пламени дает возможность атомам перескакивать на некоторое время в более высокое энергетическое состояние. Когда атомы возвращаются в исходное состояние, они излучают свет с определённой длиной волны. Она соответствует структуре электронных оболочек данного элемента.
Голубой огонек, например, который можно видеть при горении природного газа, обусловлен угарным газом, который и придаёт пламени этот оттенок. Угарный газ, молекула которого состоит из одного атома кислорода и одного атома углерода, является побочным продуктом горения природного газа.
Калий - фиолетовое пламя
Калий (нем. Kalium, франц. и англ. Potassium) — один из важнейших представителей группы щелочных металлов.
Калий — металл наиболее электроположительный после рубидия и цезия. В чистом сухом воздухе при обыкновенной температуре он не изменяется, в обычном — покрывается слоем едкого калия и углекислой его соли; в свежем разрезе в темноте светится, а в тонких пластинках окисляется столь быстро, что может загореться; расплавленный и нагретый, он также горит; пламя его обладает фиолетовым цветом. Вследствие такой склонности к окислению и является необходимым сохранять его под нефтью.
Открывают присутствие калия по фиолетовой окраске газового беcцветного пламени, которая получается при внесении в пламя его соединений, особенно галоидных, на ушке платиновой проволоки (вот почему в опыте нужно вносить калий в пламя на проволоке - эффект изменения цвета пламени тогда заметнее); в присутствии солей натрия окраску наблюдают через синее кобальтовое стекло или через раствор индиго, помещенный в призматический стеклянный сосуд. Спектр пламени характеризуется двумя линиями - красной и фиолетовой.
Кальций хлористый - красное пламя
При нагревании на воздухе или в кислороде кальций воспламеняется и горит красным пламенем с оранжевым оттенком. С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании.
При внесении в пламя растворимых солей кальция пламя окрашивается в кирпично-красный цвет.
При нагревании в кислороде и на воздухе кальций воспламеняется, сгорая ярко-красным пламенем, при этом образуется основной оксид СаО, который представляет собой белое, весьма огнестойкое вещество, температура плавления которого примерно 2 600 °C. Оксид кальция также известен в технике как негашеная или жженая известь.
Соляная кислота и медь - зелёное пламя
Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имеет яркий зеленый цвет, практически идентичный белому. В зеленый цвет пламя окрашивает борная кислота или медная (латунная) проволока, смоченная в соляной кислоте.
При смачивании соляной кислотой пламя окрашивается в голубой цвет с зеленоватым оттенком.
1) В зеленый цвет пламя окрашивает борная кислота или медная (латунная) проволока, смоченная в соляной кислоте.
2) В красный цвет пламя окрашивает мел, смоченный в той же соляной кислоте.
При сильном прокаливании в тонких осколках Ва-содержащие (Барий-содержащие) минералы окрашивают пламя в желто-зеленый цвет. Окрашивание пламени можно усилить, если после предварительного прокаливания смачивать минерал в крепкой соляной кислоте.
Окислы меди (в опыте для зелёного пламени используются соляная кислота и кристаллики меди) дают изумрудно-зеленое окрашивание. Прокаленные Cu-содержащие соединения, смоченные НС1, окрашивают пламя в лазурно-голубой цвет CuС12). Реакция очень чувствительна.
Зеленый цвет и его оттенки огню придают также барий, молибден, фосфор, сурьма.
Азотнокислый и солянокислый растворы меди имеют голубой или зеленый цвет; при прибавлении аммиака цвет раствора изменяется в темно-синий.
Жёлтое пламя - соль
Для желтого пламени требуется добавка поваренной соли, нитрата натрия или хромата натрия.
Попробуйте посыпать на конфорку газовой плиты с прозрачно-голубым пламенем чуть-чуть поваренныой соли - в пламени появятся жёлтые язычки. Такое жёлто-оранжевое пламя дают соли натрия (а поваренная соль, напомним, это хлорид натрия).
Жёлтый цвет - это цвет натрия в пламени. Натрий есть в любом природном органическом материале, поэтому пламя мы обычно и видим жёлтым. А желтый цвет способен заглушить другие цвета - такова особенность человеческого зрения.
Желтые язычки пламени появляются при распадении солей натрия. Такими солями очень богата древесина, поэтому обычный лесной костер или бытовые спички горят желтым пламенем.
Секреты сумасшедшего профессора Николя
Цветное пламя
Фото упаковки - сбоку. Набор для экспериментов.
Серия химических опытов с профессором Николя.
Цветное пламя - состав набора.
Обратная сторона упаковки - как добиться цветного пламени.
Весь состав набора - чашки (глиняная и стеклянная, потом и для других опытов пригодятся), проволока, реактивы.
Рядом с куклой ростом 18 см для размера.
Химические реактивы для опыта Цветное пламя - на каждой коробочке подписано, что это такое.
Какой металл окрашивает пламя в зеленый цвет
Томас Эдисон - известный американский изобретатель и предприниматель в детстве проверял, можно ли взлететь, наевшись порошка для приготовления газировки.
-->СТАТИСТИКА -->
-->МЫ ВКОНТАКТЕ -->
-->НЕМНОГО РЕКЛАМЫ -->
Наши спонсоры
Описание:
Смачивая медную пластинку в соляной кислоте и поднося к пламени горелки, замечаем интересный эффект – окрашивание пламени. Огонь переливается красивыми сине-зелеными оттенками. Зрелище довольно впечатляющее и завораживающее.
Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имело бы яркий зеленый цвет. Окислы же меди дают изумрудно-зеленое окрашивание. Например, как видно из ролика, при смачивании меди соляной кислотой пламя окрашивается в голубой цвет с зеленоватым оттенком. А прокаленные медьсодержащие соединения, смоченные в кислоте, окрашивают пламя в лазурно-голубой цвет.
Для справки: Зеленый цвет и его оттенки огню придают также барий, молибден, фосфор, сурьма.
Объяснение:
Почему пламя видимое? Или чем определяется его яркость?
Некоторое пламя почти не видно, а другое наоборот светит очень ярко. Например, водород горит почти совершенно бесцветным пламенем; пламя чистого спирта тоже светит весьма слабо, а свеча и керосиновая лампа горят ярким светящимся пламенем.
Дело в том, что большая или меньшая яркость всякого пламени зависит от присутствия в нем раскаленных твердых частичек.
В топливе в большем или меньшем количестве содержится углерод. Частички углерода, раньше чем сгореть, накаливаются, - оттого-то пламя газовой горелки, керосиновой лампы и свечи светит – т.к. его подсвечивают раскаленные частицы углерода.
Таким образом, можно и несветящееся или слабо светящееся пламя сделать ярким, обогащая его углеродом или раскаляя им негорючие вещества.
Как получить разноцветное пламя?
Для получения цветного пламени к горящему веществу прибавляют не углерод, а соли металлов, окрашивающих пламя в тот или иной цвет.
Стандартный способ окрашивания слабосветящегося газового пламени - введение в него соединений металлов в форме легколетучих солей - обычно, нитратов (соли азотной кислоты) или хлоридов (соли соляной кислоты):
желтое – соли натрия,
красное – соли стронция, кальция,
зеленое – соли цезия (или бора, в виде борноэтилового или борнометилового эфира),
голубое – соли меди (в виде хлорида).
Этой способностью горящих металлов и их летучих солей придавать определенную окраску бесцветному пламени пользуются для получения цветных огней (например, в пиротехнике).
Чем определяется цвет пламени (научным языком)
Цвет огня определяется температурой пламени и тем, какие химические вещества в нём сгорают. Высокая температура пламени дает возможность атомам перескакивать на некоторое время в более высокое энергетическое состояние. Когда атомы возвращаются в исходное состояние, они излучают свет с определённой длиной волны. Она соответствует структуре электронных оболочек данного элемента.
Цветные сигналы металлов
Сто лет тому назад, в конце 50-х годов прошлого века, химики заинтересовались вопросом: как светятся различные химические вещества при очень высоких температурах? В то время высокую температуру научились получать в особо устроенной газовой горелке — горелке Бунзена (Роберт Бунзен — немецкий физик и химик, 1811 —1899). В ней бесцветным пламенем горел обычный светильный газ; он давал температуру около 1800 градусов.
Первой была испробована поваренная соль. Когда кусочек поваренной соли был введен на проволочке в пламя горелки, бесцветное пламя стало ярко-желтым.
Отчего бы это могло быть?
Поваренная соль — это химическое соединение двух простых веществ — натрия и хлора. В горячем пламени горелки поваренная соль разлагается на составные части. Об этом можно судить по удушливому запаху выделяющегося газа — хлора. Металл натрий плавится уже при 97 градусах; при температуре около 750 градусов натрий превращается в пар. Следовательно, поваренная соль в пламени газовой горелки разлагается на газ хлор и пары металла натрия. Какой же из них окрашивает бесцветное пламя горелки в желтый цвет?
Проделав опыты с хлором и натрием порознь, химики убедились в том, что пламя окрашивается в желтый цвет парами натрия.
Но, может быть, свойством окрашивать пламя обладают пары не только натрия, но и других металлов?
Вводя в пламя газовой горелки один металл за другим, химики обнаружили, что это действительно так. Например, калий дает фиолетовую окраску пламени, литий — красную, медь — зеленую.
Если пары металла и в самом деле окрашивают пламя каждый в свой цвет, то это прекрасная находка для химиков! Ведь по окраске пламени можно было бы быстро узнавать, какие металлы есть в том или другом сложном веществе. До сих пор для решения этого вопроса нужно было проделывать кропотливую работу: химики растворяли сложное вещество, процеживали раствор сквозь тончайшие сита — фильтры, выпаривали раствор и производили другие операции; они повторяли эти кропотливые операции с одним и тем же веществом иногда десятки и сотни раз.
При новом способе вся эта кропотливая работа отпала бы. Химики хорошо понимали выгоду нового способа. Но прежде надо было проверить, действительно ли каждый металл окрашивает пламя в свой цвет.
Однако скоро перед химиками возникло затруднение. Раскаленные пары металла лития окрашивают пламя горелки в малиново-красный цвет. Но в такой же цвет окрашивают пламя и пары металла стронция. Значит, новый способ непригоден? Или, может быть, разница в окраске пламени литием и стронцием есть, но ее нельзя заметить простым глазом? В таком случае глаз нужно вооружить!
Тут на помощь ученым пришел спектроскоп. Прообраз этого прибора дал английский ученый Ньютон (1643—1727) еще в XVII веке. Но только сто лет назад спектроскоп начали широко применять в научных и технических исследованиях. С тех пор он сыграл огромную роль в развитии современной науки и техники и до сих пор безотказно служит человеку.
Что же это за прибор и на чем основано его устройство? Чтобы ответить на этот вопрос, нам придется сначала рассказать кое-что о свойствах света.
8. Сигналы из десятого измерения I
8. Сигналы из десятого измерения I Как было бы странно, если бы окончательную теорию открыли при нашей жизни! Открытие окончательных законов природы ознаменует разрыв в интеллектуальной истории человечества — самый явный со времен появления современной науки в XVII в.
Сигналы из космоса
Сигналы из космоса Так как ССК не был построен и не помог обнаружить частицы, представляющие собой низкоэнергетические резонансные колебания суперструны, остается еще одна возможность — измерить энергию космического излучения, т. е. высокоэнергетических субатомных
ЛЕКЦИЯ № 7. Коррозия металлов
ЛЕКЦИЯ № 7. Коррозия металлов 1. Основные понятия и терминология Коррозия – самопроизвольное окисление металлов, вредное для промышленной практики (уменьшающее долговечность изделий). Это слово произошло от латинского corrodere – разъедать. Среда, в которой металл
2. Классификация процессов коррозии металлов
2. Классификация процессов коррозии металлов Классифицировать коррозию принято по механизму, условиям протекания процесса и характеру разрушения. По механизму протекания коррозионные процессы, согласно ГОСТ 5272-68, подразделяются на два типа: электрохимические и
3. Кинетические особенности электроосаждения металлов и сплавов
3. Кинетические особенности электроосаждения металлов и сплавов Процесс электроосаждения металлов, сплавов протекает через последовательность стадий: диффузия катионов металлов к поверхности электрода из объема раствора, вхождение катионов в ДЭС (двойной
Как физики различают цветные лучи
Как физики различают цветные лучи Открытие волновых свойств света дало возможность точно характеризовать отдельные цветные лучи света. Два различных цветных луча, как бы ни казались они нам близкими по цвету, отличаются друг от друга длиной волны или частотой.Из опытов
9. Сигналы из космоса. «Маленькие зеленые человечки». Когда молчание — золото. Рождение нейтронной звезды. Небесное тело на лабораторном столе.
9. Сигналы из космоса. «Маленькие зеленые человечки». Когда молчание — золото. Рождение нейтронной звезды. Небесное тело на лабораторном столе. Английский радиоастроном Антони Хьюиш вряд ли мог заранее предугадать, какие удивительные события произойдут после
Читайте также: