Какой металл используется в жестких дисках

Обновлено: 06.01.2025

Жёсткий диск может хранить в себе большое количество данных, но знаете ли вы как он устроен внутри или принцип его работы?

Так вот я вам наглядно покажу. HDD состоит из двух частей. Корпус, чёрного цвета и прикрытый крышкой, это гермоблок. Плата на обратной стороне, это контроллер. О нём я расскажу чуть позже. А сейчас посмотрим что внутри гермоблока.

Открыв крышку, сразу бросается в глаза большая блестящая пластина, занимающая большую часть корпуса и зажатая шайбой. Это и есть сам жесткий диск, их кстати может быть несколько расположенных один над другим.

Пластины крепятся на шпиндель электромотора, который заставляют их вращаться со скоростью 7200 об/мин, а контроллер поддерживает постоянную скорость вращения при помощи контактов на обратной стороне корпуса, через них же и осуществляется питание. Именно на пластинах хранятся все данные, причём не только пользовательские, но и служебные необходимые самому устройству.

Чем больше пластин, тем больше информации может вместить устройство, а выполнены они обычно из металлических сплавов (хотя были попытки делать их из пластика и даже стекла, но они были не долговечны, встречаются даже керамические диски).

Покрыты пластины ферромагнитным слоем, который и хранит всю информацию. Этот слой разбивается на сотни тысяч узких дорожек, каждая из дорожек разделена на секторы это позволяет определять, куда записывать и где считывать информацию. А вся карта о секторах и дорожках находится в памяти контроллера.

чтобы записать данные, над диском с большой скоростью движется металлический кронштейн, который называется коромысло, на его конце находятся слайдеры с магнитными головками.

Головка проходя над дорожкой намагничивает микроскопическую область на ферромагнитном слое, устанавливая магнитный момент такой ячейки в одно из состояний «0» или «1», а с помощью улавливания магнитного потока происходит считывание информации, когда головка проходит над областью с измененной полярностью, она фиксирует импульс напряжения, этот импульс считывается как единица, а его отсутствие как 0,(каждый такой 0 и 1 называется "бит"). Считываемые головкой сигналы очень слабы и перед отправкой на контроллер должны проходить через усилитель. Отвечающий за это чип находится с боку коромысла (preamplifier).

Вся эта конструкция приводится в движение при помощи привода основанном на электромагнетизме. Который называется сервопривод. Вот он позиционирует коромысло в то место, куда нужно записать или откуда считать информацию и управляется интегральной микросхемой. Внутри он состоит из двух мощных неодимовых магнитов, катушки и фиксатора. Фиксатор предотвращает какие-либо движения головок в отключённом состоянии и пока шпиндель не наберёт обороты. Всё это важно, потому что от этой конструкции зависит долговечность головок, а от скорости и точности перемещения коромысла зависит время поиска данных на поверхности пластин. Интересно ещё то что головка коромысла обычно не соприкасается с дисками, а парит над ними при помощи прослойки набегающего потока воздуха, на расстоянии примерно 10 нанометров от крутящейся пластины, благодаря аэродинамической форме слайдера.

А так как это очень маленькие расстояния, и все детали движутся на огромных скоростях. Внутри корпуса есть циркуляционный фильтр (recirculation filter), он находится на пути потоков воздуха, создаваемый вращением пластин, этот фильтр постоянно собирает и задерживает мельчайшие частицы которые могли бы повредить пластины и хранящуюся на них информацию или вывести из строя магнитную головку. Кроме него, на обратной стороне корпуса и на крышке имеются маленькие, почти незаметное отверстия (breath hole). Они служит для выравнивания давления и прикрыты фильтром (breath filter), которые так же задерживают частицы пыли и влаги.

Внутренности гермоблока мы рассмотрели, давайте теперь вернёмся к контроллеру, так как очень сложная и важная часть жёсткого диска. Эта плата с разъёмами представляет собой интегральную схему, которая синхронизирует работу диска с компьютером и управляет всеми всеми процессами внутри hdd. Перевернув плату, можно увидеть что это целый микрокомпьютер со своим процессором, оперативной и постоянной памятью и есть своя система ввода/вывода.

Чип с большим количеством ножек это MCU - контроллер который занимается всеми расчётами и преобразует аналоговый сигнал с головки в цифровой и наоборот. Для ускорения этих операций рядом распаян чип с памятью DDR SDRAM. Который служит в роли буфера для хранения промежуточных данных, которые уже считанны с жесткого диска, но еще не были переданы для дальнейшей обработки, а также для хранения данных, к которым система обращается довольно часто.

А вот два других крупных чипа это Flash память и её контроллер. Они действует как большой кэш для часто используемых данных, для повышения производительности. Но эти чипы устанавливаются только в гибридных HDD и в большенстве дисков их нет.

Кручу-верчу, запутать хочу. Разбираемся в линейках HDD


Привет, гиктаймс!

Сегодня у нас необычный материал, статья-ликбез: выбираем правильные HDD в зависимости от предполагаемых сценариев использования. Дело в том, что производители наплодили целую кучу разных линеек, и, если не следить за темой регулярно, через год-полтора можно легко забыть, какая серия к чему относится, зачем нужна и чем отличается.

Этот пост был бы неполным без небольшой теоретической части, поэтому приступим.

Устройство HDD

Все жёсткие диски устроены примерно одинаково. Внутри находятся один или несколько «блинов», приводимых в движение высокоскоростным мотором, да блок считывающих головок. Всё это спрятано в герметичной зоне, где нет пыли. По соседству с «механикой», можно найти несколько микросхем и плат, но они, скорее, относятся к электронике управления, чем непосредственно к хранению информации.


На данном изображении — старенький Seagate из конца 90-х годов. Конструктивно с тех пор почти ничего не поменялось. Когда диск раскручивается до минимально допустимых конструкцией оборотов, блок управления выводит головки в рабочее положение, и считывающий элемент начинает «парить» в долях миллиметра над магнитной поверхностью блинов.

На данном этапе отличаться может как количество оборотов в минуту у привода «блинов», так и количество самих пластин, на которых хранится информация. На своеобразной «расчёске», закреплённой между магнитными пластинами, установлены считывающие головки. Обычно их вдвое больше, чем пластин (хотя и встречаются исключения), перемещаются они все вместе. Количество самих пластин почти всегда напрямую зависит от объёма диска, но современные технологии позволяют «запихать» на один квадратный миллиметр всё больше и больше информации, увеличивая «плотность» информации в самом что ни на есть прямом смысле. Таким образом, например, можно встретить старый жёсткий диск на 1 ТБ с тремя «блинами» по 333 ГБ каждый, а можно найти новый HDD на 1.5 ТБ с двумя, но по 750.

Производители жёстких дисков

В нашем магазине сейчас представлены четыре крупных бренда: Western Digital, Seagate, Hitachi HGST (Приобретена WD) и Toshiba. Своё производство жёстких дисков есть было и у Samsung (да и много ещё у кого, в Википедии насчитывается более 200 компаний, занимвашихся производством HDD), фактических же производителей железа и того меньше. Свои сборочные линии есть только у Seagate, WD и Toshiba. Все остальные комании, так или иначе, либо были перекуплены крупными производителями, либо покинули рынок HDD.

Какие бывают HDD?

Казалось бы, жёсткий диск и жёсткий диск, выбрал нужный объём, посмотрел на цену, устраивает — пошёл и купил. Естественно, в жизни всё несколько сложнее. Параметров у жёстких дисков больше, чем «цена» и «сколько на него влезает».

Основные характеристики HDD таковы:

Ёмкость – собственно, «сколько на него влезает» – это значение характеризует количество информации, которое можно записать на диск. При этом хитрые производители используют десятичные приставки обычной метрической системы: в 1 килобайте у них 1000 байт, в мегабайте, соответственно, миллион, в терабайте — триллион. В операционной же системе килобайт, мегабайт и прочие единицы измерения кратны 1024. Из-за такой, казалось бы, небольшой разницы, накапливается приличная «погрешность», разумеется, не в нашу с вами пользу: если на красивой этикетке диска указана ёмкость в 1 терабайт, то на практике пользователю доступно примерно 931-932 ГБ полезного пространства.

Скорость вращения шпинделя – основная характеристика, отвечающая за скорость работы диска при последовательном чтении или записи информации. Чем быстрее вращается мотор, тем быстрее пролетают под «головкой» сектора блинов. Основные популярные значения — 5400, 7200, 10000 и 15000 оборотов в минуту, хотя есть модели и с промежуточными значениями.

Объём кеш-памяти – объём специального высокоскоростного буффера, в котором оседают файлы на чтение или запись, прежде чем диск или система выполнит предыдущую операцию. Чем больше объём кеш-памяти, тем проще диску работать с большим количеством маленьких файлов.

Интерфейс подключения – способ связи жёсткого диска с остальным железом вашего компьютера. Самые популярные на сегодняшний день — SATA 2 (300) и SATA 3 (600) для дисков «внутреннего» назначения, и USB 2.0 / 3.0 для «внешних» накопителей.

В большинстве случаев от этих аппаратных возможностей зависят показатели скорости чтения и записи, долговечность самого диска, уровни шума и энергопотребления. Различное сочетание данных характеристик позволяет производителю влиять на непосредственно скоростные и надёжностные свойства HDD. Нас с вами интересуют следующие показатели:

Количество операций ввода-вывода в секунду (IOPS) — в двух словах — возможности жёсткого диска по чтению и записи определённого количества блоков (обычно, по 4 килобайта) информации за одну секунду. Подробнее об этой характеристике можно почитать в Википедии, информация в статье просто исчерпывающая. Чем больше значение IOPS — тем быстрее диск может проводить операции с файлами.

Время произвольного доступа — то есть то время, которое требуется для позиционирования головки считывающего / записывающего устройства на произвольный участок магнитного диска. Чем меньше — тем быстрее «отклик» у жёсткого диска на запросы системы.

Для чего можно использовать HDD?

В наше время высокоскоростные диски SSD успешно отвоёвывают роль системных носителей. Несмотря на высокую цену, достаточно скромные (по сравнению с HDD) ёмкости и риск безвозвратной утери данных, диски на основе микросхем (а не движущихся частей), всё чаще становятся носителями OS и чувствительного к скорости обмена данными с диском софта. Дело в том, что их показатели IOPS и времени произвольного доступа в разы выше, чем у «классических» жёстких дисков. К счастью, списывать проверенную временем технологию рано. Во-первых, по соотношению количества сохраняемой информации к цене у жёсткого диска практически нет равных, а уж тем более в условиях домашнего использования. Во-вторых, цены на SSD и так были не самыми радостными, а теперь ещё и этот кризис… В общем, HDD пока жив и живее всех живых. Так как же можно его применять?

  • Как универсальный диск «для всего»: системы, софта, игр, хранения данных;
  • Как диск сравнительно небольшого (от 300 ГБ до 1 ТБ) объёма для приложений, чувствительных к скорости обмена данными с дисковой подсистемой;
  • Как диск для долговременного хранения данных, не представляющих высокой ценности и не требующих высоких скоростей доступа: музыки, фильмов, фотографий, игр, резервных копий и всего того, что одинаково будет работать хоть на старом железе, хоть на новом;
  • Диск для использования под Torrent-закачки. Обычно такие диски испытываю либо постоянные (чуть ли не 24/7) или почти постоянные нагрузки: вечно что-то пишется, что-то читается;
  • Диск для длительного хранения важной информации.

Вторая же группа, как раз, сражается с SSD за внимание пользователя. С одной стороны, соревноваться с «твердотельниками» у «классики» нет никакой возможности, с другой — даже самый простенький SSD на 64 гигабайта (чтобы хватило на систему и самый важный софт) + самый дешёвый под данные HDD стоят больше, чем один скоростной диск сравнимого объёма. От таких жёстких дисков требуется высокая скорость вращения шпинделя, хорошие показатели IOPS, надёжная вибро- и шумоизоляция.

Для хранения информации, которую можно достать ещё раз (в интернете, на другом диске) на первое место вылезает соотношение цены и объёма. Скоростные характеристики в данном случае не так важны: даже 4k2k-видео, если вы такое найдёте, не забъёт всю пропускную способность «медленных» HDD.

Диски, активно используемые для обмена файлами в пиринговых сетях, испытывают наибольшие нагрузки: торрент постоянно что-то читает, что-то пишет, делает это не по порядку, часто одновременно и «не вовремя». Сюда же, в принципе, можно отнести и всякие записи с веб-камер, особенно длящиеся 24/7. Ключевая характеристика для таких нагрузок — долговечность и рассчитанные на подобные «мытарства» элементы механики HDD: привода головки, двигателя, раскручивающего «блины», управляющей электроники.

Особняком стоят системы хранения важных данных. На самом деле, лучший вариант сохранить действительно важные файлы — поместить их в облако, создать резервную копию, следить, чтобы она была работоспособной и регулярно повторять как диагностику хранилищ, так и операции по резервному копированию. Само собой, на первое место всплывают безотказность и надёжность устройства.

Линейки HDD

Постараемся рассмотреть все модели жёстких дисков в «схожих» условиях — за основу возьмём модель на 1 ТБ.

Начнём с продукции компании Western Digital. Компания давала семействам дисков «цветовые» названия, окрашивая наклейки в соответствующие цвета.


WD Blue — универсальная линейка дисков, в которой соблюдён баланс как скоростных, так и надёжностных характеристик. Скорость вращения зафиксирована на отметке 7200 об./мин., современные диски ёмкостью в 1 ТБ оснащаются 64 мегабайтами кеш-памяти. Отличный вариант при использовании в качестве единственного жёсткого диска, если ваш бюджет ограничен. ~4 200 рублей и диск на 1000 (ну, почти) гигабайт — ваш.

WD Green — серия «экологичных» жёстких дисков. Они не ставят рекорды скорости, но отличаются пониженным энергопотреблением, а сами «блины» вращаются со скоростью 5400 об./мин. Подобные ограничения позволили снизить и тепловыделение, и уровень шума и вибраций. Ставить систему на такой диск мы не советуем, а вот для хранения данных, не требовательных к скорости доступа (фото, видео, музыки, дистрибутивов программ, документов и архивов) — самое то.

Цены начинаются от 4 560 рублей за версию на 1 ТБ, заканчиваются не совсем гуманными ~10400 рублей за 4 ТБ.

WD Black — «заряженные» диски, предназначенные для установки системы, «тяжёлого» ПО, игр. От WD Blue их отличают более высокие скоростные характеристики (при этом диски остаются в пределах технически комфортных 7200 оборотов в минуту) и улучшенные показатели по времени произвольного доступа: всё это позволяет диску быстрее управляться с большим количеством маленьких файлов, что актуально как при загрузке ОС, так и при работе в условиях высоких нагрузок и постоянных обращений к новым порциям данных на HDD. Платой за подобные характеристики являются повышенный уровень шума и потребляемой электроэнергии.

Купить WD Black можно за 5 300 рублей (1 ТБ). Кроме того, существуют также версии на 2, 3 и 4 ТБ (а также 320, 500, 750 ГБ), но их цена никого не радует, да и покупать диски «чёрной» серии такого объёма надо с чётким пониманием, зачем оно надо.

WD Red — специальная линейка жёстких дисков, предназначенная для работы в условиях 24/7 и установки в NAS дома или в небольшом офисе. Диски WD Red разработаны с учётом специфики использования в сетевых хранилищах. Разработчики постарались сократить потребление электроэнергии, увеличить защиту от механических повреждений, вибраций и перегрева. Увеличен запас прочности всей механики диска. Реальная скорость вращения — 5400 об./мин., однако производитель заявляет производительность, сравнимую с 7200. На практике диски несколько медленнее, но для их сферы применения скорость более чем достаточная.

Цены начинаются от ~4 800 рублей за версию с 1 ТБ, самая же ёмкая версия, на внушительных 6 ТБ, стоит около девятнадцати с половиной тысяч.

WD Purple — специальные диски для использования в системах видеонаблюдения. Western Digital заявляют кучу новых и полезных алгоритмов, уменьшающих шансы того, что видео будет «битым», ещё более высокую, чем у WD Red виборзащищённость. Для домашнего использования, в принципе, диски пригодны, но их специфика работы не позволит ставить ни рекорды скорости, ни наслаждаться тишиной. Цена — от ~4 500 за 1 ТБ.

Кроме «цветных» серий, у WD существую ещё три:

WD SE — предназначена для офисных систем хранения данных. Это быстрые, холодные, но шумные диски, разработанные с учётом офисной эксплуатации «и в хвост, и в гриву».

WD RE — для офисных рабочих станций. Высокоскоростные диски для корпоративного сегмента, в основном, отличающиеся наличием «софтовых» фич и интерфейсов по администрированию / управлению HDD.

WD VelociRaptor — для тех, кому мало скорости. «Велоцирапторы» — это сверхскоростные HDD со скоростью вращения 10 000 об./мин. Диск шумный, быстрый и горячий. Цена соответствует характеру — 1 терабайт обойдётся вам в 12 300 рублей. Применяется обычно там, где обычных WD Black недостаточно, а на сравнимые по ёмкости SSD не хватает средств.


Seagate — такой же крупный игрок на рынке, как и WD: фактически, они почти поровну «скупили» или «объединили» в себе других производителей HDD.

Seagate Barracuda 7200.14 — самый популярный и универсальный вариант. Аналог WD Blue — и швец, и жнец, и вообще отличный парень! Диск достаточно холодный, отличается от 1 ТБ конкурентов тем, что у него всего один «блин» внутри, из-за чего шум и вибрации сведены к минимуму. Скорость вращения — 7200 об./мин., объём кеш-памяти — 64 МБ.

Цена начинается с ~4 300 рублей за 1 ТБ и заканчивается внушительными ~7 300 за 3 ТБ.

Seagate HDD.15 — модель, предназначенная для хранения данных, не критичных к скорости записи/чтения. Во многом, аналог линейки WD Green, но отличается чуть более высокой скоростью вращения шпинделя: 5900 оборотов в минуту против 5400 у «зелёных».

К сожалению, цены за терабайт у нас нет, зато есть цена за 4. ~10700 рублей за тихий и холодный диск, который вы устанете забивать информацией, — не так уж и много.

Скоростным хранением данных компания Seagate не озаботилась, зато для NAS и прочих высоконагруженных условий дисков хоть отбавляй.

Seagate NAS HDD – тут, собственно, название говорит само за себя. Диск предназначен для установки в сетевые хранилища. Холодный, тихий, надёжный, с низким энергопотреблением. Ёмкость дисков — от 2 до 4 ТБ, цены, соответственно, от ~6 700 до ~11 750 рублей за штуку.

Для систем c высокими нагрузками, потоковой записи больших объёмов данных и видеонаблюдения предназначено сразу несколько моделей:

Seagate SV35 ST1000VX000, ST2000VM003, Surveillance HDD ST4000VX000 и Seagate Video 3.5 HDD, ST1000VM002. Первые три модели — просто жёсткие диски повышенной надёжности, отличающиеся увеличенным ресурсом подвижных частей и расчитанные на потоковую работу 24/7. Последний же — специализированная версия для организации систем видеоконтроля. В принципе, модели вполне употребимы и в «домашних» условиях в качестве дисков под высоконагруженную систему хранения больших данных, но особой потребности в таких монстрах дома обычно нет.

Не забыли в Seagate и про корпоративный сегмент.

Seagate Constellation CS — популярная серия дисков повышенной надёжности, устроенных по той же схеме, что и 7200.14: один терабайт — один «блин». Скорость вращения шпинделя — 7200 об./мин., 64 мегабайта памяти, до 80 000 часов (чуть больше девяти лет) официально заявленной наработки на отказ. Цена удовольствия — от ~5 600 рублей за 1 ТБ и до ~10 200 рублей за 3 ТБ. Гарантия производителя — 3 года.

У этой модели есть «старший брат» — серия Seagate Constellation ES.3. Она отличается увеличенным до 128 МБ кешем и увеличенным до 5 лет сроком гарантийного обслуживания. Разница в цене есть, но не так существенна. 1 ТБ обойдётся почти в ~6 000 рублей, а 4 ТБ — во внушительные ~15 300 рублей.


Технически, Hitachi Global Storage Technologies — куплена компанией Western Digital в 2011 году. Тем не менее, на дворе 2015-й, а жёсткие диски всё ещё производятся и продаются, но ориентированы они, в первую очередь, на корпоративный сегмент, а сама компания сменила бренд на HGST.

HGST Ultrastar 7K4000 — обычный жёсткий диск для рабочих станций, классические 7200 оборотов в минуту, 64 мегабайта кеш-памяти, и заявленные совершенно сумасшедшие 2 миллиона(!) часов наработки на отказ. Ко всему прочему — пятилетняя гарантия производителя. За модель с 2 ТБ памяти придётся отдать ~8300 рублей, в то время как за 4 ТБ — уже ~15 300.

Вторая линейка, HGST Deskstar NAS — предназначена для систем хранения данных. Доступные объёмы — от 3 до 6 ТБ, цены — от ~8 800 до ~20 100 рублей. Диск не ставит рекордов по скорости чтения и записи, но обладает трёхлетней гарантией и заявленным временем наработки на отказ в 1 000 000 часов.


Сегодня Toshiba производит как доступные и простые жёсткие диски, без излишеств, так и специальные диски для NAS’ов.

«Домашняя» линейка представлена одной моделью DT01ACA, объёмом от 500 ГБ до 3 ТБ. Диски часто ставят в компьютеры, которым важно просто наличие HDD, c которым не будет проблем. Вся серия очень тихая, не греется, да и цена не может не радовать ~4 000 рублей за 1 ТБ и «всего» ~7 500 за 3 ТБ.

Серия дисков для NAS, MC04ACA, имеет достойные характеристики — 7200 оборотов в минуту, 128 мегабайт кеша, до 800 000 часов наработки на отказ. Цена 2 ТБ начинается с ~7 950 рублей, максимальный же объём, 4 ТБ, обойдётся уже в ~13 700 рублей.

Анатомия накопителя: жесткие диски

Он магнитный. Он электрический. Он фотонный. Нет, речь не о новом супергеройском трио из Вселенной Marvel. Это всё про наши с вами драгоценные цифровые данные. Нам нужно хранить их в надежном и постоянном месте, чтобы была возможность заполучить, либо изменить наши файлы в мгновение ока. Забудьте о Железном Человеке и Торе — сегодняшний рассказ о накопителях!

Это одна из частей цикла статьей по компьютерному железу (подраздел накопителей). Предыдущая статья. Следующая тема на очереди — SSD.

Начнем наше путешествие в мир накопителей с таких устройств, что используют магнетизм для хранения данных. Жёсткий диск (HDD) является стандартом хранения данных в мире компьютеров на протяжении более 30 лет. Однако, сама технология гораздо старше.

IBM выпустила первый коммерческий жесткий диск в 1956 году, размером в 3,75 Мб. И в целом, общая структура данных устройств практически не изменилась. Все ещё те же диски, использующие магнетизм для хранения данных, и все ещё те же девайсы для чтения/записи этой информации. Но что изменилось разительно, так это объем данных, которые могут храниться на HDD.

Еще в 1987 году вы могли купить жесткий диск объемом 20 Мб примерно за 350 долларов; сегодня за эти же деньги вы получите 14 Тб памяти: т.е. в 700 000 раз больше места.

Мы рассмотрим нечто меньшее чем этот размер, а именно 3,5-дюймовый жесткий диск Seagate Barracuda на 3 Тб (ST3000DM001). Печально известная модель в виду высокого коэффициента отказов, а также последующих судебных разбирательств. Этот образец уже мертв, так что можно сказать — это скорей вскрытие, нежели урок анатомии.

Перевернув диск, мы обнаружим печатную плату и кучу соединений. Разъем в верхней части платы предназначен для двигателя, который вращает диски, тогда как нижние три (слева направо), позволяют настроить диск для определенных нужд, разъем данных SATA (Serial ATA) и питания SATA.

В 2000 году появился первый Serial ATA — стандарт подключений дисков к компьютеру в настольных ПК. Этот формат претерпел множество изменений. Последняя версия на данный момент 3.4. К слову, наш подопытный ЖД более старой версии, но данное упущение влияет лишь на один контакт в питании.

Для передачи и приема данных используется так называемый дифференциальный сигнал: контакты A+ и A — для передачи инструкций и данных на жесткий диск, а контакты B для приема этих сигналов. Использование таких парных проводов значительно снижает влияние электрических помех в сигнале, следовательно, пропускная способность повышается.

Теперь касаемо питания, как вы можете увидеть, существуют по паре контактов каждого напряжения (+3,3, +5 и +12 В). Но большинство из них не используются, поскольку жестким дискам не требуется много энергии. Эта конкретная модель от Seagate потребляет менее 10 Вт при больших нагрузках. Контакты питания, помеченные как PC, являются "предварительно заряженными": эта функция позволяет вытаскивать и подключать жёсткий диск, пока компьютер продолжает работать (hot swapping — горячая замена).

PWDIS контакт позволяет сбросить жесткий диск удаленно, правда только с SATA версии 3.3; так что в нашем приводе это просто еще одна линия +3,3 В. И последний контакт SSU лишь сообщает компьютеру, поддерживает ли ЖД технологию последовательной раскрутки шпинделей staggered spin up.

Диски внутри девайса (которые мы увидим в сей же час) должны раскрутиться на полную скорость, прежде чем компьютер сможет использовать их. Но если в ПК установлено много жестких дисков, то внезапный и одновременный запрос в электроэнергии может нарушить работу системы.Технология постепенной раскрутки шпинделей помогает предотвратить возникновение таких проблем, но перед использованием ЖД нужно будет подождать еще несколько секунд.

Отделение платы от остальной части устройства показывает нам то, как присоединены к ней другие компоненты накопителя. Жесткие диски не герметичны, кроме накопителей со сверхбольшими емкостями. В них гелий вместо воздуха, так как он гораздо менее плотный и создает меньше проблем ЖД с большим количеством дисков внутри. Но вы также не хотите, чтобы они открыто подвергались воздействию окружающей среды.

Используя такие разъемы, можно свести к минимуму количество «точек входа» для попадания грязи и пыли внутрь привода; в металлическом корпусе есть отверстие — (большая белая точка снизу слева), благодаря которому давление воздуха остается аналогичному в окружающей среде.

Теперь когда отключена интегральная схема, взглянем же что на ней находится. Стоит обратить внимание на 4 чипа:

LSI B64002: главный микроконтроллер, который обрабатывает инструкции, поток данных, занимается исправлением ошибок и т. д.

Компоненты печатной платы отличаются, но несущественно. Большие объемы требуют большего объема кэша (до 256 Мб DDR3 в последних «монстрах»), а чип основного контроллера может быть несколько более сложным в плане обработки ошибок.

Открыть привод простая задача — просто раскрутите множество Torx шлицов и вуаля! Мы внутри…

В глаза сразу бросается большой металлический круг, который занимает основное пространство сие девайса и становится очевидным почему их называют накопителями. Правильный термин для «железного блинчика» — пластина, их изготавливают из стекла или алюминия, покрытого различными соединениями. Этот ЖД объемом 3 Тб содержит в себе три диска, по 500 Гб с каждой стороны.

Изображение этих пыльных и «волосатых» пластин не отображает ту инженерную и производственную точность требуемую для их изготовления. В нашем ЖД толщина алюминиевого диска составляет 0,04 дюйма (1 мм), но он был отполирован настолько, что средняя высота по всей поверхности составляет менее 0,000001 дюйма (примерно 30 Нм).

Нанесенный на металл слой в 0,0004 дюйма (10 микрон) состоит из нескольких веществ. Процедура осуществляется с помощью никель-фосфорного покрытия химическим способом, а затем вакуумным напылением. Это подготавливает диск для магнитного материала, используемого для хранения цифровых данных.

Данный материал представляет собой сложный сплав кобальта и состоит из концентрических колец, каждое из которых около 0,00001 дюйма (примерно 250 Нм) в ширину и 0,000001 дюйма (25 Нм) в глубину. В микроскопическом масштабе металлические сплавы образуют зерна, слово мыльные пузыри на поверхности воды.

Каждое зерно имеет свое собственное магнитное поле и ему можно придать заданное направление. Группирование этих полей приводит к появлению 0 и 1 битов данных. Для более глубокого погружения в эту тему, прочтите данный документ Йельского университета. Конечные покрытия представляют собой слой углерода для защиты, опосля полимер для снижения контактного трения. Вместе их толщина достигает не более 0,0000005 дюйма (12 нм).

Вскоре мы увидим, почему пластины изготавливаются с такими строгими допусками. Довольно удивительно, что всего за 15 долларов вы можете быть гордым владельцем девайса, изготовленного с нанометровой точностью!

Вернемся же снова к жесткому диску и посмотрим, что там еще есть.

Желтый квадрат обозначает металлическую крышку, которая надежно удерживает пластину с электродвигателем привода шпинделя, задача последнего — вращать диски. В этом ЖД они вращаются со скоростью 7200 об / мин, но другие модели могут работать медленнее. Более медленные накопители обладают не только низким уровнем шума и энергопотреблением, но и более низкой производительностью, в то время как другие более быстрые приводы могут достигать скорости 15 000 оборотов в минуту.

Дабы уменьшить вредное воздействие пыли и влаги из воздуха, рециркуляционный фильтр (зеленый квадрат) собирает мельчайшие частицы и задерживает их внутри. Воздух, перемещаемый вращением пластин, обеспечивает постоянный поток через фильтр. На верхней части дисков, а также рядом с фильтром находится один из трех разделителей пластин: все они помогают уменьшить вибрацию, а также регулируют поток воздуха.

В левом верхнем углу изображения, обозначенном синей рамкой, находится один из двух постоянных стержневых магнитов. Они обеспечивают магнитное поле, необходимое для перемещения компонента, выделенного красным цветом. Давайте разделим некоторые из этих частей, чтобы рассмотреть их получше.

То, что выглядит как белый пластырь является еще одним фильтром, разве, что он очищает частицы и газы попадающие через отверстия (увиденные нами ранее). Металлические шипы — это рычаги перемещения головок, которые удерживают головки чтения/записи жесткого диска. Они двигаются по поверхности пластин (сверху и снизу) с нереально высокой скоростью.

Посмотрите это видео от Slow Mo Guys, чтобы лицезреть, насколько оно быстрые:

Вместо того, чтобы использовать что-то вроде шагового электродвигателя, для перемещения рычагов по соленоиду в основании рычагов проводится электрический ток.

Обычно их называют звуковыми катушками, так как это тот же самый принцип, по которому громкоговорители и микрофоны обладают ходом диффузоров. Ток создает вокруг мембран магнитное поле, которое реагирует на поле, создаваемое постоянными стержневыми магнитами.

Не забывайте, что дорожки данных крошечные, поэтому расположение рычагов должно быть предельно точным, как и все остальное в накопителе. Некоторые жесткие диски оснащены многоступенчатыми исполнительными механизмами, которые в меньшей степени изменяют направления движения, используя только часть всего плеча.

На некоторых ЖД дорожки данных фактически перекрывают друг друга. Эта технология называется черепичной магнитной записью, а требования к точности и аккуратности (т.е. попадание в нужное положение снова и снова) еще более высоки.

На самых концах рычагов находятся чувствительные головки для чтения/записи. Наш HDD обладает 3 пластинами и 6 головками, и каждая из них «плавает» над диском во время вращения. Для этого они подвешиваются двумя ультратонкими полосками металла.

Именно здесь мы видим, почему наш пациент труп, по крайней мере одна из головок оторвалась, и что бы ни вызвало первоначальное повреждению, оно также погнуло один из опорных рычагов. Весь компонент головки настолько мал, что обычной камерой действительно трудно заполучить хорошее изображение (как мы видим ниже).

Хотя мы можем разобрать некоторые отдельные части. Серый блок — это специально обработанная деталь — слайдер. В то время, когда диск вращается под ним, поток воздуха создает подъемную силу, тем самым поднимая головку с поверхности. А когда мы говорим «поднимая», то имеем в виду зазор всего лишь в 0,0000002 дюйма или менее 5 нм.

Будь головки чуть дальше положенного, и они бы не смогли обнаружить изменения магнитных полей на поверхности. Или будь они слишком близко, то покрытие бы просто царапалось. Это основная причина, почему воздух внутри корпуса диска должен быть отфильтрован: пыль и влага на поверхности диска просто сломают головки.

Крошечный металлический «шест» на конце головки помогает в общей аэродинамике. Однако нам нужна фотография получше, дабы увидеть те части, которые выполняют чтение и запись.

На приведенном выше изображении другого жесткого диска, части для чтения и записи находятся под всеми электрическими соединениями. Запись осуществляется с помощью тонкопленочной индукционной системы (TFI), а чтение — с помощью туннельного магниторезистивного устройства (TMR).

Сигналы, производимые TMR очень слабы и перед отправкой должны пройти через усилитель для повышения уровней. Ответственная за это микросхема расположена рядом с основанием рычагов привода (на изображении ниже).

Как уже упоминалось во введении к этой статье, механические компоненты и работа жесткого диска не сильно изменились за эти годы. Единственное что, больше всего развивается технология, лежащая в основе магнитной дорожки и головок чтения/записи. Производятся все более узкие и плотные дорожки, что в конечном итоге приводит к увеличению объема хранения.

Однако у механических жестких дисков явные ограничения в скорости. Для перемещения рычагов привода в требуемое положение нужно время, и если данные разбросаны по разным дорожкам на отдельных пластинах, то привод будет тратить относительно большое количество микросекунд на поиск битов.

Прежде чем мы перейдем к разбору другого типа накопителя, давайте сделаем контрольную точку в производительности типичного жесткого диска. Мы использовали CrystalDiskMark для тестирования жесткого диска WD 3.5" 5400 RPM 2 TB:

Первые две строки отображают пропускную способность — количество Мб в секунду для выполнения последовательного (длинный, непрерывный список) и случайного (переходы по диску) чтения и записи. Следующая строка показывает значение IOPS, то есть количество операций ввода-вывода, выполняемых каждую секунду. В последней строке отображается средняя задержка (время в микросекундах) между выполняемой операцией чтения/записи и получаемым значением данных.

Говоря обобщенно, вы хотите, чтобы значения в первых 3 строках были как можно больше, а последняя строка — как можно меньше. Не беспокойтесь о самих цифрах, это лишь показатель для сравнения со следующим типом накопителей: SSD.

Анатомия накопителей: жёсткие диски

image

Он магнитный. Он электрический. Он фотонный. Нет, это не новое супергеройское трио из вселенной Marvel. Речь идёт о хранении наших драгоценных цифровых данных. Нам нужно где-то их хранить, надёжно и стабильно, чтобы мы могли иметь к ним доступ и изменять за мгновение ока. Забудьте о Железном человеке и Торе — мы говорим о жёстких дисках!

Итак, давайте погрузимся в изучении анатомии устройств, которые мы сегодня используем для хранения миллиардов битов данных.

You spin me right round, baby

Механический накопитель на жёстких дисках (hard disk drive, HDD) был стандартом систем хранения для компьютеров по всему миру в течение более 30 лет, но лежащие в его основе технологии намного старше.

Первый коммерческий HDD компания IBM выпустила в 1956 году, его ёмкость составляла аж 3,75 МБ. И в целом, за все эти годы общая структура накопителя не сильно изменилась. В нём по-прежнему есть диски, которые используют для хранения данных намагниченность, и есть устройства для чтения/записи этих данных. Изменился же, и очень сильно, объём данных, который можно на них хранить.

В 1987 году можно было купить HDD на 20 МБ примерно за 350 долларов; сегодня за такие же деньги можно купить 14 ТБ: в 700 000 раз больший объём.

Мы рассмотрим устройство не совсем такого размера, но тоже достойное по современным меркам: 3,5-дюймовый HDD Seagate Barracuda 3 TB, в частности, модель ST3000DM001, печально известную своим высоким процентом сбоев и вызванных этим юридических процессов. Изучаемый нами накопитель уже мёртв, поэтому это будет больше похоже на аутопсию, чем на урок анатомии.



Перевернув накопитель, мы видим печатную плату и несколько разъёмов. Разъём в верхней части платы используется для двигателя, вращающего диски, а нижние три (слева направо) — это контакты под перемычки, позволяющие настраивать накопитель под определённые конфигурации, разъём данных SATA (Serial ATA) и разъём питания SATA.

Serial ATA впервые появился в 2000 году. В настольных компьютерах это стандартная система, используемая для подключения приводов к остальной части компьютера. Спецификация формата претерпела множество ревизий, и сейчас мы пользуемся версией 3.4. Наш труп жёсткого диска имеет более старую версию, но различие заключается только в одном контакте в разъёме питания.

В подключениях передачи данных для приёма и получения данных используется дифференцированный сигнал: контакты A+ и A- используются для передачи инструкций и данных в жёсткий диск, а контакты B — для получения этих сигналов. Подобное использование спаренных проводников значительно снижает влияние на сигнал электрического шума, то есть устройство может работать быстрее.

Если говорить о питании, то мы видим, что в разъёме есть по паре контактов каждого напряжения (+3.3, +5 и +12V); однако большинство из них не используется, потому что HDD не требуется много питания. Эта конкретная модель Seagate при активной нагрузке использует менее 10 Вт. Контакты, помеченные как PC, используются для precharge: эта функция позволяет вытаскивать и подключать жёсткий диск, пока компьютер продолжает работать (это называется горячей заменой (hot swapping)).

Контакт с меткой PWDIS позволяет удалённо перезагружать (remote reset) жёсткий диск, но эта функция поддерживается только с версии SATA 3.3, поэтому в моём диске это просто ещё одна линия питания +3.3V. А последний контакт, помеченный как SSU, просто сообщает компьютеру, поддерживает ли жёсткий диск технологию последовательной раскрутки шпинделей staggered spin up.

Перед тем, как компьютер сможет их использовать, диски внутри устройства (которые мы скоро увидим), должны раскрутиться до полной скорости. Но если в машине установлено много жёстких дисков, то внезапный одновременный запрос питания может навредить системе. Постепенная раскрутка шпинделей полностью устраняет возможность таких проблем, но при этом перед получением полного доступа к HDD придётся подождать несколько секунд.


Сняв печатную плату, можно увидеть, как она соединяется с компонентами внутри устройства. HDD не герметичны, за исключением устройств с очень большими ёмкостями — в них вместо воздуха используется гелий, потому что он намного менее плотный и создаёт меньше проблем в накопителях с большим количеством дисков. С другой стороны, не стоит и подвергать обычные накопители открытому воздействию окружающей среды.

Благодаря использованию таких разъёмов минимизируется количество входных точек, через которые внутрь накопителя могут попасть грязь и пыль; в металлическом корпусе есть отверстие (большая белая точка в левом нижнем углу изображения), позволяющее сохранять внутри давление окружающей среды.


Теперь, когда печатная плата снята, давайте посмотрим, что находится внутри. Тут есть четыре основных чипа:

  • LSI B64002: чип основного контроллера, обрабатывающий инструкции, передающий потоки данных внутрь и наружу, корректирующий ошибки и т.п.
  • Samsung K4T51163QJ: 64 МБ DDR2 SDRAM с тактовой частотой 800 МГц, используемые для кэширования данных
  • Smooth MCKXL: управляет двигателем, крутящим диски
  • Winbond 25Q40BWS05: 500 КБ последовательной флеш-памяти, используемой для хранения встроенного ПО накопителя (немного похожего на BIOS компьютера)

Открыть накопитель просто, достаточно открутить несколько болтов Torx и вуаля! Мы внутри…


Учитывая, что он занимает основную часть устройства, наше внимание сразу привлекает большой металлический круг; несложно понять, почему накопители называются дисковыми. Правильно их называть пластинами; они изготавливаются из стекла или алюминия и покрываются несколькими слоями различных материалов. Этот накопитель на 3 ТБ имеет три пластины, то есть на каждой стороне одной пластины должно храниться 500 ГБ.


Изображение довольно пыльное, такие грязные пластины не соответствуют точности проектирования и производства, необходимого для их изготовления. В нашем примере HDD сам алюминиевый диск имеет толщину 0,04 дюйма (1 мм), но отполирован до такой степени, что средняя высота отклонений на поверхности меньше 0,000001 дюйма (примерно 30 нм).

Базовый слой имеет глубину всего 0,0004 дюйма (10 микронов) и состоит из нескольких слоёв материалов, нанесённых на металл. Нанесение выполняется при помощи химического никелирования с последующим вакуумным напылением, подготавливающих диск для основных магнитных материалов, используемых для хранения цифровых данных.

Этот материал обычно является сложным кобальтовым сплавом и составлен из концентрических кругов, каждый из которых примерно 0,00001 дюйма (примерно 250 нм) в ширину и 0,000001 дюйма (25 нм) в глубину. На микроуровне сплавы металлов образуют зёрна, похожие на мыльные пузыри на поверхности воды.

Каждое зерно обладает собственным магнитным полем, но его можно преобразовать в заданном направлении. Группирование таких полей приводит к возникновению битов данных (0 и 1). Если вы хотите подробнее узнать об этой теме, то прочитайте этот документ Йельского университета. Последними покрытиями становятся слой углерода для защиты, а потом полимер для снижения контактного трения. Вместе их толщина составляет не больше 0,0000005 дюйма (12 нм).

Скоро мы увидим, почему пластины должны изготавливаться с такими строгими допусками, но всё-таки удивительно осознавать, что всего за 15 долларов можно стать гордым владельцем устройства, изготовленного с нанометровой точностью!

Однако давайте снова вернёмся к самому HDD и посмотрим, что же в нём есть ещё.


Жёлтым цветом показана металлическая крышка, надёжно крепящая пластину к электродвигателю привода шпинделя — электроприводу, вращающему диски. В этом HDD они вращаются с частотой 7200 rpm (оборотов/мин), но в других моделях могут работать медленнее. Медленные накопители имеют пониженный шум и энергопотребление, но и меньшую скорость, а более быстрые накопители могут достигать скорости 15 000 rpm.

Чтобы снизить урон, наносимый пылью и влагой воздуха, используется фильтр рециркуляции (зелёный квадрат), собирающий мелкие частицы и удерживающий их внутри. Воздух, перемещаемый вращением пластин, обеспечивает постоянный поток через фильтр. Над дисками и рядом с фильтром есть один из трёх разделителей пластин: помогающих снижать вибрации и поддерживать как можно более равномерный поток воздуха.

В левой верхней части изображения синим квадратом указан один из двух постоянных стержневых магнитов. Они обеспечивают магнитное поле, необходимое для перемещения компонента, указанного красным цветом. Давайте отделим эти детали, чтобы видеть их лучше.


То, что выглядит как белый пластырь — это ещё один фильтр, только он очищает частицы и газы, попадающие снаружи через отверстие, которое мы видели выше. Металлические шипы — это рычаги перемещения головок, на которых находятся головки чтения-записи жёсткого диска. Они с огромной скоростью движутся по поверхности пластин (верхней и нижней).

Посмотрите это видео, созданное The Slow Mo Guys, чтобы увидеть, насколько они быстрые:

В конструкции не используется чего-то вроде шагового электродвигателя; для перемещения рычагов по соленоиду в основании рычагов проводится электрический ток.


Обобщённо их называют звуковыми катушками, потому что они используют тот же принцип, который применяется в динамиках и микрофонах для перемещения мембран. Ток генерирует вокруг них магнитное поле, которое реагирует на поле, созданное стержневыми постоянными магнитами.

Не забывайте, что дорожки данных крошечны, поэтому позиционирование рычагов должно быть чрезвычайно точным, как и всё остальное в накопителе. У некоторых жёстких дисков есть многоступенчатые рычаги, которые вносят небольшие изменения в направление только одной части целого рычага.

В некоторых жёстких дисках дорожки данных накладываются друг на друга. Эта технология называется черепичной магнитной записью (shingled magnetic recording), и её требования к точности и позиционированию (то есть к попаданию постоянно в одну точку) ещё строже.


На самом конце рычагов есть очень чувствительные головки чтения-записи. В нашем HDD содержится 3 пластины и 6 головок, и каждая из них плавает над диском при его вращении. Для этого головки подвешены на сверхтонких полосках металла.

И здесь мы можем увидеть, почему умер наш анатомический образец — по крайней мере одна из головок разболталась, и что бы ни вызвало изначальный повреждение, оно также погнуло один из рычагов. Весь компонент головки настолько мал, что, как видно ниже, очень сложно получить её качественный снимок обычной камерой.


Однако мы можем разобрать отдельные части. Серый блок — это специально изготовленная деталь под названием «слайдер»: когда диск вращается под ним, поток воздуха создаёт подъёмную силу, поднимая головку от поверхности. И когда мы говорим «поднимает», то имеем в виду зазор шириной всего 0,0000002 дюйма или меньше 5 нм.

Чуть дальше, и головки не смогут распознавать изменения магнитных полей дорожки; если бы головки лежали на поверхности, то просто поцарапали бы покрытие. Именно поэтому нужно фильтровать воздух внутри корпуса накопителя: пыль и влага на поверхности диска просто сломают головки.

Крошечный металлический «шест» на конце головки помогает с общей аэродинамикой. Однако чтобы увидеть части, выполняющие чтение и запись, нам нужна фотография получше.


На этом изображении другого жёсткого диска устройства чтения и записи находятся под всеми электрическими соединениями. Запись выполняется системой тонкоплёночной индуктивности (thin film induction, TFI), а чтение — туннельным магнеторезистивным устройством (tunneling magnetoresistive device, TMR).

Создаваемые TMR сигналы очень слабы и перед отправкой должны проходить через усилитель для повышения уровней. Отвечающий за это чип находится рядом с основанием рычагов на изображении ниже.


Как сказано во введении к статье, механические компоненты и принцип работы жёсткого диска почти не изменились за многие годы. Больше всего совершенствовалась технология магнитных дорожек и головок чтения-записи, создавая всё более узкие и плотные дорожки, что в конечном итоге приводило к увеличению объёма хранимой информации.

Однако механические жёсткие диски имеют очевидные ограничения скорости. На перемещение рычагов в нужное положение требуется время, а если данные разбросаны по разным дорожкам на различных пластинах, то на поиски битов накопитель будет тратить довольно много микросекунд.

Прежде чем переходить к другому типу накопителей, давайте укажем ориентировочные показатели скорости типичного HDD. Мы использовали бенчмарк CrystalDiskMark для оценки жёсткого диска WD 3.5" 5400 RPM 2 TB:


В первых двух строчках указано количество МБ в секунду при выполнении последовательных (длинный, непрерывный список) и случайных (переходы по всему накопителю) чтения и записи. В следующей строке показано значение IOPS, то есть количество операций ввода-вывода, выполняемых каждую секунду. В последней строке показана средняя задержка (время в микросекундах) между передачей операции чтения или записи и получением значений данных.

В общем случае мы стремимся к тому, чтобы значения в первых трёх строчках были как можно больше, а в последней строчке — как можно меньше. Не беспокойтесь о самих числах, мы просто используем их для сравнения, когда будем рассматривать другой тип накопителя: твердотельный накопитель.

Немного о смерти жестких дисков и их кишочках.


Бывает интересно, что внутри всяких технологически продвинутых устройств. Практически у всех в компьютерах и ноутбуках стоят или стояли накопители на основе жестких дисков HDD они же в простонародье винчестеры или винты, вот их я сейчас и препарирую в этот обзоре, и немного прокомментирую их устройство, так сказать для общего развития.
Все жесткие диски, в этом обзоре, умерли своей смертью :), рабочая поверхность покрылись сбойными секторами, что привело к возможной потере данных. У серверных, возможно, сработала предварительная диагностика, порекомендовавшая заменить их до возможного выхода из строя.
Хотя сейчас уже используются и более дорогие твердотельные SDD, но речь не о них, так как их "кишочки" не так красивы и интересны :)

Я препарирую 3 жестких диска, обычный для домашнего или офисного компьютера размера 3,5 дюйма, серверный размера 2,5 дюйма и серверный 3,5 дюйма.
Еще на заре персональных компьютеров x86, были диски 5,25 дюймов, но мне таких не удалось подержать в руках, это были жутко редкие монстры. Так же в некоторых особо компактных ноутбуках были диски размером 1,8 дюйма, а для профессиональных фотоаппаратов были жесткие диски в формате карт памяти Campact Flash. Эти атавизмы тоже как то прошли мимо моих рук.


Первый имеет старый интерфейс подключения IDE, второй имеет современный скоростной SAS, третий скоростной но старый SCSI. По этикеткам видно что их объемы 40, 146 и 70 Гигабайт, а скорости вращения у обычного 7200, а у серверных по 15000 оборотов в минуту. Высокая скорость вращения позволяет записывать и читать данные с более высокой скоростью, но и накладывает значительно большие требования к аппаратной составляющей дисков, подшипникам, качеству "блинов", свойствам головок, геометрии гермоблоков.
Емкость серверных жестких дисков всегда ниже чем у домашних и офисных. И далее мы поймем почему.

Далее вскрываем крышки гермоблоков:


Сразу скажу что основная часть жестких дисков не герметичны! Более того в них тот же воздух и под тем же давлением что и снаружи. Они "дышат", т.е. при нагревании часть воздуха расширяясь выходит их корпуса, при охлаждении обратно засасывается! Единственно что отделят внутренний воздух от внешнего это фильтры тончайшей очистки.
Производители начали делать герметичные жесткие диски, наполняя их гелием, что позволяет увеличить количество блинов в корпусе и соответственно емкость. На середину 2019 г. до 16 Тб в для систем хранения данных.
Видно, что внутренности у всех примерно одинаковы. Круглое, это и есть "блин" с данными. Он бывает из алюминия или из стекла. На него нанесено магнитное покрытие которое хранит все ваши данные, диск С, возможно D, E, операционную систему, всякие фотки, документы, фильмы, музыку и тд и тп. Далее видим коромысло с магнитными головками, которые эти данные читают и пишут. В левом нижнем углу магнитную систему для приведения этого коромысла в движение. Далее на первом диске в левом верхнем, на втором там же и чуть правее середины, на третьем справа от блина видим белые подушки, это внутренние фильтры через которые проходят потоки воздух при вращении блинов. Они предназначены для очистки внутреннего воздуха о возможного мусора образующегося при работе внутренних механизмов. Так же видно, что на серверных винтах есть абсорбционные подушки для поглощения влаги, на втором диске внизу справа на третьем внизу по середине.
Так же есть некоторые конструктивные особенности.
1) Различные размеры "блинов", т.к. скорость вращения на серверных винчестерах выше, то и центростремительная сила у них выше. Т.е. чем больше скорость и больше радиус диска тем больше возникает усилий на разрыв на его краях. Технологически дешевле сделать диски меньше, чем придумывать новые материалы и технологии, способные выдержать такие перегрузки. На меньший диск помещается соответственно и меньше данных.
2) В выключенном состоянии магнитные головки запаркованы по разному. В первом и втором диске они паркуются на "нулевой" дорожке которая ближе к центру, на третьем они паркуются за пределами блинов на специальной "парковке", где сами головки не соприкасаются ни с чем.
3) Вы этого не по фоткам не почувствуете, но третий серверный диск значительно тяжелее бытового. Это видно по более толстым стенкам корпуса, а его крышка толще и снабжена дополнительной стальной пластиной. Более толстый и тяжелый корпус лучше отводит тепло, образующееся во время работы двигателя, трения блинов об воздух, трения воздуха об стенки корпуса, и лучше поглощает вибрацию как самого диска так и передающуюся с корпуса сервера или дискового массива где может находится этот винчестер.
Кстати, скорость чтения и записи по всей поверхности блина различна, ближе к центру она ниже, а к внешней стороне выше. Это связано с тем что длинна окружности в центре меньше чем на краю, а значит и данных в ней помещается меньше.

Далее диски поближе:


Тут всего один блин и одна головка сверху него. Соответственно одна сторона и есть 40 Гб.

Читайте также: