Какие металлы есть на марсе
С 30 июля 2020 на Марсе находится ровер Perseverance, а с начала 2021 года к нему присоединился вертолет Ingenuity — оба этих устройства поставляют на Землю больше всего информации о Красной планете. За 2021 год накопилось много интересных и неожиданных фактов про Марс, поэтому «Хайтек» сделал подборку.
Читайте «Хайтек» в
Лава, органика, огромный ледник и, возможно, жизнь — все это есть на Марсе и ученые это подтверждают.
Коренная порода планеты — это лава
Операторы миссии Perseverance определили, что коренная порода, по которой повсюду передвигается марсоход, состоит из застывшей магмы. По последним данным, она состоит из бывшей лавы — это Brac. В ней есть большое количество крупных кристаллов оливина, которые находятся в зернах пироксена.
Это открытие означает, что поверхность Марса ранее была покрыта потоками вулканической лавы.
В мае 2021 года исследователи сделали вывод, что Марс все еще может быть вулканически активным. Ученые уверены — это повышает вероятность существования обитаемых условий под поверхностью планеты в недавнем прошлом.
Новые наблюдения показывают, что Марс все еще может быть вулканически активным. Ученые уверены — это повышает вероятность существования обитаемых условий под поверхностью планеты в недавнем прошлом.
Марсианский подземный ледник
В середине декабря 2021 году ученый из института космических исследований РАН заявили о том, что они возможно нашли гигантское скопления водного льда на дне долин Маринер, которая расположена на Марсе.
Исследователи отмечают, что на Красной планете есть вода, но она обычно скапливается в холодных полярных регионах планеты в виде льда. Но жидкость ранее не находили на поверхности планеты вблизи экватора — температуры недостаточно низкие для того, чтобы он оставался в стабильном состоянии.
Но теперь исследователи из Европейского космического агентства (ЕКА) заявили, что обнаружили крупный ледник прямо под поверхностью Марса. Его зафиксировал детектор нейтронов FREND на орбитальном аппарате Trace Gas Orbiter.
Каньон образовался около 3.5 млрд лет назад, когда на Марсе возникли вулканы провинции Фарсида и вулканическая гора Олимп — самая высокая в Солнечной системе. Вызванные вулканами тектонические процессы привели к образованию огромного разлома, который под воздействием водной эрозии со временем превратился в каньон. Процесс его формирования, вероятно, завершился около 2 млрд лет назад.
Звуки Марса
Марсоход Perseverance смог зафиксировать звуки Марса благодаря двум микрофонам, которые есть на борту. Они записывали пять часов разных шумов. Им удалось записать марсианский ветер, жужжание колес о землю и хруст гравия. Послушать звуки с Марса можно по ссылке.
Устройство недр Марса
На основе данных миссии InSight ученые раскрыли структуру Марса. Выяснилось, что у планеты есть жидкое ядро с необычно низкой плотностью. Это значит, что в его материи содержится относительно немного тяжелых элементов.
Также наличие в ядре других элементов, таких как сера, кислород и водород, оказалось выше теоретически предсказанного.
Кроме этого, исследователи отметили, что внешняя кора Марса серьезно отличается от земной. У нашей планеты она состоит из огромных блоков или платформ, которые перемещаются по магме, как корабли по морю. Этот процесс называется тектоническими сдвигами. На Марсе подобного нет.
Внешняя кора Красной планеты состоит из как минимум двух слоев и в среднем толще, чем земная.
Когда лучше улететь на Марс
Исследователи определили лучшие условия для полетов на Марс. Дело в том, что на миссию может повлиять космическая погода, поэтому авторы новой работы решили подстроиться под нее и найти оптимальный промежуток для запуска.
Среди других проблем, которые отметили авторы — постоянная солнечная радиация, действующая на космонавтов во время всего полета. Поэтому нужно отследить солнечную активность и также постараться снизить ее негативный эффект до минимума.
С учетом всех факторов авторы сделали вывод, что оптимальные условия для полета на Марс будут в середине 2030-х годов.
На Красной планете попробуют выжить не только люди, но и грибы с плесенью
Ученые из НАСА и Немецкого аэрокосмического центра узнали, что земные микробы могут выжить на Марсе. Исследователи решили проверить, какие микроорганизмы смогут выжить даже в марсианских условиях. Для этого исследователи запустили их в стратосферу Земли, поскольку она точно соответствует ключевым условиям на Красной планете.
По итогам эксперимента не все микробы выжили во время полета. Справилась с испытанием, например, черная плесень Aspergillus niger. Это открытие поможет ученым определить растения и культуры, которые смогут жить в марсианских условиях.
На Марсе есть следы органики и, возможно, жизнь
Ученые из команды Curiosity во главе с Полом Махаффи нашли уже второе место, где находятся крупные запасы органики на Марсе. На этот раз образцы были из другой области Марса — так называемых дюн Багнольда.
В этой области ровер ранее обнаружил залежи пород, которые ранее сформировались в горячих источниках. Как отметили ученые, тут ранее могла быть жизнь. По результатам исследования пород авторы нашли соединения бензола, разные амины, фенолы, фосфорную кислоту, а еще более двадцати сложных органических молекул. Их полный и точный состав пока не определен.
Всего за 2021 год ученые узнали о Марсе невероятное количество информации, теперь мы можем посмотреть фото или трансляции того, что происходит на планете и даже послушать звуки с ее. Миссии Perseverance и Ingenuity — это неожиданный успех, по мнению астрономов, никак нельзя было предугадать, что устройства будут до сих пор работать и предоставлять данные. По большей части благодаря этому 2021 год стал таким удачным в истории изучения Марса.
Внутри Алмаза ученые обнаружили «марсианский» минерал
В настоящее время науке известно 5 000 минералов, которые существуют на Земле. Однако состав минералов, которые содержатся в земной коре, не сильно отличается разнообразием — он варьируется в пределах двух десятков химических элементов. Однако совершенно разные минералы могут иметь одинаковый состав. Более того, у совершенно разных по внешнему ввиду и физическим свойствам минералов может быть даже одинаковое количество химических элементов, из которых они состоят. Как вы наверняка догадались, секрет кроется в кристаллической решетке. То есть минералы могут иметь одинаковый состав и одинаковое количество элементов, но при этом отличаться кристаллической решеткой. В результате существуют минералы, которые состоят из распространенных на Земле элементов, но на нашей планете вообще не встречаются. Одним из них длительное время считался мерриллит. Этот минерал в большом количестве присутствует на Луне и Марсе. Однако недавно он был обнаружен внутри земного алмаза, но о чем это говорит?
Внутри алмаза ученые обнаружили минерал, который считался марсианским
Что такое кристаллическая решетка и почему она влияет на свойства минералов
Кристаллической решеткой называется внутренняя структура кристалла, то есть порядок, в котором друг относительно друга расположены атомы, ионы или молекулы. Положение всех частиц кристаллической решетки стабильное, так как они удерживаются химическими связями. От кристаллической решетки зависят ряд характеристик, таких как хрупкость, твердость, пластичность, температура плавления, растворимость, электропроводность и пр.
Чтобы проще было понять, как кристаллическая решетка влияет на свойства минералов, ее можно сравнить с кирпичной кладкой. От того, как уложены кирпичи, зависит прочность стены, ее высота, толщина, форма всего здания и т.д. То есть из одинакового количества абсолютно одинаковых кирпичей могут получиться совершенно разные здания.
Модель кристаллической решетки, от которой зависят свойства минералов
От чего зависит кристаллическая решетка? На нее влияют условия, при которых она возникает — температура, давление и т.д. Именно поэтому некоторых минералов не существует на Земле. На нашей планете попросту нет таких условий, в которых образовывались те или иные минералы. Ранее мы рассказывали, что в космосе можно встретить даже состояния воды, которых не существует на Земле.
Что такое марсианский минерал мерриллит?
Мерриллит представляет собой одну из форм безводного фосфата кальция. Он состоит из кислорода, кальция и фосфора. Как мы сказали выше, его находили в лунном грунте, а также на Марсе. Причем, наличие мерреллита на красной планете считается одним из доказательство того, что на Марсе существовала воды.
По мнению ученых, данный минерал возник в результате потери воды каким-либо фосфатным минералом. А, раз вода потеряна, значит она там когда-то была. Мерреллит долгое время считался исключительно внеземным минералом. Хотя, приписывать ему какие-либо необычные свойства по этой причине не стоит. Отсутствие его на Земле (как считалось ранее) говорит лишь о том, что планеты Солнечной системы, а также крупные спутники вроде Луны имеют разное геологическое прошлое.
Зерна мерриллита внутри алмаза
Как мерриллит оказался на Земле
Ученые из Института геохимии и аналитической химии, а также Института геологии и геохимии нашли включения мерриллита в алмазах, добытых в Бразилии. Как сообщают исследователи в издании American Mineralogist, минерал образовался в недрах нашей планеты в результате структурного изменения другого минерала — туита. Последний существует ближе к ядру планеты, так как устойчив только при очень высоком давлении. То есть на Земле мерриллит возник не так, как на других планетах.
Туит возник в нижних слоях мантии, однако был “захвачен” формирующимися алмазами. При движении к земной коре давление уменьшалось, в результате чего туит превратился в мерреллит.
На Марсе мерриллит образовался не так, как на Земле
Наличие на Земле минерала, который считался исключительно космическим, говорит богатом разнообразии минералов в нижней мантии. Кроме того, возможно, наличие этого минерала в алмазе поможет технологам, работающим над синтезированием искусственных алмазов. Не исключено, что небольшое включение фосфатов поможет повысить качество алмазов, к примеру, сделать их более крупными.
Обязательно подписывайтесь на ЯНДЕКС.ДЗЕН КАНАЛ, где вас ожидают поистине захватывающие и увлекательные материалы.
Напоследок отметим, что алмазы позволяют людям увидеть минералы, которые находятся глубоко в недрах планеты. Они словно капсулы, которые доставляют их к поверхности в “законсервированном” виде. В прошлом году мы рассказывали, что в алмазе был обнаружен давемаоит, минерал, о существовании которого ранее вообще не было известно.
На Марсе найдена скала с «потенциальными признаками жизни»
Человечество уже много лет пытается найти доказательства того, что когда-то давно на Марсе существовала жизнь. Надежда на обнаружение внеземной жизни есть — на поверхности Красной планеты имеются следы рек и озер, а там где вода, там могли быть рыбы, млекопитающие, бактерии и другие формы жизни. С 2021 года на Марсе трудится аппарат Perseverance — самый дорогой и мощный марсоход за всю историю NASA. Недавно, работая на территории дельты древней реки в кратере Езеро, он нашел на кладезь органических веществ. Так как они были обнаружены в месте, где когда-то давно протекала вода, ученые склонны предполагать, что в образцах этой породы они смогут обнаружить следы «инопланетян». Не исключено, что человечество стоит на пороге совершения одного из самых главных открытий в истории, поэтому давайте изучим подробности.
Марсоход Perseverance использует свою роботизированную руку для того, чтобы изучить поверхность марсианского хребта Уайлдкэт
Марсоход Perseverance собирает марсианский грунт
Кратер Езеро на поверхности Марса
Марсоход Perseverance оснащен более 40 капсулами для хранения образцов грунта. Первые попытки сбора материала были провальными, но потом все наладилось и на данный момент исследовательский аппарат заполнил ценными образцами 12 капсул. Особенно интересные образцы грунта недавно были найдены на скале Уайлдкэт шириной в 1 метр. Исследователи считают, что она возникла миллиарды лет назад, когда грязь и мелкий песок осели в испаряющемся озере с соленой водой. В июле марсоход исследовал скалу и обнаружил в нем целую кладезь органических веществ.
Найдено доказательство жизни на Марсе
Изучить состав поверхности удалось благодаря инструменту SHERLOCK — при помощи лазера он может определить минеральный состав и наличие органических соединений на любом участке Марса. Как оказалось, что на скале Уайлдкэт есть множество разных органических веществ, которые в основном состоят из углерода, но также могут включать в себя атомы водорода и кислорода. Вдобавок, они могут иметь в своем составе другие элементы вроде азота, фосфора и серы.
Инструмент SHERLOCK на борту марсохода Perseverance
В осадочной породе есть сульфат и глины, поэтому она имеет высокий потенциал для сохранения признаков жизни, — объявил исследователь Дэвид Шустер (David Shuster).
В большинстве случаев, органические молекулы образуются в ходе естественных природных явлений. Однако, они также являются результатом деятельности живых существ — их присутствие в грунте может указывать на то, что на Марсе когда-то все же были живые существа. В 2013 году аппарат «Кьюриосити» уже находил на Красной планете органические молекулы, однако новое открытие сильно отличается, потому что органические вещества обнаружены в месте, где могли обитать живые создания. Вероятность того, что ученые нашли следы жизни, гораздо выше.
В далеком прошлом песок, грязь и соли, из которых сейчас состоят образцы грунта из скалы Уайлдкэт, откладывались в условиях, при которых могла существовать жизнь. Тот факт, что органические вещества были найдены в такой породе, очень важен, — объяснил исследовать Кен Фарли (Ken Farley).
Доставка марсианского грунта на Землю
Однако, ученые отмечают, что какими бы мощными ни были инструменты на борту Perseverance, точный состав образцов марсианского грунта будет известен только после их возвращения на Землю. Миссия по доставке образцов называется MSR (Mars Sample Return Mission) и разрабатывается в союзе NASA с Европейским космическим агентством (ESA). Первый этап этой миссии идет полным ходом — марсоход заполняет пробирки. А второй этап находится в «концептуальном проектировании», в ходе которого специалисты предлагают разные варианты доставки образцов на Землю. О том, как это будет происходить по нынешнему плану, вы можете почитать в этом материале.
Иллюстрация Mars Sample Return Mission
Чтобы не пропустить момент обнаружения инопланетян, подпишитесь на наш Дзен-канал со всеми свежими новостями науки и технологий!
Ожидается, что агентство NASA сможет доставить образцы марсианского грунта в 2033 году. Но американцев вполне может опередить Китай, потому что у нее уже есть план по доставке ценного материала на два года раньше. Кажется, в ближайшее время мы будем наблюдать за очередной космической гонкой, в конце которой человечество может выяснить, что мы не одни во Вселенной.
Как NASA будет добывать полезные ископаемые на Марсе?
Как вам такой марсоход?
Эта роботизированная фабрика никакая не научная фантастика. Это проект, над которым в настоящий момент трудятся сразу несколько научных команд аэрокосмического агентства NASA. Одна из них, Swamp Works, работает в Космическом центре Кеннеди во Флориде. Официально разрабатываемая ими установка называется «системой утилизации ресурсов in situ» (ISRU), однако люди, которые над ней работают привыкли называть ее пылеулавливающей фабрикой, потому что она перерабатывает обычную пыль в ракетное топливо. Эта система однажды позволит людям жить и работать на Марсе, а также возвращаться при необходимости обратно на Землю.
Добыча полезных ископаемых на Марсе
Зачем вообще что-то синтезировать на Марсе? Почему просто не привезти все необходимое туда с Земли? Проблема в стоимости этого удовольствия. По некоторым оценкам доставка одного килограмма полезной нагрузки (например, топлива) с Земли на Марс — то есть, вывод этого килограмма на низкую околоземную орбиту, отправку его к Марсу, замедление космического аппарата при выходе на орбиту планеты и наконец безопасную посадку на поверхность – потребуется сжечь 225 килограммов ракетного топлива. Соотношение 225:1 – та еще эффективность. При этом те же цифры будут характерны при использовании любого космического корабля. То есть, для доставки той же тонны воды, кислорода или технического оборудования на Красную планету потребуется сжечь 225 тонн ракетного топлива. Единственный способ избавить себя от такой затратной арифметики – собственное производство воды, кислорода или того же топлива на месте.
Сразу несколько исследовательских и инженерных групп в NASA работают над решением различных аспектов этой проблемы. Например, команда Swamp Works из Космического центра Кеннеди недавно начала сборку всех отдельных модулей системы добычи полезных ископаемых. Установка представляет собой ранний прототип, но сочетает в себе все детали, которые будут необходимы для работы пылеулавливающей фабрики.
Долгосрочный план NASA направлен на колонизацию Марса, но сейчас агентство сконцентрировало все свои силы и внимание на Луне. Таким образом проверка большей части разрабатываемого оборудования будет проводиться сперва на лунной поверхности, что в свою очередь позволит решить все возможные проблемы, чтобы избежать их в будущем при использовании установки на Марсе.
Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.
Пыль и грязь на внеземном космическом теле принято называть реголитом. В общем смысле речь идет о вулканической породе, которая за несколько миллионов лет под воздействием различных погодных условий превратилась в мелкий порошок. На Марсе под слоем коррозийных минералов железа, которые дают планете ее знаменитый красноватый оттенок, лежит толстый слой кремниевых и кислородных структур, соединенных с железом, алюминием и магнием. Добыча этих материалов представляет собой очень сложную задачу, поскольку запасы и концентрация этих веществ может варьироваться от одной области планеты к другой. К сожалению, эта задача усложняется еще и низкой гравитацией Марса – копать в таких условиях, используя преимущество массы гораздо сложнее. На Земле для добычи полезных ископаемых мы обычно используем большие машины. Их размеры и вес позволяют прилагать достаточно усилий для того, чтобы «вгрызаться» в грунт. Везти на Марс такую роскошь будет совершенно непозволительно. Помните проблему стоимости? С каждым граммом, который будет отправлен на Марс, цена всего запуска будет постоянно возрастать. Поэтому в NASA работают над тем, как производить добычу минералов на Красной планете с использованием легковесного оборудования.
Космический экскаватор. NASA разрабатывает роботизированный экскаватор с двумя противоположными барабанными ковшами, вращающимися в противоположном друг от друга направлении. Такой подход позволит машине работать в условиях низкой гравитации и исключит необходимость в приложении больших усилий
Как добываются ресурсы на Марсе
Знакомьтесь, RASSOR (Regolith Advanced Surface Systems Operations Robot) – автономный добытчик, разработанный с единственной целью – копать реголит в условиях низкой гравитации. При разработке RASSOR (читается как «рейзор» — от английского «лезвие») инженеры NASA уделили особое внимание его системе силовых приводов. Последние состоят из моторов, редукторов и других механизмов, составляющих основную массу всей установки. Здесь используются бескаркасные двигатели, электромагнитные тормоза, а также, среди прочих вещей, 3D-напечатанные титановые корпуса – все для того, чтобы минимизировать общий вес и объем конструкции. Как итог, система обладает примерно в половину меньшей массой, по сравнению другими приводами, имеющими аналогичные технические характеристики.
Для рытья RASSOR использует два оппозиционных барабанных ковша, каждый из которых оснащен несколькими зубьями для захвата материала. При движении аппарата барабанные ковши вращаются. Приводы, которые их удерживают, опускаются и барабаны, полые внутри, в буквальном смысле срезают верхний слой поверхностного реголита. Другими словами, комбайн производит забор лишь верхнего слоя материала, а не роет вглубь. Еще одной ключевой особенностью RASSOR является оппозитная конструкция – барабаны вращаются в разных направлениях. Это позволяет не применять большие усилия для забора грунта в условиях низкой гравитации.
Как только барабаны RASSOR заполняются, робот прекращает сбор и движется в сторону перерабатывающей фабрики. Для разгрузки реголита машина просто вращает барабаны в противоположном направлении – материал падает через те же отверстия в барабанах, через которые производился его сбор. Имеющая у фабрики своя роботизированная рука-подъемник собирает доставленный реголит и отправляет его на загрузочную ленту фабрики, которая в свою очередь доставляет материал в вакуумную печь. Там реголит будет разогреваться до высоких температур. Содержащиеся в материале молекулы воды будут выдуваться сухой газодувкой, а затем собираться с помощью охлаждающего термостата.
Вы возможно задаетесь вопросом: «а разве марсианский реголит изначально не сухой?». Сухой, но не везде. Все зависит от того, где и как глубоко вы будете копать. В некоторых областях планеты всего в нескольких сантиметрах под поверхностью имеются целые пласты водного льда. Еще ниже могут находиться сернокислая известь и песчаники, в которых может содержаться примерно до 8 процентов воды от общей массы массива.
После конденсации отработанный реголит выбрасывается обратно на поверхность, где RASSOR может его подобрать и отвезти в более удаленное от фабрики место. Эти «отходы» на самом деле представляют собой очень ценный материал, поскольку из него при помощи технологий 3D-печати, которые в настоящий момент также разрабатываются в NASA, можно будет создавать защитные сооружения для поселения, а также дороги и посадочные площадки.
Схема добычи полезных ископаемых на Марсе в картинках:
Разработка: Колесный робот производит забор реголита вращающимися ковшами с забороными отверстиями
Транспортировка: Вращающиеся в обратном направлении ковши-барабаны разгружают реголит в роботизированную руку фабрики
Переработка: Для извлечения воды из реголита его разогревают в печи, где происходит электролиз водорода и кислорода
Передача: После получения определенного объема вещества, другая роботизированная рука, оборудованная специальной защитной закрытой системой, загружает его на мобильный роботизированный танкер
Использование и хранение: Астронавты будут использовать воду и кислород для дыхания, а также выращивания растений; топливо будет храниться в виде криогенных жидкостей для будущего использования
Вся вода, которая будет добываться из реголита, будет проходить тщательную очистку. Модуль очистки будет состоять из многофазной системы фильтрации, а также нескольких деионизирующих подложек.
Какие полезные ископаемые можно добыть на Марсе
Жидкость будет использоваться не только для питья. Она станет важнейшим компонентом для производства ракетного топлива. При расщеплении молекул H2O с помощью электролиза на молекулы водорода (H2) и кислорода (O2), а затем компрессии и превращении в жидкость, можно будет синтезировать топливо и окислитель, которые наиболее часто применяются в жидкостных ракетных двигателях.
Сложность заключается в том, что жидкий водород должен храниться при экстремально низких температурах. Для этого NASA хочет превращать водород в тот вид топлива, который будет проще всего хранить: метан (CH4). Это вещество можно получить при соединении водорода и углерода. Где добывать углерод на Марсе?
К счастью, на Красной планете его очень много. Марсианская атмосфера на 96 процентов состоит из молекул углекислого газа. Захват этого углерода – задача специальной морозильной установки. Если говорить простыми словами, она будет создавать из воздуха сухой лед.
Получив с помощью электролиза водород и добыв углеродный газ из атмосферы, с помощью химического процесса — реакции Сабатье — их можно будет соединить в метан. Для этого NASA разрабатывает специальный реактор. В нем будут создаваться необходимые давление и температура для поддержания реакции превращения водорода и углекислого газа в метан и воду в качестве побочного продукта.
Следующей интересной деталью перерабатывающей фабрики является омбилическая роботизированная рука для передачи жидкостей к цистерне мобильного танкера. Необычное в этой системе то, что она особым образом защищена от внешней среды и в частности пыли. Реголитная пыль очень мелкая и способна проникнуть практически везде. Поскольку сам реголит состоит из раскрошившейся вулканической породы, он очень абразивный (цепляется буквально ко всему), что может создать серьезные проблемы для работы оборудования. Лунные миссии NASA в прошлом показали насколько опасно это вещество. Оно нарушало показания электроники, приводило к заклиниванию механизмов, а также становилось причиной сбоев в термоконтроллерах. Защита электрических и жидкостных каналов передачи роботизированной руки, как и любой очень чувствительной электроники, является для ученых одной из самых приоритетных задач.
Так проходят испытания.
Программирование омбилической роботизированный руки для подключения к мобильному танкеру. Манипулятор будет использоваться для заправки танкеров жидким топливом, водой и кислородом
На каждой стороне омбилической камеры, установленной на роботизированный манипулятор, находятся дверцы, действующие как воздушные шлюзы, предохраняющие все внутренние каналы от пыли. Для соединения камеры с механизмом танкера требуется выполнить три шага: во-первых, после заполнения камеры требуется надежно закрыть дверцы с обоих сторон, чтобы создать защитный антипылевой барьер. Во-вторых, в каждой из дверей омбилической камеры необходимо открыть небольшие уплотнительные отверстия, через которые будет предоставляться доступ к каналам передачи ресурсов, установленным на специальной движущейся пластине. В-третьих, требуется выровнять положение каналов передачи омбилической камеры и каналов приема материала механизмом танкера, точно соединив между собой как электрические, так и жидкостные коннекторы.
Роботизированный манипулятор топливоперерабатывающей фабрики будет помещать омбилическую камеру на мобильный роботизированный танкер, а затем разгружать произведенные материалы. Система заправки в этом случае будет очень походить на заправочные станции на Земле, но вместе бензина, она будет перекачивать воду. Или жидкий кислород. Или жидкий метан. Или все вместе сразу.
Недавно инженеры, занимающиеся разработкой этого проекта, провели тестовую демонстрацию установки во Флориде. На этом этапе ученым пришлось прибегнуть к моделированию процессов электролиза и самой печи для сокращения расходов и сложности установки. Кроме того, была проведена симуляция получения с помощью воды трех продуктов переработки. Но в этом случае уже использовались прототипы как аппаратных, так и программных средств для всех частей установки.
Объединив все части вместе, инженеры Swamp Works смогли выяснить наличие тех или иных проблем в дизайне, а также определить некоторые важные детали, которые невозможно было бы определить, если бы подобные тесты проводились уже на последних стадиях разработки и интеграции. По словам разработчиков, быстрое создание прототипа и ранняя интеграция являются отличительный подходом к работе их команды. Благодаря этому можно быстро выяснить работоспособность той или иной идеи, а также определить все имеющиеся недостатки еще на ранней стадии.
Суть марсианской ракетно-топливной фабрики заключается в том, что все это оборудование будет упаковано в небольшую удобную коробку, доставлено на Красную планету, а затем самостоятельно распакуется и приступит к выполнению своей задачи задолго до того, как на Марс прибудут первые люди. Разработка пилотируемых экспедиций на Марс будет зависеть от эффективности этой автономной фабрики. Ведь без нее люди не смогут вернуться обратно на Землю по завершению своей вахты. Кроме того, в NASA также работают команды, которые занимаются вопросами выращивания всевозможных продуктов питания (включая картофель). Новый урожай планируется выращивать опять же автономным способом во время отправки людей Марс и их полетов обратно на Землю, чтобы людей всегда ждал свежий урожай.
В общем, проект по-настоящему гигантский и требует тщательной подготовки.
У NASA имеется большой запас опыта работы автономных роверов и посадочных модулей на Марсе. Например, самые последние марсоходы – «Кьюриосити», высадившийся на Красную планету в 2012 году и «Марс 2020», который отправится туда в 2020 году – обладают и будут обладать высоким уровнем автономности. Однако создание, доставка и использование марсианской ракетно-топливной фабрики в долговременной перспективе и с максимальным уровнем автономности потребует использования таких технологий, которые выведут космическую инженерию на совершенно новый уровень.
Для испытания робота-экскаватора NASA использует закрытую площадку, засыпанную более чем сотней тонн раздробленной вулканической породы. Минералы служат в качестве аналога мельчайшей и абразивной марсианской пыли
Когда мы будем жить на Марсе?
Для начала космической колонизации ученым и инженерам предстоит решить множество технических задач. Например, очень важно определить, подходит ли каждая разрабатываемая подсистема установки по добыче природных марсианских ресурсов для масштабирования. Сможет ли она удовлетворять все потребности и выйти на тот уровень пропускной способности, который будет необходим в рамках пилотируемых миссий на Красную планету.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Согласно недавним подсчетам специалистов NASA, подобная система примерно за 16 месяцев должна будет производить около 7 тонн жидкого метана и около 22 тонн жидкого водорода. Исходя из этого, для максимальной отдачи необходимо очень точно определить наиболее подходящие места для развертывания фабрики по сбору и переработке ресурсов. Кроме того, необходимо рассчитать сколько экскаваторов RASSOR потребуется доставить на Марс, а также сколько часов в сутки им необходимо будет работать, чтобы выйти на заданный план добычи. В конце концов нужно понять насколько большой должна быть морозильная установка для углерода, реактор Сабатье, а также сколько все это добро будет потреблять энергии.
Также ученым необходимо предусмотреть возможные форс-мажорные проблемы, которые могут помешать добыче и переработке ресурсов, потенциально задержав отправку следующей экспедиции на Красную планету. Необходимо оценить все возможные риски, связанные с этими проблемами и заранее разработать правильные и быстрые пути их решения, возможно оснастив систему дублирующими элементами для временной замены вышедшего из строя оборудования.
Необходимо убедиться, что роботизированные технологии смогут поддерживать операционную деятельность без остановки и необходимости в обслуживании в течении нескольких лет, поэтому их разработка будет проходить в строгом соответствии с установленными стандартами. Например, потребуется максимально снизить объем использующихся двигающихся частей. Таким образом можно будет минимизировать воздействие реголитной пыли на эффективность всей системы. Если же подойти к вопросу с другой стороны и начать разрабатывать двигающиеся части с более высокой устойчивостью к пыли, то это не только усложнит всю систему в целом, но еще и добавит к ней лишнего веса, который, как уже говорилось, равноценен золоту.
Ученым также предстоит выяснить, каким образом и в каких пропорциях мелкий и твердый реголит смешан со льдом под поверхностью Марса. Эти данные помогут более эффективно подготовить экскаваторы для добычи ресурсов. Например, текущая версия ковша RASSOR наиболее приспособлена для сбора реголита, смешанного с кусковым льдом. Однако данный дизайн будет менее эффективен при необходимости «вгрызаться» в более крупные пласты твердого льда. Для разработки более подходящего оборудования необходимо получить точное представление о распределении льда на Маре. Другой вариант – разработать более прочное, более сложное, более тяжелое и универсальное оборудование, которое сможет работать с любым видом почвы и плотностью ледяных пластов. Но, опять же, это лишние траты.
Еще нужно решить вопросы, связанные с долгим хранением сверхохлажденных жидкостей. Технологии хранения веществ и материалов под высоким давлением постоянно совершенствуются, но смогут ли современные технологии работать на поверхности Марса продолжительное количество времени?
Процесс сборки этого монстра.
В общем, в ближайшие годы ученые NASA будут заниматься решением всех этих проблемных вопросов. Инженеры Swamp Works в свою очередь продолжат повышать эффективность и готовность всех разрабатываемых компонентов их системы. Экскаваторы планируют сделать еще более крепкими и легкими. После этого планируется приступить к их испытаниям в искусственно созданных и максимально приближенных к марсианским условиях. Ученые также хотят повысить качество и эффективность печи, системы электролиза, а также разработать масштабируемую модель реактора Сабатье и холодильной установки для производства углерода. Разработчики уверены, что решение этих и многих других задач, приведет к тому, что пылесборочный прототип перестанет быть прототипом и в конце концов займется настоящей работой на поверхности Марса, обеспечивая будущих колонистов всеми необходимыми для жизни ресурсами.
Обсудить разработку марсианских экскаваторов и ресурсоперерабатывающей фабрики можно в нашем Telegram-чате.
Полезные ископаемые на Марсе (природное богатство)
Разрешите мне, так сказать, тоже написать статейку, раз уж марсоход Куриосити удачно прилунился. Речь пойдёт о бизнесе и полезных ископаемых на Марсе (не учитывая его две луны Фобос и Деймос). Наверное не для кого не секрет, почему Марс красная планета? И первое что приходит на ум, простите мне лично как человеку не подготовленному так это железо. И при чём всем сплавам сплав! Так вот что ищут на самом деле — нового «донора» для человеческих ресурсов, не только в народном смысле (всё для народа), а ещё конечно и в коммерческом, конечно. Вспомним «русскую» цену на бензин и цену в Саудовской Аравии для внутреннего рынка (3$)! Это тоже на «благо» землян? Поверье — это большая политика, если хотите уже всемирное влияние США. Но речь о Марсе. Уверен, до полёта Curiosity многие крупные компании заключили таки сделку с NASA! Фактов конечно у меня нет, но есть здравая догадка. Построить там станцию по добычи: никеля, вольфрама, золота, платины… алмазов. Ведь железо без углерода ничто, а углерод есть там и благодаря высоким давлениям, тем же бомбардировкам астероидов — углерод превращается в алмазы, тем более с такой благоприятной атмосферой. Т.е. грубо говоря есть две параллельно идущие программы: озеленение Марса и добыча полезных ископаемых. А это: более дешёвые полупроводники, компьютерные микросхемы, процессоры и прочее. Среди прочих высокочистые рубины, кварцы, алмазы, фиониты… И замерзшая вода в грунте. Есть пример — лапа модуля, отжатая при отстыковке от поверхности, оставила след. В следе лапы заблестел отпечаток, который затем испарился и стал обычным, переставшим отражать след. Вода, кислород и азот есть и в атмосфере, правда в очень малых количествах, чем объясняется: фото замёрших капелек на стоках шасси. Т.е, тот при посадке разогрелся, а примарсился и остыл. Образовался обратный эффект холодильника. (Когда вы ставите пиво в холодильник) Конечно найдут, как писал автор в предыдущем блоге — плесень и ржавчину в виде плесени и простейшие бактерии, особенно там где идут выделения (испарения) с поверхности. Причём луны Марса — как и наша луна, тоже когда-то в него «врезались». Тут обычная классическая схема: на одной луне — одно, на другой — другое, а на Марсе всего сразу из полезных ископаемых передалось при соударении. (На Земле из-за этого, кстати Марианская впадина — где живут те, кто не видел света и дышит токсинами из вулканов совершенно спокойно). Вот оно какое природное богатство. Конечно, была бы у меня возможность поработать на Марсе — с огромной радостью (как на БАМ в командировку) Без скафандра не погуляешь, в обеденный перерыв, да и какой-нибудь боллид (крупный метеорит) весом так килограмм 50 вам с 10x скоростей маха двинет по куполу (если посмотрите фото — там таких много валяется из пояса Копера) да ещё и радиоктивных как правило. По этому Лунная фраза — там они и туда мы не пойдём — означала именно это. А кому нужна лишняя доза Кюри от валяющихся на полянке кратера камешков? Идём дальше. Вы не обратили на всплеск рынка ценных бумаг, сегодня, рост рубля, подъём некоторых (правда не большой) товарно-сырьевых и IT-бирж? А зря! Человечек — всё для тебя, ты только ЖКХ плати. В этом есть значительная доля как олимпийских игр (с показателем в виде медалей) так и успех инвесторов вложивших в Curiosity и будущую добычу полезных ископаемых на Марсе. Про доставку на Землю речи не идёт. Барак Обама обещает полёт аж в 2030 году! А это значит, что по-мимо озеленения Марса там будут сотни заводов и фабрик делать «готовый товар» в чистых условиях космической сборки в вакууме! И если помните был проект создания постоянно курсирующего (сначала одного) потом 2 и 3 и 4 кораблей (собраных на орбите) по маршруту Марс-Луна , сокращающих тем временем доставку продукции на Землю от 8ми месяцев до 4х, 2х? Вы меня понимаете? Те же Айфоны и нетбуки… но там, из готовенького, что под ногами так сказать валяется, чего не надо особо бурить, рыть скважины. А вот чего чего, а нефти там нет. Нефть это гигантские хвощи умершие миллионы лет назад во времена динозавров. А значит, если там и водилась живность — то навряд ли она была таких как у нас на матушке Земле масштабов. Если было всё куда проще, то нефти там нет — зато есть металлы и алмазы. Про озеленение Марса. конечно, если есть, а есть 100% в грунте вода, то запросто можно поселить каких либо специальных бактериев которые пукали бы кислородом, а другие кушали и писали водой в почву. Например, как мы знаем на Земле в глубинах океана есть глубоководные животные — которые не видели света и кислорода. Их клетки устроены таким образом, что токсины попадающие в них обеспечивают им синтез белка и деление самой клетки при чём всё это под давлением в тысячу атмосфер под водой. Так вот аналогичный примерчик можно привести и с Марсом. Вспомните фильм Lunar — как раз про разработку, только на Луне. Но человечеству будет сразу очень тяжело и дорого осваивать сразу две планеты. Есть и ещё одна теория освоения — Марс уже использован. Предположим, что во времена динозавров жили некие инопланетяне, которые выкачали из Марса все ресурсы до нашего Апортунити и Куриосити. Пожили, поели, построили, насрали и улетели в Альфа-Коссеопею в Зед-Сетки (Это наша тентура). Этим и может объяснятся существующий парниковый эффект. А человека тогда и не было — были мартышки из которых он собственно и произошёл. А земля товарищам показалась тогда дикой — деревня. Ну не за мамонтом же бегать, простите с голой задницей. Хочется и электрокнигу в метро почитать и в сауну с друзьями. Не цивильно. Так по этой теории, прощу не бросать сильно в меня помидорами, мы, люди уже вторично попытаемся использовать Марс. Вот вам и освоение. А тут — по всем «известной» теории (ещё с советских времён) есть методы привлечения молодёжи на бесплатный рабовладельческий труд. Пиарить как там круто, показать по телевизору команду зелёных якобы отдыхающих в Новой Москве на пикникке — а на самом деле норматив такой 3 пакета полного мусора собрать бесплатно. Или раскопки артифактов в пирамидах или зауралье… Мол вот она, студенческая команда — жить в палатке, кеды, гитара, водка… Работай не хочу. Или вернувшись ленинские годы создать образ знаменитого на весь СССР Стаханова! Мол вот — есть же такой. Идёт в забой на Марсе 300% руды радиоктивной перемалывает. Вот вы становитесь как он, а мы вам участочек забацаем с семьёй обустроетесь, домик, речка, огород, колхоз создадим… мы вам Волгу или Победу дадим. Будете разъезжать на Марсоходе пиарить. Методов много найти бесплатный рабочий труд, но кому-то же надо это делать. А вот вопрос: по каналу имени Москвы (тобишь Москва-реке) едет дорогостоящая яхта, а сам канал не так давно рыли зеки, и можно сказать на костях построено… А яхтсмену-то и не в намёк. Понимаете к чему я клоню про Марс. Ты здохнишь, а про тебя и знать никто не знал, сгинул в кратере. Провалился в чёрную дыру. Кто это построил? Будут ли наши с вами потомки уважать труд своих бабок и дедок (я не беру в пример великую отечественную — тут понятно) но тех, на чьих костях будут построены небоскрёбы на Марсе, заводы. фабрики, опасные производства… Я думаю вряд ли, пройдёт ещё пару поколений и не кто, я думаю уже и сейчас не помнит — кто такой был Армстронг, Королёв, Гагарин. Люди будут тыкать пальцем в АйПад и говорить — а это город такой на карте Яндекса… вот и се мои умозаключения на сегодняшний момент. А пока — скажу всё таки спасибо учёным и программе! Всё равно всё к этому и придёт — точно также как и на Земле. Время лишь позволит забыть созидателей.
Читайте также: