Какие заряды есть в металлических телах
В обычных условиях, число электронов в атоме равно числу протонов. В таком случае положительный заряд всех протонов компенсируется отрицательным зарядом всех электронов. Суммарно выходит, что такой атом будет не иметь никакого заряда — будет электрически нейтральным.
Электрически нейтральное тело — это тело, в котором сумма всех отрицательных зарядов равна по абсолютному значению сумме всех положительных зарядов, и оно в целом не имеет заряда.
Положительно и отрицательно заряженные тела
Но некоторые тела имеют некоторый электрический заряд. В чем же суть, если изначально все атомы электрически нейтральны?
Электрически нейтральное тело получит отрицательный заряд, если получит дополнительные электроны от какого-нибудь другого тела. Тогда количество электронов в нем станет больше количества протонов.
Тело заряжено отрицательно в том случае, если оно обладает избыточным, по сравнению с нормальным, числом электронов.
Соответственно, если нейтральное тело, наоборот, теряет электроны и количество протонов в нем становится больше количества электронов, то оно обретает положительный заряд.
Тело обладает положительным зарядом, если у него недостаточно электронов.
Получается, что тела электризуются (получают электрический заряд), если они теряют или получают электроны.
Обратите внимание, что электризация происходит за счет изменения числа электронов, а не протонов. Протоны и нейтроны связаны сильнейшими взаимодействиями в ядре. Изменение числа протонов приводит к образованию атома нового химического элемента.
Теперь возьмем изначально нейтральную эбонитовую палочку и потрем ее о мех (рисунок 1, б). Она получит отрицательный заряд, а мех — положительный.
Объясняется это так же тем, что в ходе трения электроны переходят с меха на палочку. В итоге, на эбонитовой палочке образуется избыток электронов, а на мехе — их недостаток.
Почему при трении электроны переходят со стеклянной палочки на шелк и с меха на эбонитовую палочку, а не наоборот? Дело в том, что при взаимодействии двух тел из разных веществ электроны теряет то вещество, в котором силы притяжения электронов к ядру атомов меньше. Они переходят к тому веществу, в котором эти силы больше.
Закон сохранения электрического заряда
Если мы количественно определим заряды, которые в предыдущих опытах обретают мех и эбонитовая палочка (или шелк и стеклянная палочка), то увидим, что они равны.
Это логично, ведь сколько электронов ушло с меха, столько и получила эбонитовая палочка. Получается, что заряд не создается из ничего. Он был и изначально (просто суммарно в атоме был равен нулю), а после трения — разделился другим образом между телами.
Другие эксперименты только подтверждают этот факт. Так, при электризации тел выполняется закон сохранения электрического заряда.
Закон сохранения электрического заряда:
алгебраическая сумма электрических зарядов остается постоянной при любых взаимодействиях в замкнутой системе:
$q_1 + q_2 + q_3 + … + q_n = const$,
где $q$ — электрический заряд.
Обратите внимание! Этот закон выполняется только в замкнутой системе. Что это означает?
Замкнутая система — это такая система, в которую не входят извне и не выходят наружу никакие электрические заряды.
Свободные электроны
А какие именно электроны теряют вещества?
Снова вернемся к строению атома. В различных атомах электроны находятся на разных расстояниях от ядра. Взгляните, например на атом лития (рисунок 2).
Электроны, которые дальше находятся от ядра, слабее притягиваются к нему. Те, что находятся ближе к ядру, притягиваются сильнее. Особенно слабо удерживаются удаленные электроны в металлах.
Получается, что в металлах происходит следующее:
наиболее удаленные от ядра электроны могут покидать свое место и свободно двигаться между атомами этого вещества.
Такие электроны называют свободными. Зафиксируем это новое определение.
Свободные электроны — это электроны, которые покинули свое место в атоме, и свободно перемещаются между другими атомами вещества.
Ранее вы уже слышали о делении веществ на проводники и непроводники (диэлектрики). А сейчас мы докопались до их сути. Их природу определяет наличие или отсутствие именно свободных электронов. В проводниках они есть, а в диэлектриках — нет. Подробнее об этом мы поговорим в следующем уроке.
Передача электрического заряда
Проверим вышесказанное о проводниках. Если в них есть свободные электроны, то они могут переносить (передавать) электрических заряд.
Проведем опыт. Возьмем два электроскопа. Одних из них оставим незаряженным, а второй зарядим отрицательно. Соединим их с помощью металлического стержня (рисунок 3). Он будет являться проводником.
Мы увидим, что второй электроскоп тоже зарядился отрицательно.
Давайте объясним, как это произошло. В стержне есть свободные электроны. Когда мы соединяем его с электроскопами, они оказываются в электрическом поле заряженного электроскопа.
В итоге, эти свободные электроны придут в движение. Они направляются в сторону незаряженного электроскопа. Почему в его сторону? Заряженный электроскоп имеет отрицательный заряд и электроны тоже. Они отталкиваются и двигаются от него в единственное противоположное направление — в сторону незаряженного электроскопа. В результате и этот электроскоп обретает отрицательный заряд.
Рисунок 3. Передача электрического заряда от положительно заряженной стеклянной палочки незаряженной металлической гильзе
Отрицательно заряженный край гильзы притянется к положительно заряженной палочке (разноименные заряды притягиваются). Гильза коснется палочки. При этом часть свободных электронов перейдет с нее на палочку (рисунок 3, б).
Потеряв электроны, гильза оказывается положительно заряженной (рисунок 3, в).
Деление электрического заряда между телами
Посмотрим, как разделяется электрический заряд между двумя телами.
Проделаем простой опыт. Снова возьмем два одинаковых электроскопа. Один из них зарядим. Соединим их металлическим стержнем (рисунок 4).
После их соединения, мы увидим, что второй электроскоп зарядился. Половина заряда перешла на второй электроскоп. Первоначальный заряд поделился на две равные части.
Но что будет с зарядом, если электроскопы будут неодинаковые? Например, шар незаряженного электроскопа будет больше, чем шар первого.
Опыты показывают, что в таком случае на шар незаряженного электроскопа перейдет больше, чем половина заряда.
Чем больше тело, которому передают заряд, тем большая часть заряда на него перейдет.
Слышали о заземлении? Оно основано как раз на вышесказанном факте. Соединив заряженное тело с землей, почти весь его заряд передается земному шару. Происходит это потому, что Земля очень велика по сравнению с другими телами, находящимися на ней. Так заземленное тело практически становится электрически нейтральным.
Упражнения
Упражнение №1
Почему можно наэлектризовать трением эбонитовую палочку, держа ее в руке, а металлический стержень нельзя?
Эбонит считается диэлектриком, электроны притягиваются к ядрам атомов с большой силой. Получив избыточные электроны при электризации, эбонит удерживает и их.
Металлический стержень — проводник. Даже если он получит дополнительные электроны, часть их будет спокойно перемещаться и перейдет на наше тело.
Упражнение №2
При наливании бензина корпус бензовоза при помощи металлического проводника обязательно соединяют с землей. Зачем это делают?
Дело в том, что на металлическом корпусе бензовоза может скапливаться определенный заряд (статическое электричество). Он может спровоцировать появление искры, что крайне взрывоопасно в сочетании с бензином и его парами.
Соединяя корпус бензовоза с землей, его заземляют. Заряд с корпуса уходит в землю и становится электрически нейтральным, появление искры невозможно.
Упражнение №3
Пластмассовая линейка, потертая шерстяной тканью, получила отрицательный заряд. Избыток или недостаток электронов образовался на ткани?
Если линейка получила дополнительные электроны, значит, по закону сохранения заряда, эти электроны потеряла ткань. Т.е., при электризации линейки электроны с ткани перешли на нее. Получается, что на ткани образовался недостаток электронов. Ткань обрела положительный заряд.
Электрический ток в металлах
В этом листке мы приступаем к подробному изучению того, как осуществляется прохождение электрического тока в различных проводящих средах — твёрдых телах, жидкостях и газах.
Напомним, что необходимым условием возникновения тока является наличие в среде достаточно большого количества свободных зарядов, которые могут начать упорядоченное движение под действием электрического поля. Такие среды как раз и называются проводниками электрического тока.
Наиболее широко распространены металлические проводники. Поэтому начинаем мы с вопросов распространения электрического тока в металлах.
Мы много раз говорили о свободных электронах, которые являются носителями свободных зарядов в металлах. Вам хорошо известно, что электрический ток в металлическом проводнике образуется в результате направленного движения свободных электронов.
Металлы в твёрдом состоянии имеют кристаллическую структуру: расположение атомов в пространстве характеризуется периодической повторяемостью и образует геометрически правильный рисунок, называемый кристаллической решёткой.
Атомы металлов имеют небольшое число валентных электронов, расположенных на внешней электронной оболочке. Эти валентные электроны слабо связаны с ядром, и атом легко может их потерять.
Когда атомы металла занимают места в кристаллической решётке, валентные электроны покидают свои оболочки — они становятся свободными и отправляются «гулять» по всему кристаллу (а именно, свободные электроны перемещаются по внешним орбиталям соседних атомов. Эти орбитали перекрываются друг с другом вследствие близкого расположения атомов в кристаллической решётке, так что свободные электроны оказываются «общей собственностью» всего кристалла). В узлах кристаллической решётки металла остаются положительные ионы, пространство между которыми заполнено «газом» свободных электронов (рис. 1 ).
Рис. 1. Свободные электроны
Свободные электроны и впрямь ведут себя подобно частицам газа (другой адекватный образ — электронное море, которое «омывает» кристаллическую решётку) — совершая тепловое движение, они хаотически снуют туда-сюда между ионами кристаллической решётки. Суммарный заряд свободных электронов равен по модулю и противоположен по знаку общему заряду положительных ионов, поэтому металлический проводник в целом оказывается электрически нейтральным.
Газ свободных электронов является «клеем», на котором держится вся кристаллическая структура проводника. Ведь положительные ионы отталкиваются друг от друга, так что кристаллическая решётка, распираемая изнутри мощными кулоновскими силами, могла бы разлететься в разные стороны. Однако в тоже самое время ионы металла притягиваются к обволакивающему их электронному газу и, как ни в чём не бывало, остаются на своих местах, совершая лишь тепловые колебания в узлах кристаллической решётки вблизи положений равновесия.
Что произойдёт, если металлический проводник включить в замкнутую цепь, содержащую источник тока? Свободные электроны продолжают совершать хаотическое тепловое движение, но теперь — под действием возникшего внешнего электрического поля — они вдобавок начнут перемещаться упорядоченно. Это направленное течение электронного газа, накладывающееся на тепловое движение электронов, и есть электрический ток в металле (поэтому свободные электроны называются также электронами проводимости). Скорость упорядоченного движения электронов в металлическом проводнике, как нам уже известно, составляет приблизительно 0,1мм/с.
Опыт Рикке
Почему мы решили, что ток в металлах создаётся движением именно свободных электронов? Положительные ионы кристаллической решётки также испытывают на себе действие внешнего электрического поля. Может, они тоже перемещаются внутри металлического проводника и участвуют в создании тока?
Упорядоченное движение ионов означало бы постепенный перенос вещества вдоль направления электрического тока. Поэтому надо просто пропускать ток по проводнику на протяжении весьма длительного времени и посмотреть, что в итоге получится. Такого рода эксперимент и был поставлен Э.Рикке в 1901 году.
В электрическую цепь были включены три прижатых друг к другу цилиндра: два медных по краям и один алюминиевый между ними (рис. 2 ). По этой цепи пропускался электрический ток в течение года.
Рис. 2. Опыт Рикке
За год сквозь цилиндры прошёл заряд более трёх миллионов кулон. Предположим, что каждый атом металла теряет по одному валентному электрону, так что заряд иона равен элементарному заряду Кл. Если ток создаётся движением положительных ионов, то нетрудно подсчитать (сделайте это сами!), что такая величина прошедшего по цепи заряда соответствует переносу вдоль цепи около 2кг меди.
Однако после разъединения цилиндров было обнаружено лишь незначительное проникновение металлов друг в друга, обусловленное естественной диффузией их атомов (и не более того). Электрический ток в металлах не сопровождается переносом вещества, поэтому положительные ионы металла не принимают участия в создании тока.
Опыт Стюарта–Толмена
Прямое экспериментальное доказательство того, что электрический ток в металлах создаётся движением свободных электронов, было дано в опыте Т.Стюарта и Р.Толмена (1916 год).
Эксперименту Стюарта–Толмена предшествовали качественные наблюдения, сделанные четырьмя годами ранее русскими физиками Л.И.Мандельштамом и Н.Д.Папалекси. Они обратили внимание на так называемый электроинерционный эффект: если резко затормозить движущийся проводник, то в нём возникает кратковременный импульс тока. Эффект объясняется тем, что в течение небольшого времени после торможения проводника его свободные заряды продолжают двигаться по инерции.
Однако никаких количественных результатов Мандельштам и Папалекси не получили, и наблюдения их опубликованы не были. Честь назвать опыт своим именем принадлежит Стюарту и Толмену, которые не только наблюдали указанный электроинерционный эффект, но и произвели необходимые измерения и расчёты.
Установка Стюарта и Толмена показана на рис. 3 .
Рис. 3. Опыт Стюарта–Толмена
Катушка большим числом витков металлического провода приводилась в быстрое вращение вокруг своей оси. Концы обмотки с помощью скользящих контактов были подсоединены к специальному прибору — баллистическому гальванометру, который позволяет измерять проходящий через него заряд.
После резкого торможения катушки в цепи возникал импульс тока. Направление тока указывало на то, что он вызван движением отрицательных зарядов. Измеряя баллистическим гальванометром суммарный заряд, проходящий по цепи, Стюарт и Толмен вычислили отношение заряда одной частицы к её массе. Оно оказалось равно отношению для электрона, которое в то время уже было хорошо известно.
Так было окончательно выяснено, что носителями свободных зарядов в металлах являются свободные электроны. Как видите, этот давно и хорошо знакомый вам факт был установлен сравнительно поздно — учитывая, что металлические проводники к тому моменту уже более столетия активно использовались в самых разнообразных экcпериментах по электромагнетизму (сравните, например, с датой открытия закона Ома — 1826 год. Дело, однако, заключается в том, что сам электрон был открыт лишь в 1897 году).
Зависимость сопротивления от температуры
Опыт показывает, что при нагревании металлического проводника его сопротивление увеличивается. Как это объяснить?
Причина проста: с повышением температуры тепловые колебания ионов кристаллической решётки становятся более интенсивными, так что число соударений свободных электронов с ионами возрастает. Чем активнее тепловое движение решётки, тем труднее электронам пробираться сквозь промежутки между ионами (Представьте себе вращающуюся проходную дверь. В каком случае труднее проскочить через неё: когда она вращается медленно или быстро? :-)). Скорость упорядоченного движения электронов уменьшается, поэтому уменьшается и сила тока (при неизменном напряжении). Это и означает увеличение сопротивления.
Как опять-таки показывает опыт, зависимость сопротивления металлического проводника от температуры с хорошей точностью является линейной:
Здесь — сопротивление проводника при . График зависимости (1) является прямой линией (рис. 4 ).
Множитель называется температурным коэффициентом сопротивления. Его значения для различных металлов и сплавов можно найти в таблицах.
Длина проводника и его площадь поперечного сечения при изменении температуры меняются несущественно. Выразим и через удельное сопротивление:
и подставим эти формулы в (1) . Получим аналогичную зависимость удельного сопротивления от температуры:
Коэффициент весьма мал (для меди, например, ), так что температурной зависимостью сопротивления металла часто можно пренебречь. Однако в ряде случаев считаться с ней приходиться. Например, вольфрамовая спираль электрической лампочки раскаляется до такой степени, что её вольт-амперная характеристика оказывается существенно нелинейной.
Рис. 5. Вольт-амперная характеристика лампочки
Так, на рис. 5 приведена вольт-амперная характеристика автомобильной лампочки. Если бы лампочка представляла собой идеальный резистор, её вольт-амперная характеристика была прямой линией в соответствии с законом Ома. Эта прямая изображена синим пунктиром.
Однако по мере роста напряжения, приложенного к лампочке, график отклоняется от этой прямой всё сильнее и сильнее. Почему? Дело в том, что с увеличением напряжения ток через лампочку возрастает и больше разогревает спираль; сопротивление спирали поэтому также увеличивается. Следовательно, сила тока хотя и продолжит возрастать, но будет иметь всё меньшее и меньшее значение по сравнению с тем, которое предписывается «пунктирной» линейной зависимостью тока от напряжения.
Электрический заряд
Электромагнитные взаимодействия принадлежат к числу наиболее фундаментальных взаимодействий в природе. Силы упругости и трения, давление газа и многое другое можно свести к электромагнитным силам между частицами вещества. Сами электромагнитные взаимодействия уже не сводятся к другим, более глубоким видам взаимодействий.
Столь же фундаментальным типом взаимодействия является тяготение — гравитационное притяжение любых двух тел. Однако между электромагнитными и гравитационными взаимодействиями имеется несколько важных отличий.
1. Участвовать в электромагнитных взаимодействиях могут не любые, а только заряженные тела (имеющие электрический заряд).
2. Гравитационное взаимодействие — это всегда притяжение одного тела к другому. Электромагнитные взаимодействия могут быть как притяжением, так и отталкиванием.
3. Электромагнитное взаимодействие гораздо интенсивнее гравитационного. Например, сила электрического отталкивания двух электронов в раз превышает силу их гравитационного притяжения друг к другу.
Каждое заряженное тело обладает некоторой величиной электрического заряда . Электрический заряд — это физическая величина, определяющая силу электромагнитного взаимодействия между объектами природы. Единицей измерения заряда является кулон (Кл).
Два вида заряда
Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия — притяжение и отталкивание — удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные.
Заряды разных знаков притягиваются друг к другу, а заряды разных знаков друг от друга отталкиваются. Это проиллюстрировано на рис. 1 ; подвешенным на нитях шарикам сообщены заряды того или иного знака.
Рис. 1. Взаимодействие двух видов зарядов
Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны.
Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален. Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела. Но при нарушении электронейтральности (например, в результате электризации) тело немедленно начинает действовать на окружающие заряженные частицы.
Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.
Заряд протона равен Кл. Заряд электрона противоположен ему по знаку и равен Кл. Величина
называется элементарным зарядом. Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.
Заряд любого тела всегда складывается из целого количества элементарных зарядов:
Если , то тело имеет избыточное количество электронов (по сравнению с количеством протонов). Если же , то наоборот, у тела электронов недостаёт: протонов на больше.
Электризация тел
Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация — это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.
Один из способов электризовать тело — сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.
Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк — отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть — положительно.
Данный способ электризации тел называется электризацией трением. С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову ;-)
Другой тип электризации называется электростатической индукцией, или электризацией через влияние. В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других — отрицательные.
Рис. 2. Электростатическая индукция
Давайте посмотрим на рис. 2 . На некотором расстоянии от металлического тела находится положительный заряд . Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.
Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая — положительно.
Рис. 3. Электроскоп
Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются нескомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.
Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.
Рис. 4. Электризация земли грозовой тучей
Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней — положительный.
Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд — хорошо известная вам молния.
Закон сохранения заряда
Вернёмся к примеру электризации трением — натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.
Мы видим здесь закон сохранения заряда, который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами:
Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.
При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки — столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется!
Например, на рис. 5 показан процесс , при котором порция электромагнитного излучения (так называемый фотон) превращается в две заряженные частицы — электрон и позитрон . Такой процесс оказывается возможным при некоторых условиях — например, в электрическом поле атомного ядра.
Рис. 5. Рождение пары электрон–позитрон
Заряд позитрона равен по модулю заряду электрона и противоположен ему по знаку. Закон сохранения заряда выполнен! Действительно, в начале процесса у нас был фотон, заряд которого равен нулю, а в конце мы получили две частицы с нулевым суммарным зарядом.
Закон сохранения заряда (наряду с существованием наименьшего элементарного заряда) является на сегодняшний день первичным научным фактом. Объяснить, почему природа ведёт себя именно так, а не иначе, физикам пока не удаётся. Мы можем лишь констатировать, что эти факты подтверждаются многочисленными физическими экспериментами.
Постоянный электрический ток
Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.
Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.
Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.
• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.
• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.
• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.
Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.
• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.
Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.
Направление электрического тока
Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?
Направлением тока принято считать направление движения положительных зарядов.
Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1 ; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).
Рис. 1. Направление тока
Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.
Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.
Действия электрического тока
Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.
1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.
2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.
3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.
Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.
Постоянный ток наиболее прост для изучения. С него мы и начинаем.
Сила и плотность тока
Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:
Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.
Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).
В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.
Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:
где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:
Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2) , плотность тока измеряется в А/м2.
Скорость направленного движения зарядов
Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.
Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.
Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.
Итак, подчеркнём ещё раз, что мы различаем две скорости.
1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.
2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.
Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.
Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .
Рис. 2. К выводу формулы
Какой заряд пройдёт через поперечное сечение нашего проводника за время ?
С одной стороны, разумеется,
С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:
Следовательно, их общий заряд будет равен:
Приравнивая правые части формул (3) и (4) и сокращая на , получим:
Соответственно, плотность тока оказывается равна:
Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.
Заряд электрона известен: Кл.
Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:
Положим мм . Из формулы (5) получим:
Это порядка одной десятой миллиметра в секунду.
Стационарное электрическое поле
Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?
Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!
Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.
Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.
Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.
То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.
Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?
Ответ — источник тока, важнейший элемент электрической цепи.
Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).
Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.
В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.
Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.
А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?
Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.
Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.
Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.
А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).
1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.
Какие заряды есть в металлических телах
Если атом теряет хоть один электрон, он теряет свою электронную стабильность. Теперь суммарный положительный заряд всех протонов в ядре по абсолютному значению больше отрицательного заряда электронов. Такой атом называют положительным ионом.
В таком строении кроется ответ на вопрос: “Почему в обычных условиях металл электрически нейтрален?”.
Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решетки.
Обратите внимание на тот факт, что не все электроны в металлах являются свободными. Часть из них остается связанными с ядрами атомов, а другая их часть — беспорядочно движется между этими атомами.
Эти электроны изначально находятся на самых удаленных от ядра орбитах. Они слабо связаны с ядром. Поэтому они могут довольно легко переходить от одного атома к другому, повторяя этот процесс множество раз. Именно это движение мы и называем беспорядочным движением свободных электронов.
Ток в металлах
Создадим в металле электрическое поле с помощью любого источника тока. Положительные ионы останутся в узлах кристаллической решетки. В движение придут именно свободные электроны под действием электрических сил. Их движение станет направленным (рисунок 2).
При этом сохранится и беспорядочность этого движения. Как это можно представить? Вообразите себе стайку мошкары, где каждое насекомое беспорядочно двигается. Если подует ветер, то эта стайка начнет перемещаться в одном направлении, при этом беспорядочное движение внутри этой стайки сохранится. На это и будет похоже движение электронов под действием электрических сил.
Теперь мы можем определить природу электрического тока в металлах и дать ему определение.
Электрический ток в металлах — это упорядоченное движение свободных электронов.
Доказательные опыты
Сделанные нами выводы построены не просто на рассуждениях, но и множество раз доказаны эмпирически. Российские ученые Леонид Исаакович Мандельштам (рисунок 3) и Николай Дмитриевич Папалекси (рисунок 4) провели ряд интересных опытов. Эти опыты позже были подтверждены американскими физиками Бальфуром Стюартом и Робертом Толменом.
Рисунок 3. Леонид Исаакович Мандельштам (1879 — 1944) — российский и советский физик, один из основателей научной школы радиофизики
Рисунок 4. Николай Дмитриевич Папалекси (1880 — 1947) — российский и советский физик, основоположник радиоастрономии
Суть опытов заключалась в следующем. Уже известно, что в металле есть какие-то свободные заряды, и они обладают массой. Тогда они должны испытывать на себе инерцию.
Для проверки этого предположения металлический проводник нужно было привести в движение, а затем резко остановить. Для удобства использовали вращательно движение, а не поступательное.
Металлическую проволоку наматывали на деревянный каркас и раскручивали (рисунок 5). После резкой остановки с помощью гальванометра фиксировали возникновение тока.
Было определено, что именно электроны вылетали из проводника. Установили это, определяя отношение заряда к массе его носителя. Эти данные для электрона у ученых уже имелись.
Скорость распространения электрического поля и тока в металлах
После создания электрического поля свободные электроны приходят в движение. Скорость их движения совсем небольшая. В среднем она составляет несколько миллиметров в секунду.
Но как тогда после щелчка выключателем лампа в комнате загорается мгновенно? Дело обстоит в следующем.
Именно само электрическое поле распространяется в проводнике с огромной скоростью. Она близка к скорости света в вакууме ($c = 300 \space 000 \frac$). Распространяется поле по всей длине проводника.
Соответственно, в движение приходят одновременно все электроны в проводнике. И те, что ближе к выключателю, и те, что ближе к электроприбору.
Например, пошлем электрический сигнал из Владивостока в Москву. Расстояние между этими городами составляет около 8000 км. В Москве сигнал будет зафиксирован уже через 0,03 с. Это не означает, что электроны от Владивостока проделали весь этот путь за указанное время и прибыли в Москву. Нет, это электрическое поле распространилось по проводам с невероятной скоростью и привело в движение самые ближние к приемнику в Москве электроны в движение, которое и было зафиксировано.
Поэтому, когда говорят о скорости распространения тока в проводнике, то имеется в виду скорость распространения электрического поля по всей длине проводника.
Скорость движения электронов в металлах
С какой скоростью все же двигаются сами электроны в металлах? Давайте ответим на этот вопрос и сравним полученную скорость со скоростью света, т.е. со скоростью распространения электрического поля по проводнику.
Скорость движения электронов при действии на них электрических сил называется дрейфовой скоростью.
Величина дрейфовой скорости электронов лежит в пределах $0.6 — 6 \frac$.
Сравним среднее значение этой скорости ($2.7 \frac$) со скоростью света. Для этого переведем значение, выраженное в $\frac$ в $\frac$:
$\upsilon_e = 2.7 \frac = 2.7 \cdot 10^ \frac$.
Получается, что скорость распространения электрического поля по проводнику (скорость света) больше в $10^$ раз скорости движения электронов под действием этого же электрического поля.
Читайте также: