Как защитить металл от коррозии в земле
На выходных услышал такой способ защиты:
Берутся пластиковые 1,5-2 ух литровые бутылки.Расплавляются в ведре над огнём.
В полученную массу опускаеться часть столба.После застывания эту часть в землю.
Что это: байка или способ защиты?
Думаю вполне жизнеспособный способ защиты, вот только чтобы получить ведро расплавленных бутылок их ОООчень много потребуется.
Наверно все-таки байка
Чтоб это было не байкой, нужно предварительно зачистить место обработки столба от имеющейся ржи, зачистить до метала. Заниматься таким гимором или нет? За себя могу сказать - НЕТ.
Вот мне любопытно, кто нить видел упавший забор, причиной падения которого, были мет. столбы пораженные коррозией?
Вопрос: А если деревяный столб в расплав макать?
Ответ: Будет стоять долго, как железный.
Жизнеспособный метод однозначно. Эта дрянь так прилипает, считай - гермеризиркет.
И мазать можно только часть столба выше и ниже уровня земли как он зарыт будет. Там самое активное место коррозии. Насчет зачистки ржи, думаю некритично, так - символически, - главаное чтобы она сухая была, тогда коррозия дальше не пойдет. Да и почистить не проблема, болгаркой и щеткой- насадкой железной в момент.
А вот еще способ на обсуждение: мажем трубу маслом-отработкой, надеваем кембрик термоусадочный и нагреваем , ну хотя бы паяльной лампой, или горячим паром . Потом закапывыаем.
Мне так кажется, что железный столб и без такого антикора 100 годов простоит, а может и побольше.
А вот то, что пока будешь бутылки варить и столбы кунать, какой нибудь дрянью надышишься - факт.
Я пытался плавить плассмасовые изделия. Незнаю при какой температуре это надо делать, но над огнём она очень высокая и плассмаса начинает гореть. Я думаю, не стоит говорить сколько вредных веществ выделяется при горении плассмасы. Так что вероятнее всего и с бутылками ничего не получится. Проще просто покрасить или обернуть листом руберойда и подплавить горелкой.
2 ВЮВ
Я такой забор не видел У меня круглые столбы железные стоЯт лет 30-40, лет 10 назад перевешивал на них рабицу - ничего с ними не делается, хотя и некрашеные. Может быть, почва влияет ? У нас суглинок.
Юбер написал :
У меня круглые столбы железные стоЯт лет 30-40,
В общем,трубы .У труб и стенки толще чем у прямоугольного профиля продаваемого сейчас на рынках в качестве столбов для забота,вроде 5 и 3 мм,соответственно.
С бутылками парицца однозначно не стоит,там другая технология при литье.А вот посмотреть в сторону битумной мастики стоит,стаканы из рубироля тож фигня.
ЗЫ: 30 лет столбы и так простоят запросто
2 Холостяк
Вот и я про то же
А на рынке есть не только прямогольные, труб вполне достаточно
Georgi61 написал :
А вот еще способ на обсуждение: мажем трубу маслом-отработкой, надеваем кембрик термоусадочный и нагреваем
У нас термоусадка D=76мм (больше не нашел) стОит 367руб/м
А любая пластиковая бутылка и является термоусадочной. Если ее надеть на трубу и нагреть то она ее обхватит.
Я при установке столбов под забор буром делаю яму, вставляю столб и промежуток между ним и землей заливаю бетонным раствором, тогда и бутылки никакие не нужны.
Так ведь трубы начинают гнить в месте выхода из бетона наружу.У меня трубы диаметром 60.
Представте несколько дней возиться с ямами и бетоном, а они лет через 10 прогниют.А хочеться лет на 50.
2 kiss
Да ничего у вас за 10 лет не случится И за 20 - тоже
Вот за 50 - не поручусь.
Слышал, что при проектировании линий электропередач и металлических столбов из железных труб принято , что металл ржавеет 0.1 мм в год. Но это самая маленькая скорость (мое мнение).
Вот у племяша трубы сгнили через 30 лет (я лично забивал будучи студентом). Ровно как в аптеке - 3 мм наверное стенка - 50 сятки были. Сгнили правда не все.
А бетон спасет если только вывести гораздо выше уровня земли, что бы вода там не застаивалась.
А если внутрь забетонированного столба отработку залить - это продлит ему жизнь?
Вот я тоже хотел спросить:
Обнаружил, что в металл. столбах заборных - вода. Как ее выковырить, и как защитить что бы она туда не пападала больше? Трубы просто забиты кувалдой в землю и висит рабица.
А допускать попадания воды внутрь столба нельзя, это точно. У меня замазаны цементным раствором. На крайняк, хоть половину пластиковой бутылки натянуть. А нормальные столбы под рабицу продаются с уже заваренным верхом
Так что с отработкой?
kliss написал :
А если внутрь забетонированного столба отработку залить - это продлит ему жизнь?
Логичней засыпать туда цинка/алюминия/магния.
Возьмите на вооружение опыт тех кто занимается транспортом углводородов по подземным трубопроводам. Зачищаем до металла, покрываем праймером, затем изоляционной пленкой на клеющейся основе. Особое внимание переходам "земля-воздух", наиболее подверженное коррозии место. Если совсем уж заморачиваться, нужно смотреть в сторону электро-химзащиты. Разбираться с блуждающим электричеством, потенциалами, ставить анодные заземлители и станции катодной защиты. Если серьезно, то достаточно очистить от рыхлой корозии и воспользваться чем нибудь из противокорозионой химии из автомагазина.
V.OL.F. написал :
Если серьезно, то достаточно очистить от рыхлой корозии и воспользваться чем нибудь из противокорозионой химии из автомагазина
Правильно, есть такой "преобразователь ржавчины".
Это фосфорная кислота. Она преобразовывает ржу в фосфаты и на поверхности стали создает слой фосфатов, которые ржавеют значительно хуже, чем голый металл. Пассивирование называется.
Как защитить металлические трубы в грунте
Обычная сталь под воздействием воды и растворенных в ней кислот и солей быстро коррозирует. Стальные трубы в земле нуждаются в весьма существенной защите, так как грунтовая вода по составам ближе к электролитам, чем к питьевой. В таких условиях сталь в незащищенном виде не может прослужить хоть сколько-либо приемлемый срок.
- При ремонте или укладке нового металлического трубопровода, располагаемого под землей, недопустимо экономить на всех мероприятиях по защите труб в грунте.
Наружный слой из многослойной защиты металлической трубы находящейся в земле должен быть прочным и защищать нижележащие слои от механического воздействия. Он должен распределять точечные нагрузки сдавливания и не поддаваться царапающим смещениям.
Теплоизоляция
Нужен ли теплоизоляционный кожух для имеющегося трубопровода? Если да, то он будет служить одновременно и механической защитой от воздействия грунта. Экструдированный пенополистирол толщиной 30 – 50 мм, как правило, позволяет предотвратить замораживание, если в трубопровод поступает жидкость в «обычном режиме для жилого дома», привнося тепловую энергию. Но, при такой теплоизоляции, обычно в кожух вместе с трубами укладывается и греющий электрический кабель, включающийся с помощью термореле при снижении температуры к 0 градусов.
- Применение теплоизоляции является обязательным, если водопроводные или канализационные трубы будут находиться в замерзающем слое грунта. Реальную глубину промерзания, на которой происходит замораживание труб в земле, лучше уточнить у местных специалистов водоканала.
Как защитить трубы от механического воздействия в земле
Если же теплоизоляция труб в земле не нужна, то необходимо создать более дешевый, но не менее прочный водоупорный кожух, если сравнивать с экструдированным полистиролом.
Применяется обмоточная гидроизоляция на основе геотекстиля и (или) стекловолокна, которые пропитаны полимер-битумными смолами. Подобное можно прибрести в готовом виде в специализированных магазинах, например, как холст пропитанный смолянистым составом, – полимерно-битумные ленты.
Также вариант – наплавляемая гидроизоляция на основе битумно-стекловолоконных материалов.
Также подобное можно сделать и самостоятельно, покрывая трубы текучей битумной смолой и оборачивая предварительно пропитанным стекловолокном.
Как правило, такой метод оказывается достаточной прочной защитой от механического повреждения грунтом, и водонепроницаемым наружным слоем. Здесь крайне важно, чтобы битумный состав сохранял пластичность (текучесть) весь срок службы.
Покрытие труб обмазочной гидроизоляцией
Существуют также составы, которые после нанесения образуют достаточно прочный слой, напоминающий пористую резину. Обмазочная гидроизоляция для объектов в грунте, также может послужить достаточно прочной и долговечной защитой. Правда, к веществам предыдущего поколения это относится не в полной мере. Но современные полимеры, которые еще недостаточно испытаны временем, тем не менее, обещают многое в отношении сохранения труб в земле. Проверить же это можно будет в скором будущем после практического применения. Но стоимость материалов повыше, чем обычное применение битумных текучих смол в сочетании с прочными холстами.
Первичная обработка металлических труб
Прежде чем наносить механически устойчивый наружный слой, стальные трубы должны обрабатываться обычным способом защиты.
- Трубы должны быть очищены от ржавчины и загрязнений с помощью механического воздействия, наждачной бумагой и металлическими щетками. Зачистка ведется до блестящего металла, допускается оставление отдельных вкраплений оксидов.
- Металл должен быть обработан ортофосфорной кислотой, которая реагирует с окислами железа, образуя прочное соединение в виде пленки с хорошей адгезией с самим металлом.
Стальные трубы после механической и химической обработок должны быть покрыты слоем грунтовки, — вещества, которое хорошо связывается с металлом (высокая адгезия), создавая барьер к проникновению кислорода и воды.
Эта обработка является обязательной для всех сталей, поддающихся коррозии. Это наиболее трудоемкий и затратный процесс. Но только выполнив базовую защиту стали от коррозии с нанесением прочного слоя с высокой адгезией, можно приступать к дальнейшей обработке – нанесению по грунтовке лакокрасочных покрытий (для открытого применения), установке водонепроницаемого слоя теплоизоляции (для труб в промерзающих слоях грунта), покрытия труб механически-прочным слоем.
Защита металлических столбов от коррозии.
Почвенная коррозия
Почвенная коррозия – разрушение металла в почве. Ежегодные потери металла вследствии протекания почвенной коррозии достигают 4%.
Почвенной коррозии подвергаются различного назначения трубопроводы, резервуары, сваи, опоры, кабеля, обсадные трубы скважин, всякого рода металлоконструкции, эксплуатируемые в почве.
Почва – очень агрессивная среда. Она состоит из множества химических соединений и элементов, многие из них только ускоряют коррозионный процесс. Агрессивность почвы (грунта) зависит от некоторых факторов: влажность, аэрация, пористость, рН, наличие растворенных солей, электропроводность.
Классификация грунтов по коррозионной активности:
- высококоррозионные грунты (тяжелые глинистые, которые длительное время удерживают влагу);
- практически инертные грунты в коррозионном отношении (песчаные почвы).
Влияние различных факторов на почвенную коррозию
Влияние влажности грунта на почвенную коррозию металла.
Влага в почве присутствует почти везде. Где-то ее больше, а где-то меньше. Именно влажность грунта очень сильно влияет на скорость почвенной коррозии, превращая почву в электролит. Она же вызывает электрохимическую коррозию находящихся в грунте металлоконструкций. Вода в грунте может быть: капиллярной, гравитационной, связанной. Капиллярная влага собирается в порах грунта. Высота подъема ее по капилляру зависит от диаметра пор. Капиллярная влага сильно влияет на скорость почвенной коррозии. Связанная влага на скорость почвенной коррозии не влияет, т.к. находится в виде гидратированных химических соединений. Под действием силы тяжести в грунтах и почвах постоянно перемещается вода, которая оказывает, как и капиллярная, значительное влияние на скорость почвенной коррозии.
Максимальная скорость почвенной коррозии наблюдается при влажности грунта 15 – 25%. Это объясняется уменьшением омического сопротивления коррозионных элементов. С повышением влажности почвы анодный процесс проходит легче (за счет затруднения пассивации поверхности металла), а катодный – труднее (грунт насыщается влагой, затрудняется его аэрация). Влажность, при которой наблюдается наибольшая скорость коррозии, называют критическим показателем влаги для грунта. Для глинистых грунтов он составляет около 12 – 25%, для песчаных 10 – 20%.
Пористость (воздухопроницаемость) грунта
Пористость (воздухопроницаемость) грунта влияет на способность длительное время сохранять влагу и аэрацию. Воздухопроницаемость зависит от состава грунта, его плотности, влажности. Грунты, хорошо пропускающие воздух (песчаные), более агрессивны. В песчаных грунтах катодный процесс протекает с облегчением. На практике бывают случаи, когда подземный трубопровод большой протяженности проходит через разного вида грунты.
Если он проходит последовательно в песчаной, а потом глинистой почве, где условия аэрации металлической поверхности очень различаются, то возникают аэрационные микрогальванические коррозионные зоны. Поверхность трубопровода в песчаной зоне будет играть роль катода, а глинистой – анода. Разрушение металла будет происходить на анодных участках, где затруднен доступ кислорода к поверхности. Интересно, что катодная и анодная зоны могут находится на расстоянии больше сотни метров. При этом коррозионный процесс будет отличаться омическим торможением.
Кислотность грунта.
Для большинства грунтов значение рН составляет 6,0 – 7,5. Высококоррозионными являются почвы, рН которых сильно отличается от данного значения. К ним относятся торфяные, болотистые грунты, значение рН которых составляет 3 – 6. А также щелочные солончаки и суглинки, с рН почвы 7,5 – 9,5. Очень агрессивной средой по отношению к сталям, свинцу, меди, цинку является чернозем, содержащий органические кислоты.
Одна из самых агрессивных почв – подзол. Сталь в подзоле корродирует в 5 раз быстрее, чем в других грунтах.
Кислотность грунтов ускоряет почвенную коррозию, т.к. вторичные продукты коррозии становятся более растворимы, существует возможность дополнительной катодной деполяризации ионами водорода.
Электропроводность грунта.
Электропроводность грунта зависит от его минералогического состава, количества влаги и солей в почве. Каждый вид грунта имеет свое определенное значение электропроводности, оно может колебаться от нескольких единиц до нескольких сотен Ом на метр. Соленость грунта оказывает огромное влияние на его электропроводность. С увеличением содержания солей легче протекают анодный и катодный электродные процессы, что снижает электросопротивление. Почти всегда определив электропроводность грунта можно судить о его степени коррозионной агрессивности (для стали, чугуна). Исключение составляют водонасыщенные почвы.
Минералогический состав и неоднородность грунта.
Минералогический состав и неоднородность грунта оказывают большое влияние (как и влажность) на омическое сопротивление. В глинисто-песчаном влажном грунте удельное сопротивление почвы составляет около 900 Ом•см, а в таком же грунте, только сухом – 240000 Ом•см. С уменьшением удельного сопротивления грунта его агрессивность увеличивается.
Минерализация почвы может колебаться в пределах 10 – 300 мг/л.
Неоднородность грунта приводит к возникновению гальванопар, которые только усиливают почвенную коррозию, делают разрушение неравномерным.
Влияние температуры грунта на почвенную коррозию металлов. Температура может колебаться в очень больших пределах. Зимой, когда свободная вода, заполняющая капилляры в почве замерзает - скорость почвенной коррозии немного уменьшается. Это также связано с плохой аэрацией поверхности металла. В летнее время, когда на улице стоит жара, скорость почвенной коррозии может замедлятся также, что объясняется высыханием почвы. Самый большой ущерб почвенная коррозия наносит в межсезонье, когда грунт достаточно влажный, созданы оптимальные условия для протекания коррозионного процесса. Температура грунта зависит от времени года, географической широты, времени суток, погоды.
Значительное различие температур на конструкции, имеющей большую протяженность (подземный трубопровод) может быть причиной образования термогальванических коррозионных пар, которые обеспечивают усиление местной почвенной коррозии.
Влияние микроорганизмов на почвенную коррозию металлов.
В почве живут и развиваются два вида микроорганизмов: аэробные (могут существовать только при наличии кислорода), анаэробные (для обеспечения их жизнедеятельности кислород не требуется). Они оказывают огромное влияние на почвенную коррозию металлов. Почвенная коррозия металлических сооружений, вызванная жизнедеятельностью живых микроорганизмов носит название биологическая (биокоррозия) либо биохимическая.
Аэробные микроорганизмы (почвенные) существуют двух видов: одни принимают непосредственное участие в осаждении железа, другие – окисляют серу. Оптимальными условиями для существования анаэробных серобактерий является кислая среда (3 – 6 рН). Серобактерии окисляют сероводород в серу, а потом - серную кислоту по следующим уравнениям:
В местах наибольшего количества серобактерий концентрация серной кислоты может достигать 10%. Это очень сильно ускоряет почвенную коррозию, особенно стали.
При рН грунта около 4 – 10 развиваются бактерии, перерабатывающие железо. Эти бактерии в процессе своей жизнедеятельности поглощают ионы железа, а выделяют нерастворимые соединения, содержащие Fe. В местах скопления железобактерий наблюдается большое количество нерастворимых железистых соединений, которые увеличивают гетерогенность поверхности. Это явление также оказывает большое влияние на скорость почвенной коррозии.
Анаэробные микроорганизмы могут вырабатывать углеводороды, сероводород, угольную кислоту и множество других химических соединений. Они могут разрушать защитные покрытия, воздействовать на ход анодной и катодной реакции, менять характеристики почвы.
Среди анаэробных микроорганизмов самыми опасными можно считать сульфатредуцирующие бактерии. Оптимальные условия для их существования, почва со значением рН 5,5 – 8 (болотные, глинистые, илистые грунты). Бактерии восстанавливают сульфаты, содержащиеся в почве. Этот процесс можно описать следующим уравнением:
Выделившийся кислород обеспечивает протекание реакции на катоде. Сероводород и сульфиды в почве являются причиной появления на поверхности эксплуатируемой конструкции рыхлого слоя сульфида железа.
Коррозия носит питтинговый характер.
Механизм и особенности почвенной коррозии металлов
Почвенная коррозия почти всегда протекает по электрохимическому механизму (исключения составляют лишь очень сухие грунты).
Анодный процесс при почвенной коррозии – разрушение металла. На катоде же проходит кислородная деполяризация. Чаще всего кислородная деполяризация проходит с затрудненным доступом кислорода к поверхности корродирующего изделия. Подвод кислорода может осуществятся несколькими способами: диффузией в жидкой или газообразной среде или направленным течением этих фаз, перемешиванием фаз при помощи конвекции.
Во влажном грунте процесс проходит с преимущественно катодным контролем, а сухих рыхлых почвах - анодным. Иногда, при работе протяженных микропар может наблюдаться катодно-омический контроль.
На катоде также может проходить и водородная деполяризация (только в условиях кислых грунтов). Существенно изменить ход коррозионного процесса могут и микроорганизмы.
Подземную коррозию делят на грунтовую коррозию и электрокоррозию (коррозию блуждающими токами). Подземная коррозия менее опасна, чем разрушение под воздействием блуждающих токов.
Особенности почвенной коррозии металлов:
- значительное влияние омического сопротивления грунта;
- возникновение коррозионных микро и макропар;
- язвенный характер разрушения.
Методы защиты от почвенной коррозии
Защиту от почвенной коррозии можно разделить на активную (электрохимическую) и пассивную (изоляция изделия от воздействия окружающей среды, специальные способы укладки и т.д.).
Для защиты металлоизделий от почвенной коррозии применяются самые разнообразные методы. Очень часто, особенно в высококоррозионых грунтах, применяют комплексную защиту от подземной коррозии.
Основные методы защиты металлоконструкций от почвенной коррозии: нанесение защитных покрытий и изоляция изделий, создание искусственной среды, электрохимическая защита, применение специальных методов укладки.
Нанесение защитных покрытий. Изоляция
Для защиты от почвенной (грунтовой) коррозии наиболее эффективным и широко используемым является нанесение защитных изоляционных покрытий. К таким покрытиям предъявляются следующие требования: оно должно быть сплошным, без трещин, царапин; иметь хорошую адгезию с металлоподложкой; быть химически стойким; отличаться высокими диэлектрическими свойствами; сохранять свои защитные свойства при воздействии положительных и отрицательных температур (от -50 до +50 °С); не содержать коррозионно-активных по отношению к основному металлу агентов; обладать высокой биостойкостью, механической прочностью.
Защитные покрытия могут быть полимерными и мастичные. К мастичным относятся каменноугольное, битумное. К полимерным – покрытия из липких изоляционных лент, расплавы, накатываемые эмали и т.д.
Покрытие, применяемое для защиты от почвенной коррозии, должно полностью изолировать готовую конструкцию от воздействия окружающей среды. Для изоляции подземных трубопроводов очень часто используют битумные покрытия различной толщины (6 мм – усиленное, 3 мм – обычное, 9 мм – очень усиленное). Широкое распространение получили петролатумные, цементные, каменноугольно-пековые, полиэтиленовые, поливинилхлоридные защитные покрытия. Последние отличаются отличными защитными и изолирующими способностями, долгим сроком службы, но не из самых дешевых. Самыми слабыми защитными свойствами обладает цементное покрытие.
Создание искусственной атмосферы
Этот метод применяют достаточно редко, в основном для трубопроводов большой протяженности. Это связано с большими транспортными затратами, трудностью его реализации (необходимо большое количество работников, техники, достаточно много времени).
Протяженные подземные сооружения могут проходит через разные виды почв, что интенсифицирует коррозионный процесс. Суть метода заключается в том, чтоб создать однородный грунт по всей протяженности конструкции (засыпая, например, весь трубопровод песчаным грунтом) либо уменьшить агрессивность почвы на определенных участках. Для этого кислые грунты могут известковать.
Электрохимическая защита металла от почвенной коррозии
Электрохимическая защита заключается в принудительном создании катодной либо анодной поляризации. При совместном применении электрохимический защиты и защитных покрытий, затраты на первую весьма невелики.
В практике защиты металлов от почвенной коррозии очень часто применяется катодная защита. Металлоконструкции сообщают определенный отрицательный электрический потенциал, который затрудняет термодинамику окисления металла. Это существенно снижает (сводит к минимуму) скорость почвенной коррозии. Осуществить катодную поляризацию можно используя специальные установки: протекторные, катодные.
Протекторная защита заключается в подсоединении к изделию электродов из металла, который в данной среде более электроотрицателен. Для защиты стали от подземной коррозии протекторами могут служить алюминий, его сплавы, цинк, магний.
Катодная защита – создание катодной поляризации при помощи внешнего источника тока (генераторы постоянного тока, батареи, выпрямители). По всей протяженности трубопровода ставят специальные станции катодной защиты.
Специальные методы укладки
Очень часто при прокладке трубопровода, а также других сооружений для защиты их от воздействия грунтовых вод, самого грунта используют специальные способы укладки. Трубопровод или кабель может быть помещен в специальный коллектор (при этом кабель укладывают на неметаллическую подкладку), защитный кожух (часто из железобетонных плит или металла).
Вышеописанные методы применимы только для защиты изделий от влияния грунта и подземных вод.
Читайте также: