Какой металл называют автомобильным
Основные марки сталей и чугунов, применяемых при производстве и ремонте автомобилей
Все стали в зависимости от химического состава разделяют на углеродистые и легированные. К углеродистым относят те, в которых основным элементом, влияющим на свойства, является углерод. Легированные стали содержат добавки различных цветных металлов и неметаллических веществ (кремний, бор), которые изменяют свойства стали в нужном направлении, придавая ей специальные свойства.
Г1о назначению стали подразделяются на конструкционные, инструментальные и специальные. При производстве и ремонте автомобилей применяют стали углеродистые и легированные всех трех групп, причем сортамент их включает более 250 марок: углеродистые конструкционные обыкновенного качества, углеродистые конструкционные качественные, литейные углеродистые, низколегированные и легированные конструкционные, автоматные, рессорно-пружинные, высоколегированные корро-зионностойкие, жаростойкие и жаропрочные, инструментальные стали и др.
Для обозначения различных марок стали установлена буквенно-цифровая система маркировки сталей.
Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:
Углеродистые конструкционные стали обыкновенного качества применяют для автомобильных деталей, изготовленных с помощью сварки и работающих при небольших нагрузках.
В зависимости от гарантируемых характеристик качества стали Делятся на группы А, Б и В. Стали группы А поставляются по механическим свойствам и маркируются СтО, Ст1, Ст2, СтЗ, Ст4, Ст5, Стб. Стали группы Б посталяются по химическому составу и маркируются БСтО — БСтб. Стали группы В поставляются по механическим свойствам и химическому составу и маркируются ВСт1— ВСтб. Во всех марках буквы Ст обозначают «сталь», а цифры — номер стали. Чем выше номер, тем больше в стали углерода и тем выше ее твердость.
Область применения сталей обыкновенного качества: СтО — Lt4 — малонагруженные детали конструкции кузова автомобиля, кРепежа, гнутые профили; Ст5, Стб — средненагруженные оси, малоответственные болты и гайки, клинья, планки, профили и т. д.
При производстве сталей данного назначения получают два рода сталей: полуспокойную и кипящую. Кипящая сталь при застывании в изложнице обильно выделяет газы — кипит. Для отличия этих сталей в марку стали добавляют буквы «кп» или «пс» например, БСт1пс, Ст2кп.
Углеродистые конструкционные сталп качественные идут на изготовление деталей кузовов, двигателей и нормалей. Стали этой группы подразделяются на подгруппы: малоуглеродистые высокой пластичности марок 08—10, малоуглеродистые меньшей пластичности марок 15—25, среднеуглеродистые повышенной прочности марок 30—55, высокой прочности марок 60—80. Цифры в обозначении марок сталей указывают среднее содержание углерода в сотых долях процента.
Стали марок 08—10 (содержание углерода от 0,08 до 1%) хорошо деформируются в холодном состоянии, поэтому применяются для штамповки кузовных облицовочных деталей, панелей крыши и дверей. Стали марок 15—25 хуже деформируются, но хорошо свариваются и подвергаются химико-термической обработке. Они применяются для деталей, изготовляемых штамповкой, высадкой и протяжкой (поперечины, распорки, усилители, рычаги, кронштейны, вал рулевого механизма, тяги, шкивы, крепеж и т. д.).
Сталп марок 30—55 идут на изготовление методом горячей штамповки различных деталей широкого применения: валов, зубчатых колес, полуосей и т. д. Для них используют все виды термической обработки, значительно повышающие эксплуатационные и прочностные свойства деталей.
Сталп марок 60—80 обладают высокой прочностью и упругими свойствами, приобретаемыми после закалки и отпуска. Их примениют для деталей, работающих при больших статических и динамических нагрузках: крестовин карданных шарниров, дисков сцепления, гибких валов, пружин и т. д.
Стали литейные углеродистые применяют для изготовления литых автомобильных деталей различными методами литья, в том числе точного для фасонных деталей с минимальным объемом последующей механической обработки.
Марки сталей этой группы обозначают двухзначным числом с добавлением буквы Л, например: 15Л, 20Л, 25Л. Из литейных сталей получают отливки различных корпусных деталей, ступиц колес, дисков, зубчатых колес, муфт, маховиков и т. д.
Низколегированные и легированные стали дороже качественных углеродистых сталей, но по свойствам их существенно превосходят. Ио сравнению с углеродистыми эти стали обладают более высоким пределом прочности, лучшей пластичностью и вязкостью, пониженной хладоломкостью, лучшей коррозионной стойкостью. Легированные стали позволяют обеспечить оптимальные механические свойства валов и других ответственных деталей.
Все положительные свойства легированным сталям придают легирующие добавки элементов: хрома (X), марганца, (Г), никеля (И), кремния (С), молибдена (М), вольфрама (В) и др.
Маркировка легированной стали состоит из двух цифр и последующих букв: цифры обозначают содержание углерода в сотых долях процента, буквы — условное обозначение легирующего элемен-
Если после буквы идет цифра, то она указывает на содержание ТцРИрующего элемента в процентах. Отсутствие цифры после буквы бозначает содержание легирующего элемента в пределах менее 1%. Например, 18ХН2М — хромоникельмолибденовая сталь для рычагов привода клапанов, содержащая 0,18% углерода (С), до 1 % хрома /X), 2% никеля (Н2) и до 1% молибдена (М).
Легированные стали применяются в основном на автомобилях для изготовления наиболее ответственных деталей: поршневых пальцев, толкателей, клапанов, шатунов, осей, валов переключения передач, шестерней, сателлитов, полуосей, высокоточных деталей системы питания дизелей и др.
Низколегированные стали применяют для металлоемких несущих элементов конструкции автомобиля, таких, как грузовая платформа, рама, балка моста и др.
Сталь автоматная применяется главным образом для изготовления крепежных автомобильных деталей (болтов, гаек, шпилек) на быстроходных автоматных станках. Для достижения повышенной обрабатываемости она содержит до 0,3% серы и до 1,5% фосфора и поставляется в холоднотянутом состоянии в виде путков. Марка стали перед цифровым обозначением содержания углерода в сотых долях процента имеет букву А — автоматная (А20, А40 — с легирующей добавкой марганца).
Сталь рессорно-пр ужинная подразделяется на качественную, высококачественную и коррозионностойкую и характеризуется высокими значениями предела текучести и выносливости. Наибольшее применение для пружин общего назначения, подвески, рессорных листов и торсионов находят углеродистые качественные стали марок 65, 70, 75, 85, а также стали с таким же содержанием углерода и добавками марганца (60Г, 65Г, 70Г), кремния (60С2, 70СЗ) и др.
Сталь высоколегированная корозионно-стойкая жаростойкая и жаропрочная предназначена для работы в агрессивных средах и при высоких температурах. В зависимости от основного назначения стали этой группы Делятся на подгруппы : I — коррозионностойкую против всех видов коррозии (20X13, 17Х18Н9 и др.); II — жаростойкую до 500 °С (40Х9С2 и др.); III — жаропрочную до 1000 °С (36Х18Н25С2 и др.).
Из сталей указанных подгрупп изготовляют детали систем питания двигателей, запорную иглу карбюратора, пружины, детали форсунок, клапаны, глушители и т. п.
Стали для изготовления инструмента и технологической оснастки отличаются повышенной твердостью и теплостойкостью. Они содержат углерод и различные легирующие добавки. В обозначении марки стали содержание углерода указывается в десятых долях процента, а легирующие элементы обозначаются по аналогии с углеродистыми легированными сталями. Например: 4ХС – 0,4% С, 1% хрома, 1% кремния.
Особую группу инструментальных сталей составляют быстро-Режущие Сталн, которые предназначены для изготовления режущего инструмента быстроходных станков. Они имеют в обозначении марки стали букву «Р» (режущая) и число — процент содержания вольфрама. Например, Р9 — быстрорежущая, 9% — содержание вольфрама, а содержание углерода превышает 0,7%.
Чугуны, применяемые для автомобилей, классифицируются по состоянию углерода в сплаве (микроструктуре) на следующие основные виды: серый чугун (СЧ), белый чугун, ковки чугун (КЧ).
В сером чугуне весь углерод находится в свободном состоянии р. виде пластинчатого или шаровидного графита. Ковкий чугун представляет собой то же, что и серый чугун, но форма включений графита хлопьевидная.
В белом чугуне весь углерод связан в химическое соединение — цементит, вследствие чего он обладает повышенной твердостью.
Ковкий чугун маркируют так же, как и серый, но вторая группа цифр здесь обозначает относительное удлинение в процентах. Например, КЧ35-10 означает: ковкий чугун с пределом прочности на растяжение 35 кгс/мм2 и относительным удлинением 10%.
Чугуны находят широкое применение при изготовлении автомобильных деталей. Из серого чугуна изготавливают блоки цилиндров двигателей ЗИЛ , ЯМЗ , ГАЗ , головки цилиндров, гильзы блоков цилиндров, картера сцеплений, коробок передач, маховики, тормозные цилиндры, барабаны и др.
Ковкий чугун идет на изготовление деталей повышенной прочнее-; ти и вязкости: картеров редукторов, коробок передач, кронштейнов рессор, коробок сателлитов и др.
Белый чугун применяется для изготовления деталей повышенной усталостной прочности: коленчатых и распределительных валов, седел клапанов, шестерен масляного насоса, суппортов дискового тормоза ВАЗ и др.
Какой металл называют автомобильным
Автомобильные металлы и сплавы
Чугун —это сплав железа (до 93%), углерода (2—4%) и примесей: кремния, марганца, фосфора и серы.
Чугун называется серым, если углерод в нем находится в свободном состоянии в виде пластинчатого или шаровидного графита. Такой чугун хорошо заполняет литейную форму, легко обрабатывается резанием и поддается сварке.
Чугун называется белым (передельным), если углерод в нем химически связан с железом, образуя цементит, который придает чугуну в изломе особый блеск. Белый чугун очень твердый и хрупкий и идет главным образом на переделку в сталь и ковкий чугун.
По ГОСТ 1412—85 установлено несколько марок отливок нз серого чугуна. Например, СЧ 20. Буквы обозначают: серый чугун, цифровое обозначение показывает величину минимального временного сопротивления при растяжении.
Ковкий чугун получают нагревом и длительной выдержкой отливки из белого чугуна при температуре 900—1000 °С с последующим медленным охлаждением. Ему присущи повышенные по сравнению с серым чугуном прочность и пластичность. Марки ковкого чугуна ( ГОСТ 1215—79) обозначаются буквами и цифрами, например КЧ35—10: КЧ — ковкий чугун; первое число — минимальное временное сопротивление разрыву (МПа Ю-1), а второе — минимальное относительное удлинение в процентах.
Из серого чугуна изготавливают маховики, корпуса сборочных единиц, гильзы блок-картеров и другие детали, а из ковкого чугуна— детали повышенной прочности и вязкости.
Кроме этих чугунов для изготовления ряда деталей (блок-картеры двигателей ЗИЛ -130, КамАЗ-740) применяют легированные серые чугуны, которые содержат легирующие элементы (хром, никель и др.), улучшающие прочность, твердость, износостойкость и коррозионную стойкость чугунных деталей.
Стали содержат до 1,3% углерода. По химическому составу их разделяют на углеродистые и легированные, по назначению — на конструкционные, инструментальные и специальные, по качеству — на сталь обыкновенного качества, качественную и высококачественную.
Виды и сорта стали различают по маркам, установленным ГОСТ ами. Стали каждой марки присущи свой химический состав и определенные свойства.
Углеродистая конструкцонная сталь обыкновенного качества обозначается буквами Ст, после которых стоит порядковый номер стали (от 0 до 6). Нем выше номер стали, тем она прочнее и тверже.
Углеродистая конструкционная сталь качественная имеет меньше вредных примесей (серы, фосфора). Маркируют ее двузначной цифрой, характеризующей среднее содержание углерода (в сотых долях процента). Например, в стали марки 20 находится в среднем 0,20% углерода. Эту сталь применяют для изготовления шатунов, осей, валов, болтов.
Углеродистая инструментальная сталь получила буквенно-цифровой шифр от У7 до У13. Буква У означает, что сталь углеродистая, а цифра — среднее содержание углерода в десятых долях процента. В маркировке высококачественной инструментальной стали после цифры ставят букву А.
Легированные стали отличаются от углеродистых добавкой в разных сочетаниях и количествах таких элементов, как никель, хром, марганец, кремний, вольфрам, молибден и др., улучшающих свойства стали (жаростойкость, износостойкость, упругость, прочность и т. д.).
В марке легированной стали на первом месте стоят две цифры, характеризующие содержание в стали углерода (в сотых долях процента). Буквами после цифр зашифрованы легирующие элементы: Р — бор, Ю — алюминий, С — кремний, Т — титан, Г —марганец, Ф — ванадий, X — хром, Н — никель, В — вольфрам, М — молибден, К — кобальт и т. д. Цифры после этих букв указывают содержание легирующего элемента ( ). Если оно равно или менее 1 , то цифру не ставят. Буква А справа показывает, что сталь высококачественная. Например, легированная сталь 12ХН2А — высокого качества, содержит 0,12% углерода, до 1% хрома и около 2% никеля.
В автомобилестроении многие детали, имеющие сложную форму, отливают из углеродистой и легированной стали. Буква Л в конце обозначения марки стали указывает, что она предназначена для литья.
Цветные металлы в автомобилестроении применяют главным образом в виде сплавов.
Детали из алюминиевых сплавов приблизительно в три раза легче стальных, имеют достаточную прочность, высокую электро-и теплопроводность, хорошо обрабатываются резанием. Широко применяют сплавы алюминия с кремнием, медью и магнием.
Алюминиевые сплавы делят на литейные и деформируемые (обрабатываемые давлением, прокаткой, сваркой). Первые применяют для изготовления поршней, головок цилиндров, выпускных трубопроводов и других деталей, вторые — для деталей кузова, заклепок, прокладок, винтов.
Латуни — сплавы меди с цинком (до 38%). Они хорошо штампуются, отливаются и обрабатываются резанием. Для повышения механических свойств в латунь могут входить легирующие элементы. Для
маркировки латуней приняты следующие обозначенияз буква Л — латунь, следующие за ней буквы — легирующие элементы, первые две цифры — процентное содержание меди, последние— легирующих элементов. Например, ЛС74—3: латунь содержит 74% меди, 3% свинца, а остальное — процентное содержание цинка.
Латуни применяют для изготовления бачков и трубок радиаторов, деталей электрооборудования, различных втулок, уплотнитель-ных колец.
Бронзы — сплавы меди с оловом, свинцом, алюминием и другими элементами. Первые две буквы маркировки Бр обозначают бронзу, далее идут буквенные обозначения элементов, входящих в состав сплава, и за ними цифры, которые указывают среднее содержание элементов в процентах. Например, БрСЗО — это свинцовистая бронза, содержащая 30% свинца. В автомобилестроении применяют главным образом свинцовистые бронзы для подшипников коленчатого вала и некоторых втулок двигателей. Они обладают хорошими антифрикционными и литейными качествами, стойки против окисления и хорошо обрабатываются резанием.
Антифрикционные сплавы изготавливают на основе олова, свинца или алюминия. Это сплавы оловянистые Б88 и Б83, алюминиевые: АСМ , содержащий сурьму (до 6,5%) и магний (0,3— 0,7%); А020—1 (олова 20% и меди 1%); А09 —2 (олова 9% и меди 2%), их используют в подшипниках скольжения (вкладышах) коленчатых валов и опорных втулках распределительных валов.
Цветные металлы и сплавы в автомобилестроении
Из цветных металлов наиболее широко в автомобилестроении применяют медь, алюминий, олово, свинец, цинк, магний, сурьму. Применяют их главным образом как компоненты цветных и антифрикционных сплавов, а также припоев.
Медь — металл красного цвета, плотностью 8,93 г/см3 И температурой плавления 1083 °С. Медь обладает наивысшей после серебра электропроводностью и теплопроводностью.
Медь выпускается в виде слитков, отливок, прутков, листов, проволоки, лент, фольги и порошка. В зависимости от химического состава ( ГОСТ 859—66*) выпускают следующие марки меди: М00, МО, М06, Ml, Mlp, М2, М2р, МЗ, МЗр, М4. В наиболее чистой меди (марки М00) общее количество примесей равно 0,01 , в меди марки М4 количество примесей составляет 1 . В автомобильной промышленности медь при-
для изготовления электропроводов, деталей приборов электрооборудования и в качестве компонента различных сплавов.
Алюминий (А1) — металл серебристо-белого цвета, плотностью 2,7 г/см3 и температурой плавления 658 °С. Он характеризуется хорошей’ теплопроводностью и электропроводностью. На воздухе быстро окисляется, покрывается тонкой пленкой окиси, которая предохраняет его от дальнейшего окисления.
Алюминий легко поддается механической обработке, прокатке, волочению в проволоку. Он очень неустойчив в отношении действия щелочей, серной и соляной кислот. Алюминий выпускается в виде чушек, слитков, фольги.
Согласно ГОСТ 11069—64* в зависимости от способа получения и химического состава установлены три класса алюминия: особой чистоты, высокой чистоты и технической чистоты. К классу особой чистоты относится алюминий марки А999, содержащий всего 0,001% примесей, к классу высокой чистоты — алюминий марок А995, А99, А97, А95, к классу технической чистоты — алюминий марок А85, А8, А7, А6, А5, АО, А, АЕ.
В автомобилестроении алюминий применяют в основном как компонент в различных сплавах, для изготовления фольги, идущей на обкладки конденсаторов, для покрытия рефлекторов фар и т. д.
Олово (Sn) — блестящий белый металл плотностью 7,3 г/см3 и температурой плавления 232° С. Олово очень мягкий металл, обладающий высокой пластичностью, допускающей его прокатку в тонкие листы и фольгу. Чистое олово стойко в отношении коррозии и действия органических кислот.
В соответствии с ГОСТ 860—60* в зависимости от химического состава установлены следующие марки олова: ОВЧ - ООО , 01 п. ч., 01, 02, 03, 04. Чем меньше цифра в марке олова, тем оно чище. Олово марок 01 п. ч., 01, 02, 03, 04 выпускается в виде чушек массой 25 кг или прутков длиной около 0,5 м и массой 0,5 кг. Олово марки ОВЧ - ООО выпускается в виде чушек массой 5 кг или прутков длиной около 30 см, массой 0,25 кг.
В чистом виде олово применяется для лужения. Наиболее широкое применение олово находит как добавка в сплавы цветных металлов, Для приготовления припоев и изготовления баббитов.
Свинец (РЬ) — металл синевато-серого цвета плотностью 4,34 г/см3 и температурой плавления 327,4° С, обладает высокой пластичностью, легко обрабатывается давлением даже в холодном состоянии. На воздухе свинец быстро окисляется, покрываясь тонкой пленкой окиси серого цвета, которая предохраняет его от дальнейшей коррозии. Свинец весьма устойчив е отношении действия серной и соляной кислот, а также органических кислот, щелочей и масел. В азотной кислоте он легко растворяется. Все соединения свинца ядовиты.
Согласно ГОСТ 3778—65* в зависимости от химического состава Устанавливаются следующие марки свинца: С000, С00, СО, CI, С2, СЗ. С винец марок СО, CI, С2, СЗ выпускается в виде гладких чушек массой не более 40 кг и не менее 30 кг. В автомобилестроении свинец применяют для изготовления решеток аккумуляторных пластин, активной
массы пластин, клемм и перемычек аккумуляторов, его используют также как компонент в бронзах, припоях и антифрикционных сплавах.
Цинк (Zn) — металл синевато-белого цвета, блестящий в свежем изломе и быстро тускнеющий на воздухе, плотностью 7,13 г/см3 и температурой плавления 419° С. Цинк пластичен при повышенных температурах, имеет сравнительно хорошую коррозионную стойкость в сухой атмосфере и пресной воде. Во влажном воздухе и в воде окисляется, покрываясь тонким слоем окиси, которая предохраняет металл от дальнейшего окисления.
По ГОСТ 3640—65* в зависимости от химического состава установлены марки цинка: ЦВЧ , ЦВ, Ц0, Ц1, Ц2, ЦЗ.
Цинк марки ЦВЧ наиболее-чистый, содержит всрго 0,003% примесей и выпускается в виде чушек массой не более 5 кг. Цинк всех остальных марок выпускается в виде чушек массой 19—21 кг. Цинк используется для цинкования поверхности листов и стальных изделий с целью предохранения их от коррозии, а также как компонент в цветных, антифрикционных сплавах и припоях.
Магний (Mg) — металл серебристо-белого цвета, плотностью 1,73 г/см3 и температурой плавления 650° С. Технический магний обладает слабой коррозионной стойкостью и в обычных атмосферных условиях его без защиты не применяют.
По ГОСТ 804—72 выпускается магний марок Мг96, Мг95 и Мг90. Технический магний в автомобилестроении как конструкционный материал не применяется, используется как компонент в цветных сплавах.
Сурьма (Sb) — металл белого цвета, с сильным блеском, плотностью 6,69 г/см3 и температурой плавления 630° С. Сурьма отличается очень большой хрупкостью, что не позволяет обрабатывать ее давлением. При нормальной температуре сурьма на воздухе не окисляется. Она стойка во влажной атмосфере и в разбавленных кислотах.
По ГОСТ 1089—62 в зависимости от химического состава установлены следующие марки сурьмы: высокой чистоты — СуООО, технические— СуОО, СуО, Су 1 и Су2. В марке СуООО содержание сурьмы равно 99,99%, в марке Су2 ее содержание 98,8%. Сурьма марки СуООО: выпускается в слитках в виде прутков, сурьма марок СуОО, СуО, СуI и Су2 выпускается в виде чушек, имеющих форму усеченной пирамиды, массой 15—25 кг. В чистом виде сурьму в автомобилестроении не ис-1 пользуют. Она является составной частью многих цветных и антифрикционных сплавов.
Сплавы на медной основе. К сплавам на медной основе относятся латуни и бронзы.
Латунь — это сплав меди с цинком. Латуни подразделяются на литейные и деформируемые, а последние на простые и сложные (многокомпонентные). Сложные латуни подразделяют на оловянистые, марганцовистожелезистые и др.
Повышение процентного содержания меди в составе латуни улучшает ее пластичность, теплопроводность, электропроводность и коррозионную стойкость. Относительное повышение содержания цинка улучшает обрабатываемость латуни резанием, прирабатываемость, повышает износостойкость. Включение в состав латуни свинца увеличивает ее антифрикционные свойства.
Наличие олова, марганца, кремния, железа повышает прочность латуни и способствует улучшению антикоррозионных свойств. В автомобилестроении и авторемонтном производстве широко применяют деформируемые латуни, из которых изготовляют втулки генератора, бачки радиатора, трубки водяного и масляного радиаторов, различные краники и др.
Бронза представляет собой сплав меди с оловом и другими элементами (алюминием, свинцом, кремнием, марганцем, железом и др.). В зависимости от химического состава бронзы делятся на оловянистые и безоловянистые или специальные. Оловянистые подразделяют на литейные и деформируемые.
Автомобильные детали изготовляют из оловянистых бронз, которые характеризуются достаточной прочностью, высокими антифрикционными качествами, коррозионной стойкостью, хорошей теплопроводностью. Деформируемые оловянистые бронзы отличаются, кроме того, хорошими упругими свойствами. Повышение содержания олова в оловянистых бронзах увеличивает прочность и твердость, но уменьшает пластичность и ударную вязкость. Из оловянистых бронз изготавливают арматуру, втулки шкворней, полуосевые и упорные шайбы, втулки коромысел, шатунов и др.
Сплавы на алюминиевой и магниевой основе. В состав алюминиевых сплавов входят кремний, магний, медь, цинк, марганец, железо и другие элементы. По технологическим свойствам алюминиевые сплавы подразделяются на литейные, обладающие хорошими литейными технологическими свойствами, и деформируемые, сравнительно легко поддающиеся обработке давлением, резко повышающей их прочность.
Деформируемые алюминиевые сплавы в автомобилестроении и авторемонтном производстве применяют для изготовления поршней и заклепок. Литейные алюминиевые сплавы для производства деталей автомобилей находят большее применение, чем деформируемые сплавы. Из литейных алюминиевых сплавов изготовляют поршни, головки и блоки ‘цилиндров, корпуса карбюраторов и топливных насосов, картеры коробок передач легковых автомобилей и другие детали.
В состав магниевых сплавов входят алюминий, марганец, цинк, Цирконий и другие элементы. Магниевые сплавы, как и алюминиевые, подразделяются на литейные и деформируемые.
Сплавы на цинковой основе. В состав цинковых сплавов входят алюминий, медь, магний и другие элементы. Сплавы на нинковой основе имеют низкую температуру плавления. Основным положительным’качеством цинковых, сплавов является их жидкотеку-Честь в расплавленном состоянии. Их применяют для изготовления автомобильных деталей сложной формы с тонкими сечениями методом литья под давлением. Из цинковых сплавов изготавливают корпуса карбюраторов, корпуса топливных насосов, тормозные краны, облицовку радиаторов и т. п.
Антифрикционные сплавы широко применяют в автомобилестроении для заливки вкладышей коренных и шатунных подшипников коленчатых валов двигателей, опорных втулок распределительных валов, шатунных вкладышей коленчатых валов компрессоров и других целей. В качестве антифрикционных сплавов применяют баббиты, свинцовистые бронзы и другие сплавы.
На карбюраторных автомобильных двигателях преимущественно применяют малосурьмяннстый свинцовый сплав СОС -6-6, обладающий хорошей сопротивляемостью циклическим деформациям и выкрашиванию. Для заливки вкладышей коренных и шатунных подшипников коленчатых валов дизельных автомобильных двигателей применяют свинцовистую бронзу, обычно БрСЗО.
Для заливки вкладышей дизельных и карбюраторных двигателей применяют сплавы на алюминиевой основе, например сплав АСС6-5 и др. Преимуществами тонкостенных вкладышей, залитых свинцовистой бронзой или алюминиевым сплавом, является их большая прочность, меньшая вероятность выкрашивания, хорошая теплопроводность, высокая жаростойкость.
Припои. В автомобилестроении и авторемонтном производстве широко применяют оловянисто-свинцовые и медно-цинковые припои, кроме того, используют серебряные припои. Положительными свойствами серебряных припоев являются высокая механическая прочность, пластичность, электропроводность, коррозионная стойкость, однако эти припои дефинитны.
Оловянисто-свинцовые припои применяют для лужения вкладышей, заливаемых свинцовыми баббитами, для пайки радиаторов, топливных баков, деталей электрооборудования и т. п. Медно-цинковые припои применяются для пайки деталей из латуни, медных сплавов, для газовой пайки деталей из серого и ковкого чугуна и т. п. Серебряные припои применяют для пайки ответственных соединений электроприборов и электропроводов.
Урок викторина по химии "Металлы Победы" для учащихся 9-11
Как помогали металлы «ковать победу» над
фашистской Германией?
Задачи урока:
1. Выяснить, каким образом использовали металлы во
время ВОВ
2. Показать , что победа ковалась и в тылу трудом видных
учёных, инженеров и рабочих
3. Воспитывать в учащихся чувство патриотизма, предан-
ности и любви к своей Родине, уважительное отношение
к ветеранам войны и тыла
О каком металле идет речь “В бою … дороже золота” - гласит татарская пословица. И русские говорили: “При рати … дороже золота. (Им)… и золото добуду”.
FeO + CO = Fe + CO2
Реакция получения металла
Рассчитайте массу железа, если объем (н.у.) газообразного продукта реакции составил 67,2л.
Решите задачу
168 г
Ответ
Fe –железо
Более 90% всех металлов, которые использовались в Великой Отечественной войне, приходятся на железо. Железо – главная часть чугунной сталей, а по их выплавке судят о мощности государства. Сколько этого металла было выброшено в снарядах, бомбах, минах, гранатах! Чтобы судить о масштабах расхода железа в минувшей войне, назовем одну цифру: миллион бомб сброшено фашисткой авиацией на Сталинград.
Сплавы железа в виде броневых плит и литья толщиной 10-100 мм использовались при изготовлении корпусов и башен танков, бронепоездов.
Какой металл добавляется в сталь для придания танкам Т-34 особой прочности брони?
Какой металл и почему называют "крылатым"?
Горящий зажигательный состав нельзя потушить водой,
т.к. раскаленный магний реагирует с водой:
Mg + 2Н2O = Mg(ОН)2 + Н2 ↑
Алюминий использовали для защиты самолетов, так как радиолокационные станции не улавливали сигналы от приближающихся самолетов. Помехи были вызваны лентами из алюминиевой фольги, при налётах на Германию было сброшено примерно 20 тыс. тонн алюминиевой фольги.
В годы войны не только танк считался боевой машиной, но и автомобили. Какой металл называют «автомобильным»?
Ночная атака советских
танков Т-34-85 . Для осве-
щения используются
сигнальные ракеты.
Какой металл помогает быстро заполнить аэростаты водородом? Ведь аэростаты помогали в доставке военного снаряжения и питания во время войны? Особенно в дни блокады Ленинграда
Часто для получения водорода использовали гидрид лития. Таблетки LiH служили летчикам источником водорода. При авариях над морем под действием воды таблетки моментально разлагались, наполняя водородом спасательные средства – надувные лодки, жилеты, сигнальные шары-антенны:
LiH + H2O = LiOH + H2
Соли лития окрашивают в яркий красный цвет след трассирующих пуль и снарядов. Соединение лития использовались на подвод-
ных лодках для очистки воздуха.
2K2O2 +2CО2 = 2K2CO3 + O2↑
Этот металл «болеет чумой».
Сплав олова с другими металлами используется для изготовления подшипников. Из олова изготовляли блестящие оловянные солдатские пуговицы. При низкой температуре атомы олова перестраивают свою кристаллическую решетку, в результате чего металл разрушается, “заболевает”. Название этой болезни – оловянная чума. Солдатские пуговицы нельзя хранить на морозе. Хлорид олова (IV) – жидкость, использовалась для образования дымовых завес.
В годы ВОВ главным потребителем
меди была военная промышленность
Какой металл способствовал быстрому исходу операции при штурме Берлина в 1945?
Прожектор периода Великой Отечественной войны .
Военное применение прожекторов
Какой металл является важнейшим в изготовлении пороха? Назовите соединение этого металла?
КNO3
Какой металл называют «военным»?
так как 90% его используется на военные нужды. Стали с добавкой молибдена (и других микродобавок) очень прочны, из них готовят стволы орудий, винтовок, ружей, детали самолетов, автомобили. Введение молибдена в состав сталей в сочетании с хромом или вольфрамом необычайно повышает их твердость (танковая броня). Молибденовая сталь прочна, остра, тверда, гибка. Из нее готовили клинки, сабли, мечи, ножи.
Какие металлы также имели стратегическое значение?
Тантал Лантан Германий
Сплав лантана, церия и железа дает так называемый “кремень”, который использовался в солдатских зажигалках
Тантал – важнейший стратегический металл для изготовления радарных установок, передаточных радиостанций; металл восстановительной хирургии
Без германия не было бы радиолокаторов
Бутылки КС (Качурина – Солодовникова) или просто бутылок с горючей смесью
1) К обыкновенной бутылке резинкой прикрепляли ампулы, содержащие концентрированную серную кислоту, бертолетову соль, сахарную пудру. В бутылку заливали бензин, керосин или масло.
2)Принцип действия, химические процессы, сопровождавшие действие смеси в бутылке?
Как только такая бутылка при ударе разбивалась о броню, компоненты запала вступали в химическую реакцию, происходила сильная вспышка, и горючее воспламенялось.
2KClO3 + H2SO4 = 2ClO2 + KСlO4 + K2SO4 + H2O
2ClO2 = Cl2 + 2O2
C12H22O11 + 12O2 = 12CO2 + 11H2O
А.Е.Ферсман
(1883–1945)
А.Е.Арбузов (1877–1968)
Н.Н.Семенов (1896–1986)
С.И.Вольфкович
(1896–1980)
А.Н.Несмеянов
(1899–1980)
Н.Н.Мельников
(1908–2000)
Установите соответствие
Руководил освоением
месторождений металлов
Какие открытия химиков сыграли во время войны громадную роль в спасении многих раненых?
М.В. Шостаковский-винилин-противовоспалительное средство
М.М.Ильин- на основе пихты создал бальзам
от обморожений, ожогов, ран
Кто про химика сказал: “Мало воевал”,
Кто сказал: “Он мало крови проливал?”
Я в свидетели зову химиков–друзей, -
Тех, кто смело бил врага до последних дней,
Тех, кто с армией родной шел в одном строю,
Тех, кто грудью защитил Родину мою.
Сколько пройдено дорог, фронтовых путей…
Сколько полегло на них молодых парней…
Не померкнет никогда память о войне,
Слава химикам живым, павшим - честь вдвойне.
З.И. Барсуков
Это фрукты и конфеты,
Это запахи весны…
Что такое День Победы –
Это значит нет войны.
Используемая литература и ресурсы-интернет
Рабочие листы и материалы для учителей и воспитателей
Более 3 000 дидактических материалов для школьного и домашнего обучения
"Волшебный" металл придал прочности Т-34, а самолеты союзников прикрыла фольга
Великая Отечественная стала для нашей страны, в том числе, временем экспериментов, открытий и технологий. Ученые и конструкторы трудились над тем, чтобы сталь стала крепче, самолеты – легче, а снаряды – быстрее. В это время было сделано множество открытий, где главная роль отводилась различным металлам и минералам. Об их удивительных способностях рассказали в Красноярском музее геологии.
Алюминий
Август 1943 года, союзные войска готовят серию бомбардировок Гамбурга, крупного промышленного и транспортного центра Германии. Нужен был отвлекающий маневр, чтобы авиация могла как можно ближе подлететь к городу, прежде чем гитлеровцы заметят ее на своих радарах и откроют оборонительный огонь с земли.
Неожиданно радары начали улавливать какие-то странные помехи. Пока немцы пытались понять, что это, время было упущено, самолеты союзников уже бомбили Гамбург. Оказалось, что помехи создавали тонкие алюминиевые пластинки – фольга, которую сбросили с первого легкого самолета, она ослепила немецкую электронику и не позволила разглядеть загруженные под завязку тяжелые бомбардировщики. Всего при налетах на Германию было сброшено около 20 тысяч тонн алюминиевой фольги.
Главное достоинство этого металла – его легкость, отчего его прозвали крылатым. Помните довоенные самолеты – «этажерки», они ведь были деревянными. Алюминий сделал советскую военную авиацию легкой, быстрой, надежной. Из него изготавливалась не только обшивка самолетов, детали двигателей, винты и шасси, но и заклепки. Число таких заклепок на истребителе военного времени доходило до 100-200 тысяч штук, а на бомбардировщике – до миллиона.
Никель
Когда советский танк Т-34 в 1942 году появился на полях сражений, немецкие военные специалисты были поражены: внешне он казался таким маленьким и уязвимым против тяжелой боевой машины Вермахта - «Тигра». Однако в бою Т-34 оказался маневренным, а снаряды словно отскакивали от его брони. Неудивительно, что из Берлина пришел приказ немедленно захватить русский танк для тщательного изучения.
Сначала трофеем занимались конструкторы, разобрали его и никак не могли понять, в чем же причина такого превосходства. Русский танк весил чуть более 30 тонн, толщина лобовой брони – 45 миллиметров, а башня поворачивалась за 10 секунд. В отличие от него лучший в то время немецкий танк «Тигр» весил 57 тонн, толщина лобовой брони 100 миллиметров, а полный оборот башни составлял целых 35 секунд.
Т-34 отдали на изучение химикам, и те выяснили: в составе его брони был никель, волшебный металл, который и придавал броне прочность. Месторождений никеля у немцев не было, поэтому прежде они не брали его в расчет. Одной из задач военной операции на Диксоне в августе 1942 года было, в том числе, получить доступ к норильскому никелевому месторождению.
Советские военные конструкторы использовали никель и при производстве знаменитых «катюш», которые наводили страх на врага.
В Красноярском музее геологии собрано немало экспонатов времен Великой Отечественной войны. Фото: музей геологии
Фосфор
Немецкий патруль остановил двух мужичков, бредущих по проселочной дороге. В руках – топоры и веревка, по всему видно, что направились в лес за дровами. На всякие случай солдаты обыскали крестьян и нашли пару небольших рыжеватых брусков. «Мыло, мыло» - бормотал один из мужичков, даже намочил брусок в луже и немного намылил. Патруль махнул рукой и отправился дальше.
Той же ночью при помощи этого «мыла» партизаны пустили под откос немецкий эшелон с техникой. А ведь главный компонент этого состава – фосфор. Для военной промышленности он незаменим как воспламенитель. Его добавляли в зажигательные бомбы, снаряды, гранаты, пули.
Начинка зажигательных бомб состояла из смеси порошков алюминия, фосфора, магния и оксида железа, детонатором служила гремучая ртуть. При ударе бомбы о поверхность срабатывал детонатор, воспламеняющий зажигательный состав, и все вокруг начинало гореть. Такой состав нельзя было потушить водой.
Артиллерийские и реактивные снаряды, мины - для их изготовления использовались различные сплавы, улучшающие их боевые свойства Фото: Мария ЛЕНЦ
Марганец
Зимой 1943/44 года фашистская армия ожесточенно сражалась, пытаясь удержаться близ городка Никополь в степях Приднепровья. Там находилось одно из крупнейших мировых месторождений марганца. Немцам очень нужен был этот черный металл, ведь он являлся важным компонентом высокопрочных и износостойких сталей. Его использовали для изготовления брони. Сплав с добавлением марганца делал крепче различные машины и механизмы.
Однако марганец показывал совершенно другие свойства в другом сплаве, из которого производили ручные осколочные гранаты. Он придавал им хрупкость. Взрыв – и сотни мельчайших осколков разлетались с огромной пробивной силой на десятки метров, усиливая поражающую способность.
Наконец, в годы Великой Отечественной войны в сумке каждой санитарки на поле боя или фельдшера в полевом госпитале всегда находился пузырек с марганцовкой. По химическому составу это калиевая соль марганцевой кислоты, ею промывали солдатские раны.
Нефть
Летом 1942 года немецкие войска рвались к Кавказу – им нужна была нефть. Советская армия несла огромные потери на подступах к Кавказу, но противник так и не добрался ни до одной из скважин.
Из-за дефицита топлива бойцам нередко приходилось носить ящики с патронами на большие расстояния, а это влекло за собой большие потери времени и человеческих жизней. Порой нечем было заправлять танки. Если бы мы тогда потеряли Кавказ, эта война могла бы затянуться на десяток лет.
Нефть – это черное золото, «кровь войны» - как называли ее тогда. Из нее делали не только топливо для военной техники и авиации, но и производили десятки других незаменимых продуктов.
Уже в самом начале Великой Отечественной войны все понимали: победит тот, у кого будет больше моторов. Поэтому в Сибирь были направлены отряды геологов для поисков новых месторождений. И геологи со своей задачей справились отлично: в военное время в СССР был открыто 34 нефтяных и газовых месторождения, из которых 21 – в восточных регионах.
А это - тот самый никель, металл, который внес свою огромную лепту в создание надежной военной техники. Фото: сайт компании "Норильский никель"
Короткой строкой
Пирит служил сырьем для получения серной кислоты, железного купороса, селена. Его применяли как катализатор в пиротехнике. Добавляли для крепости в цемент при строительстве укрепительных сооружений, командных бункеров.
Мышьяк (аурипигмент) использовали для изготовления дроби – добавляли к свинцу, тогда свинец становился прочнее и застывал в виде мелких шариков. Мышьяк входил в состав трассирующих элементов, придавая летящим в ночи пулям красноватый оттенок.
Свинец (галенит) – тяжелый металл с высокой плотностью. Это пули и снаряды – и этим все сказано.
Сера – это составляющая часть пороха.
Цинк (сфалерит) – входит в состав латуни (сплав с медью), очень стойкий к коррозии, поэтому его используют в морском судостроении и приборостроении. А также для изготовления гильз патронов и артиллерийских снарядов.
Железо – входит в состав любой бронетехники, ручного ствольного и артиллерийского оружия. Более 90% всех металлов, которые использовались в Великой Отечественной войне, приходится на железо.
Ванадий называют автомобильным металлом. Он позволил облегчить вес машин и улучшить их ходовые качества. Его добавляли в сплавы для производства солдатских касок и шлемов, в броневые плиты на пушках. А еще для изготовления коленчатых валов корабельных двигателей, отдельных деталей торпед, авиамоторов, бронебойных снарядов.
Медь – в сплаве с оловом (90 /10) – пушечный металл. Сплав меди и цинка (68 / 32) – гильзы патронов и артиллерийских снарядов. В годы войны в любом артиллерийском дивизионе был офицер, ответственный за сбор стреляных гильз и отправку их на перезарядку.
Молибденит добавлялся в сталь как упрочняющий компонент для производства стволов орудий, винтовок, ружей, деталей самолетов, автомобилей. А в сочетании с хромом или вольфрамом молибден повышает твердость танковой брони. А еще молибденовая сталь прочная, острая, гибкая, из нее готовили клинки, сабли, мечи, ножи.
Вольфрамит – самый ценный стратегический материал. Из вольфрамовых сталей и сплавов изготавливали танковую броню, оболочку торпед и снарядов, наиболее важные детали самолетов и двигатели.
Возрастная категория сайта 18 +
И.О. ГЛАВНОГО РЕДАКТОРА — НОСОВА ОЛЕСЯ ВЯЧЕСЛАВОВНА.
Читайте также: