Какие заряды перемещаются в металле в процессе электростатической индукции

Обновлено: 22.01.2025

Электрический ток в металлах представляет собой упорядоченное движение свободных электронов. Более подробно об этом читайте далее в нашей статье.

Важно знать

Как известно, электрический ток – это упорядоченный поток носителей электрического заряда. Носители – это заряженные частицы, способные свободно перемещаться во всем объеме тела.

В случае металлов этими частицами являются электроны, которые высвобождаются при образовании связи между атомами металла.

Известно, что металлы в твердом состоянии имеют кристаллическую структуру. Частицы в кристаллах расположены в определенном порядке, образуя пространственную решетку (кристалл).

Наконец, кристаллическая решетка металла образована положительными ионами, погруженными в “облако” хаотически движущихся так называемых свободных электронов, также называемых электронами проводимости. В зависимости от валентности атомов металла, один атом может освободить от одного до трех электронов при образовании металлических связей. Число таких высвобожденных электронов непосредственно переводится в число носителей заряда. Это является одним из факторов, влияющих на способность металла проводить электрический ток.

Доказательством того, что ток в металлах вызывается электронами, послужили эксперименты наших отечественных физиков Леонида Исааковича Мандельштама и Николая Дмитриевича Папалекси, а также американских физиков Бальфура Стюарта и Роберта Толмана.

Способность металла проводить электрический ток может быть описана физической величиной, называемой удельным электрическим сопротивлением. Эта физическая величина обозначается греческой буквой ρ (читается как “ро”). Единицей измерения удельного сопротивления является Ом · м, т.е. произведение Ом на метр. Удельное сопротивление – это константа, которая характеризует материал и имеет различные значения для разных материалов. Например, удельное сопротивление меди составляет 1.72*10 -8 Ом · м. Это означает, что электрическое сопротивление медного проводника длиной 1 метр и площадью поперечного сечения 1 м равно 1.72*10 -8 Ом . В целом, чем ниже удельное сопротивление материала, тем лучше он проводит электрический ток.

В таблице ниже приведены некоторые примеры удельного сопротивления часто используемых металлов.

МеталлУдельное сопротивление (Ом · м)
Серебро1.59*10 -8
Медь1.72*10 -8
Алюминий2.82*10 -8
Вольфрам5.6*10 -8
Железо10*10 -8

Удельное электрическое сопротивление может быть связано с микроскопическими свойствами материала. В частности, он зависит от концентрации носителей заряда и их подвижности.

Движение свободных электронов в металлах не является полностью “свободным”, поскольку во время их движении они взаимодействуют с другими электронами, и прежде всего с ионами кристаллической решетки. Специфика этого движения описывается так называемой классической моделью проводимости.

Основные предположения и выводы этой модели представлены в большом упрощении ниже.

Классическая модель проводимости

Без внешнего электрического поля электроны совершают тепловые хаотические движения, сталкиваясь друг с другом, а также сталкиваясь с ионами кристаллической решетки. В результате такого движения среднее положение электронов практически не меняется (см. рис. 1.).

Пример траектории электрона во время его хаотического движения в металле

Рис. 1. Пример траектории электрона во время его хаотического теплового движения в металле

Из-за квантовых эффектов, и в частности из-за принципа запрета Паули, который не позволяет всем электронам занимать самое низкое энергетическое состояние, средняя скорость электронов в металлах, связанная с их хаотическим тепловым движением, больше, чем скорость частиц в классическом идеальном газе той же температуры. Она составляет порядка 10 м/с.

Если электрическое напряжение U приложено к концам проводника длиной L в нем появится электрическое поле с напряженностью E = U / L

Под действием этого внешнего поля, согласно второму закону динамики, электроны ускоряются: a = F / m,

где F = e*E – сила, с которой электрическое поле действует на электрон с зарядом e. Таким образом, ускорение электрона составляет: a = e*E / m .

Ускоренное движение электрона длится лишь довольно короткое время, пока он не столкнется с ионом
кристаллической решетки. В результате такого столкновения электрон теряет практически всю свою кинетическую энергию. Однако замедленный электрон не остается в состоянии покоя – он снова ускоряется под действием электрического поля, снова сталкивается с одним из ионов из ионы кристаллической решетки и т.д. Этот эффект добавляет к скорости тепловых движений дополнительную направленную среднюю скорость u, которая из-за отрицательного заряда электрона имеет направление, противоположное напряженности внешнего электрического поля. Эта скорость называется средней скоростью дрейфа (рис. 2).

Дрейф электрона под действием внешнего электрического поля

Рис. 2. Дрейф электрона под действием внешнего электрического поля

В проводнике начинает течь электрический ток с силой тока I (см. рисунок 3).

Дрейфующие электроны сталкиваются с ионами кристаллической решетки

Рис. 3. Дрейфующие электроны сталкиваются с ионами кристаллической решетки

Предполагая, что движение электрона равномерно ускоряется между столкновениями с ионами решетки, с ускорением a = e*E / m , и предполагая, что в результате столкновения электрон передает всю свою кинетическую энергию кристаллической решетке, мы можем вычислить скорость, которую развивает электрон в своем свободном движении: v = a*τ . В этой формуле τ – средний интервал времени между последующими столкновениями дрейфующего электрона с ионами кристаллической решетки.

Поскольку при равномерно ускоренном движении без начальной скорости средняя скорость является средним арифметическим начальной (равной нулю) и конечной скоростью, то получаем: u = v / 2 = e*E*τ / 2*m .

Из полученной формулы следует, что скорость дрейфа, помимо внешнего электрического поля, определяется средним интервалом времени между столкновениями электронов с ионами решетки. Этот параметр зависит от многих факторов (включая температуру, кристаллическую структуру металла, дефекты кристаллической структуры, примеси) и, как выясняется, существенно влияет на электрическое сопротивление материала.

Средняя дрейфовая скорость электронов составляет порядка 10 -4 м/с. Она очень мала по сравнению со скоростью теплового движения, которая составляет порядка 10 6 м/с.

Классическая теория проводимости достаточно хорошо описывает явление электропроводности в металлах. Однако эта теория не может объяснить экспериментально наблюдаемую зависимость электрического сопротивления от температуры.

Причина упомянутой неудачи классической теории проводимости заключается в том, что она не учитывает влияние ионов решетки на движение электронов между столкновениями. Более близкие к реальности результаты дает квантовая теория проводимости, которая описывает электроны как частицы, подверженные квантовой статистике, движущиеся в периодическом электрическом поле, создаваемом положительными ионами решетки.

Выводы простым языком

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален. Свободные электроны в нём движутся беспорядочно. Но если в металле создать электрическое поле, то свободные электроны начнут двигаться направленно под действием электрических сил. Возникнет электрический ток. Беспорядочное движение электронов при этом сохраняется, подобно тому как сохраняется беспорядочное движение в стайке мошкары, когда под действием ветра она перемещается в одном направлении.

« Скорость движения самих электронов в проводнике под действием электрического поля невелика – несколько миллиметров в секунду, а иногда и ещё меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км/c), распространяетcя по всей длине проводника. »

Перышкин А. В. Физика 8. – М.: Дрофа, 2010

Как пример, электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s = 8000 км), приходит туда примерно через 0,03 с.

Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, когда цепь электрической лампы замкнута, электроны в спирали лампы также движутся упорядоченно.

Сравнение электрического тока с потоком воды в водопроводной системе и распространения электрического поля с распространением давления воды поможет нам понять это. Когда вода поднимается в резервуар для воды, давление (напор) воды очень быстро распространяется по всей системе водоснабжения. Когда мы включаем кран, вода уже находится под давлением и сразу же начинает течь. Но вода, которая была в кране, течет, а вода из башни достигает крана гораздо позже, потому что вода движется с меньшей скоростью, чем распространяется давление.

Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.

§ 1.3. Потенциал. Электрическое напряжение

Пусть уединенное неподвижное точечное заряженное тело с зарядом Q расположено в произвольной точке горизонтальной плоскости ( рис . 1.3). Если в точке А окажется пробное заряженное тело с зарядом q , то под действием силы F А оно станет перемещаться . При этом за счет

зарядов Q и q будет совершаться определенная работа . Поскольку сила

непрерывно меняется , для нахождения работы , которую совершает поле , перемещая

пробное заряженное тело из данной точки в бесконечность , разобьем весь путь на элементарные участки D R , так что в пределах каждого такого участка силу F R можно считать неизменной . Тогда элементарная работа этой силы D A=F R D R.

Для определения всей работы А необходимо просуммировать элементарные работы D А на участке пути от R A до бесконечности . Тогда A = å D A = å F R D R . Точное значение этой работы

Работа выражается в джоулях ( Дж ).

Введем энергетическую характеристику поля — потенциал j .

Потенциалом электрического поля заряда Q в данной точке называют величину , численно равную работе , которую совершает поле , перемещая пробное тело , обладающее единичным положительным зарядом , из данной точки в бесконечность :

[ j ] = 1 Дж /1 Кл = 1 В .

Потенциал данной точки поля равен 1 В , если при переносе пробного тела с зарядом в 1 Кл из данной точки в бесконечность совершается работа в 1 Дж .

В том случае , когда заряженное тело , создающее поле , имеет отрицательный заряд , поле будет препятствовать удалению пробного заряженного тела , т . е . потенциал поля будет отрицательным . Сопоставив формулы (1.2) и (1.3),. видим , что

откуда ξ А = ϕ А

Единица напряженности поля [ x ] = В / м ( вольт на метр ).

Определив потенциал электрического заряда Q в точках А к В ( рис . 1.4), найдем их разность , которую называют электрическим напряжением между двумя точками поля :

Рис . 1.4. К определению разности потенциалов

Рис . 1.5. Однородное электрическое поле

Таким образом , электрическим напряжением или разностью потенциалов между двумя точками поля называют величину , численно равную работе , которую совершает поле , перемещая между этими точками пробное тело , обладающее единичным положительным зарядом .

Выясним , как изменяется потенциал точек внутри и вне металлического шара с зарядом — Q. Так как избыточный заряд шара неподвижен и расположен на поверхности , разность потенциалов между внутренними точками шара и точками , расположенными на его поверхности , равна нулю . Следовательно , потенциалы всех точек шара равны потенциалу точек на его поверхности . Потенциал точек , расположенных на поверхности и вне шара , определяют из предположения , что весь заряд шара сосредоточен в его центре . Электрические поля уединенного точечного заряженного тела и уединенного заряженного шара являются неоднородными , т . е . полями , у которых напряженность во всех точках различна . На практике часто приходится иметь дело с однородным полем , у которого напряженность во всех точках одинакова . Такое поле возникает , например , между двумя равномерно заряженными металлическими пластинами на достаточном удалении от их краев ( рис . 1.5). При этом электрическое напряжение однородного

Электростатическая индукция

Электростатическая индукция — явление наведения собственного электростатического поля, при действии на тело внешнего электрического поля. Явление обусловлено перераспределением зарядов внутри проводящих тел, а также поляризацией внутренних микроструктур у непроводящих тел. Внешнее электрическое поле может значительно исказиться вблизи тела с индуцированным электрическим полем.

Диэлектрики в электрическом поле ведут себя не так как проводник, хотя при этом у них есть нечто общее. Диэлектрики отличаются от проводников тем, что в них отсутствуют свободные носители зарядов. Всё-таки они там есть, но в очень малом количестве. В проводниках такими носителями зарядов являются электроны, свободно перемещающиеся вдоль кристаллической решётки металлов. Но вот в диэлектриках электроны прочно связаны со своими атомами и не могут свободно перемещается. При внесении диэлектрика в электрическое поля в нем наступает электризация также как и в проводнике. Отличие же диэлектриков состоит в том что электроны не могут свободно перемещаться по объёму как это происходит в проводниках. Но под действием внешнего электрического поля внутри молекулы вещества диэлектрика появляется некоторое смещение зарядов. Положительный смещается вдоль направления поля, а отрицательный против. Вследствие этого поверхность получает некий заряд. Процесс образования заряда на поверхности диэлектриков под действием электрического поля называется поляризацией диэлектрика. Все диэлектрики делятся на две категории. Диэлектрики, относящиеся к первой категории, имеют молекулы, которые даже в отсутствии внешнего электрического поля образуют диполи. Они называются полярными. К полярным диэлектрикам относятся вода аммиак ацетон и эфир. Диполи таких диэлектриков в отсутствии поля расположены хаотически вследствие теплового движения. И, следовательно, заряд на поверхности такого вещества равен нулю. Но при внесении его во внешнее электрическое поля диполи то есть молекула стремятся развернуться вдоль поля. Получается, что положительный заряд предыдущего диполя смотрит на отрицательный следующего. Следовательно, они компенсируют друг друга. Но вот диполям находящимся возле самой поверхности не находится пара. Таким образом, на поверхности материала образуются нескомпенсированые связанные заряды. С одной стороны положительные с другой отрицательные. Но этому препятствует тепловое движение молекул.

Рисунок 1 — поляризация полярного диэлектрика

Вторая категория диэлектриков это те, у которых внутри молекулы в свободном состоянии есть положительный и отрицательный заряды. Но они находятся так близко друг к другу, что их влияние взаимно компенсируется. Но при внесении такой молекулы в поле заряды сместятся на некоторое расстояние. Таким образом, образуется диполь. На такие молекулы не влияет тепловое движение и, следовательно, поляризация в них не зависит от температуры.

Рисунок 2 — поляризация неполярного диэлектрика

Заряды на поверхности диэлектриков в отличии зарядов индуцированных в проводниках нельзя отделить от поверхности. При снятии электрического поля поляризация пропадёт. Заряды снова перераспределятся в объёме вещества. Напряжённость поля нельзя увеличивать безгранично. Так как при определенной величине заряды сместятся настолько, что произойдет структурное изменение материала, проще говоря, пробой диэлектрика. Он в этом случае теряет свои изоляционные свойства.

Любая материя состоит из заряженных частиц: электронов и ядер атомов. Электрические свойства вещества определяет реакция заряженных частиц на внешнее электрическое поле. Под воздействием электрического поля заряженные частицы начинают перемещаться. Характер и механизмы движения частиц при этом различны. Но по результату все виды движения заряженных частиц под воздействием внешнего поля, делят на две группы.

При ограниченном смещении зарядов, такие заряды называют связанными, а процесс перемещения связанных зарядов носит название диэлектрической поляризации. Вещества, у которых преобладает поляризация во внешнем поле, называют диэлектриками. Основной макроскопической характеристикой в этом случае служит диэлектрическая проницаемость вещества ( ).

Другая группа веществ состоит из сред, в которых происходит неограниченное смещение зарядов в объемах тел. Такие заряды называют свободными. Направленное движение свободных зарядов называют электрическим током. Свойство материи проводить электрический ток называют электропроводностью. При этом характеристикой электропроводности является удельная проводимость ( ) или величина ей обратная – удельное сопротивление ( ). Вещества, обладающие высокой удельной проводимостью называют проводниками. К типичным проводникам относят металлы.

Если проводник внести в электростатическое поле, то свободные и связанные заряды начинают перемещение. При этом свободные заряды накапливаются на противоположных концах проводника. Они порождают в объеме проводника электростатическое поле, которое имеет направление против внешнего поля. В результате действия этого поля постепенно движение зарядов прекращается, и система приходит в равновесие. В равновесии электрическое поле в проводнике становится равным нулю, диэлектрическая поляризация и электрический ток становятся равны нулю. При этом концентрация свободных зарядов, которые накопились на противоположных поверхностях проводника, является максимальной. Данные заряды локализованы в тонком поверхностном слое проводника. Их характеризуют при помощи поверхностной плотности заряда ( ). Заряды, которые возникли на противоположных концах проводника, помещенного в электростатическое поле называют индуцированными.

Явление возникновения индуцированных зарядов называют электростатической индукцией. Самой существенной особенностью индуцированных зарядов является то, что их можно разделить механически. При диэлектрической поляризации такое не представляется возможным.

И так, электрические заряды в проводниках способны перемещаться. Если к незаряженному проводнику поднести электрический заряд, то заряды противоположного знака переместятся к этому заряду, а такого же знака отодвинутся от него. При этом наш проводник в целом буде иметь нулевой заряд. В соответствии с законом Кулона сила взаимодействия между зарядами обратно пропорциональная расстоянию между ними. Получится, что незаряженный проводник будет притягиваться к поднесенному к нему заряду.

Если индуцирующий заряд убрать, то проводник вернется в нейтральное состояние. Если индуцирующий заряд оставить на месте, при этом отделить ближнюю и дальние части проводника, изолировав их, то каждая из частей будет нести заряд, имеющий равный по модулю и противоположный по знаку. Электростатические машины устроены в по такому принципу. Они повторяют операции накопления и разделения зарядов.

Определение электростатической индукции

Явлением электростатической индукции называют процесс возникновения собственного электростатического поля у тела, если оно помещено во внешнее электрическое поле.

Данное явление вызвано перераспределением зарядов внутри проводников и поляризацией диэлектриков. При этом внешнее электростатическое поле может искажаться индуцированным полем.

Примеры решения задач

Задание Как используя явление индукции определить знак заряда на электроскопе?
Решение Определить знак заряда на электроскопе можно, если приблизить к нему тело несущее заряд известного знака. При этом если знак заряда электроскопа совпадает со знаком заряда на пробном теле (рис.1(а)), то листки электроскопа расходятся на больший угол, если заряды на теле и электроскопе противоположны, то листки электроскопа сближаются (рис.1(б)). На рис.1 пунктиром обозначено положение листков электроскопа до сближения его с заряженным телом.

Электростатическая индукция, пример 1

Это происходит потому, что когда подносят к шару электроскопа заряженное тело, то на стержне прибора возникают индуцированные заряды. При этом на внешнем конце стержня появляются заряды противоположного знака (у нас отрицательные), на внутреннем конце того же знака, что у подносимого тела (у нас положительные). Значит, если на электроскопе был изначально заряд такой же, что на теле, то суммарный заряд листков растет, при этом угол расхождения листков увеличивается. Если электроскоп и тело несут заряды противоположных знаков, то листки отклоняются на меньший угол, так как часть заряда электроскопа будет компенсирована, заряд на нем уменьшится.

Электростатическая индукция простыми словами: физика явления, формулы, применение

Электростатическая индукция – это явление разделения электрических зарядов и их распределение по поверхности проводника во внешнем электрическом поле.

Простое объяснение

Электростатическая индукция означает перераспределение носителей заряда в объекте, вызванное близлежащими электрическими зарядами. Это означает, что если поместить заряженный объект рядом с нейтральным проводником, то на одном конце проводника образуется положительный электрический заряд, а на другом – отрицательный. Благодаря этому влиянию измеряемый электрический потенциал также одинаков в каждой точке проводника.

Обычная незаряженная среда имеет равное количество положительных и отрицательных электрических зарядов в каждой точке среды. Они расположены близко друг к другу, поэтому преобладает нейтральный электрический заряд. Положительные электрические заряды – имеют ядра атомов. Они неподвижны в структуре вещества и поэтому не могут двигаться. Отрицательные электрические заряды – это электроны, связанные с атомными ядрами. В электропроводящих объектах некоторые из этих электронов могут свободно перемещаться в материале.

Если заряженный объект приблизить к нейтральному проводнику, это приведет к разделению электрических зарядов в проводнике. Это обусловлено действующей силой заряженного объекта, описываемой законом Кулона. То, как электрический заряд распределяется в проводнике, зависит от того, заряжен ли внешний объект положительно или отрицательно.

Если вы поднесете к проводнику положительно заряженный предмет, он притянет к себе отрицательно заряженные электроны проводника. Это приводит к появлению отрицательного электрического заряда в проводнике с той стороны, с которой вы приближаетесь к положительно заряженному объекту. Аналогично этому на противоположной от него стороне возникает скопление положительного электрического заряда. Эти зоны электрического заряда называются индуцированными электрическими зарядами. С другой стороны, если объект, к которому вы приближаетесь, заряжен отрицательно, то происходит обратный процесс.

Обратите внимание, что проводник по-прежнему не заряжен, поскольку число носителей электрического заряда остается прежним. Это всего лишь перераспределение электрического заряда. Процесс является обратимым. Если вы снова удалите внешний объект, электроны вернутся к своему первоначальному распределению.

Иллюстрация электростатической индукции

Рис. 1. Иллюстрация электростатической индукции

Физика и формулы, описывающие явление

Самый простой способ показать, что происходит во время электростатический индукции, — это использовать проводящую сферу. Даже если абсолютное число смещённых электронов кажется большим, сдвиг относительно невелик по отношению к общему количеству носителей электрического заряда. Это легче представить, посмотрев на распределение электрического заряда на поверхности сферы.

Если вы проводите эксперимент с электростатической индукцией, вы должны ограничить напряженность электрического поля значениями ниже Emax =10 5 В/м. Это предотвращает “фальсификацию результата” нежелательными разрядами. Такие разряды возникают в воздухе при значениях Eкрит =10 7 В/м – 10 9 В/м. Это напряженность электрического пробоя, которая описывает напряженность электрического поля, выше которой происходит пробой напряжения в изоляторе (диэлектрике). Обычно они имеют форму дуги или искры.

С помощью этого вы можете оценить поверхностную плотность электрического заряда σ на поверхности вашей сферы:

σ = 2 * Emax * ε0 * εr ≈ 1, 789 * 10 -6 Кл/м²

Величины ε0 и εr обозначают соответственно абсолютную диэлектрическую проницаемость вакуума и относительную диэлектрическую проницаемость рассматриваемой среды.

Таким образом, на каждом квадратном сантиметре поверхности вашей сферы вы найдете избыточный электрический заряд в 1,8 * 10 -10 Кл что соответствует 1,1 * 10 9 электронов. Количество электронов можно определить по заряду электрона, который равен e=1,602 * 10 -19 Кл.

Конечно, теперь вам нужно знать, сколько атомов занимает примерно один квадратный сантиметр, чтобы вы могли определить соотношение. Если ваша сфера сделана из меди, то у вас есть около 8 * 10 14 атомов в одном квадратном сантиметре. Каждый из этих атомов дает электрон проводимости. Теперь разделите количество дополнительных атомов в этом квадратном сантиметре на количество существующих.

1,1 * 10 9 / 8 * 10 14 = 1,4 * 10 -6 = 1 / 723 000 .

Итак, вы теперь знаете, что на почти 700 000 свободно движущихся электронов приходится еще один из-за электростатической индукции.

Электрические проводники

Как известно из закона Кулона, одноименные электрические заряды отталкиваются друг от друга, а разноименные притягиваются. Благодаря этим знаниям, если вы поместите проводящий материал в электрическое поле или в непосредственной близости от заряженного объекта, вы измените плотность его электрического заряда. Неважно, положительно или отрицательно заряжен объект, потому что он будет отталкивать одноименные носители электрического заряда материала и притягивать разноимённые, как уже говорилось выше. Это создает в материале области с различной плотностью электрического заряда. Общая плотность электрического заряда проводника остается неизменной.

Вывод: электростатическая индукция не изменяет общий электрический заряд проводника .

Такое перераспределение электрического заряда наблюдается только на граничных поверхностях, т.е. на поверхности проводника. Поскольку носители электрического заряда могут свободно перемещаться внутри, электрическое поле в проводнике отсутствует.

Электростатическая индукция и поляризация

В отличие от проводников, носители электрического заряда в изоляторе (диэлектрике) не могут свободно перемещаться. В случае электростатической индукции это приводит к поляризации, то есть к образованию электрических полей на поверхности и внутри диэлектрика. Поляризация на стороне, обращенной в сторону от электрического поля, соответствует внешнему полю, а на стороне, обращенной к нему, имеет противоположный электрический заряд.

Такая форма поляризации называется поляризацией смещения (деформационной поляризацией). В этом процессе положительные атомные ядра смещаются в одном направлении, а отрицательная электронная оболочка – в другом.

В этом процессе электронная оболочка не деформируется. При переменном электрическом поле, можно наблюдать, что электронная оболочка раскачивается взад и вперед, как шарик на ниточке.

Электростатическая индукция в изоляторах

Рис. 2. Электростатическая индукция в диэлектриках (изоляторах)

Применение

Эффект электростатический индукции используется во многих процессах. Механические эффекты смещения носителей электрического заряда используются, например, в электроскопе. Он используется для измерения электрического напряжения без электрического тока.

В ускорителях частиц, через так называемые пеллетроны, электростатическая индукция используется для достижения высоких напряжений до 32 миллионов вольт.

Читайте также: