Как выполняется подготовка металла к кислородной резке
Суть кислородной резки заключается в сгорании разрезаемого металла под воздействием струи кислорода и удалении из разреза шлаков, образованием которых неизбежно сопровождается этот процесс (рис. 95).
Рис. 95. Схема выполнения газовой резки: 1 – рез; 2 – газовая смесь; 3 – внутренний мундштук; 4 – наружный мундштук; 5 – струя режущего кислорода; 6 – грат (излишек металла)
Углеродистые, а также низколегированные стали режут с помощью исключительно чистого кислорода, а высоколегированные стали, чугун и сплавы меди, помимо кислорода, требуют применения специальных флюсов.
Резка осуществляется вручную или машинным способом. При этом необходимо обеспечить соблюдение определенных условий:
– температура плавления металла должна быть выше температуры, при которой он воспламеняется в кислороде. При нарушении этого условия металл будет расплавляться еще до того, как он начнет гореть в струе кислорода. Низко– и среднеуглеродистые стали удовлетворяют данному условию, поскольку имеют температуру плавления 1500 °C, а для горения в кислороде достаточно довести их до 1300–1350 °C. Повышенное содержание углерода в стали снижает температуру ее плавления и затрудняет резку. То же самое относится к сталям, в которых имеются такие трудно окисляющиеся легирующие элементы, как хром и никель;
– температура плавления шлаков должна быть ниже температуры горения металла в кислороде. Кроме того, шлаки должны быть жидкотекучими и без проблем удаляться при воздействии на них давления режущей струи;
– в процессе сгорания металла выделяющейся теплоты должно быть достаточно для поддержания горения металла в кислороде;
– теплопроводность металла не должна быть чересчур высокой, чтобы не препятствовать поддержанию высокой температуры на кромке разреза.
Перечисленным условиям соответствуют стали, в которых содержание углерода не превышает 0,5 %, хрома – 5 %, марганца – 4 %. Что касается остальных примесей, они не оказывают существенного влияния на процесс резки.
До начала резки сталь нагревают до температуры ее воспламенения в кислороде. От общего количества тепла, необходимого для выполнения резки, приблизительно 54 % идет на доведение температуры стали до температуры воспламенения; 22 % – на нагрев шлака; 24 % – на покрытие потерь.
Для осуществления резки требуется кислород, причем максимально возможной чистоты, поскольку от этого зависит его расход: чем качественнее газ, тем меньше его потребуется. Как правило, для резки используют кислород чистотой 98,5-99,5 %. При снижении этого показателя даже на 1 % падает скорость резки и возрастает расход кислорода.
Кислородная резка бывает двух типов (рис. 96):
Рис. 96. Схема выполнения различных видов резки: а – разделительной; б – поверхностной
– разделительная, посредством которой вырезают различные заготовки, раскраивают листовой металл и осуществляют разделку кромок под сварку. Собственно процесс резки состоит в том, что материал вдоль линии предполагаемого реза доводят до температуры его воспламенения в кислороде. Металл сгорает в режущей струе, которая одновременно вытесняет из зоны разреза образующиеся оксиды.
– поверхностная. Для этого предназначаются специальные резаки, с помощью которых с металла снимают поверхностный слой. При небольшом угле наклона резака к металлу (15–20°) его поверхностный слой сгорает в кислородной струе, оставляя после себя углубление овального сечения. Для выполнения такой резки скорость истечения кислорода должна быть меньше, а скорость перемещения резака выше, чем при осуществлении разделительной резки. Этот вариант резки используют для удаления трещин, различных пороков сварных швов, литья и пр. Например, резак РАП-62 делает канавку шириной 6-20 мм и глубиной 2–6 мм со скоростью 1–6 пог. м/мин.
При резке изделие подогревается горючими газами – заменителями ацетилена. Обычно это природный, коксовый, нефтяной, пиролизный газ, пропан или пары керосина.
Резка невозможна без специального инструмента – универсального инжекторного резака (рис. 97), основные технические характеристики которого представлены в таб. 45.
Рис. 97. Схема устройства инжекторного резака: 1 – головка; 2 – трубка; 3, 4 – вентиль; 5 – кислородный ниппель; 6 – ацетиленовый ниппель; 7 – наружный мундштук; 8 – внутренний мундштук; 9 – инжектор; 10 – кислород; 11 – ацетилен; 12 – горючая смесь; 13 – режущий кислород
Таблица 45. ПАРАМЕТРЫ УНИВЕРСАЛЬНОГО РЕЗАКА
В отличие от инжекторной горелки в резаке имеется дополнительная трубка с вентилем, через которую подается режущий кислород.
Мундштуки резаков бывают двух типов (рис. 98):
Рис. 98. Схема устройства мундштуков для кислородной резки: а – щелевой; б – многосопловый; 1 – внутренний; 2 – наружный
– щелевыми, состоящими из наружного и внутреннего мундштуков, при смене которых можно регулировать расход газов и мощность подогревающего пламени. В промежуток между ними поступает смесь газов подогревающего металл пламени, а режущий кислород проходит по центральному каналу.
– многосопловыми, в которых выход отверстий подогревательного пламени не параллельный, а фокусируется в точке, которая находится примерно в 12 мм от торца. При этом пламя всех выходов ориентировано на одну зону, благодаря чему скорость резки возрастает.
Мундштук – самая главная деталь резака. Для качественной резки необходимо заботиться о герметичности соединений и не допускать прилипания к нему металлических брызг. В связи с этим лучшим материалом для изготовления мундштуков является бронза БрХ0,5. Наличие в ней хрома препятствует оседанию капель металла на поверхности мундштука.
При необходимости переходить от сварки к резке, что нередко требуется при монтажных или ремонтных работах, применяют вставные резаки. По своей конструкции они однотипны, основное отличие заключается в устройстве мундштуков. Вставные резаки подключают к стволу газовой горелки, предварительно сняв сменный наконечник. Вставной универсальный инжекторный резак РГС-70 массой 600 г используют для ручной раздельной резки стали толщиной от 3 до 70 мм.
Резаки бывают малой, средней, а также большой мощности, которые предназначаются для резки металла толщиной 3-100, 100–200 и 200–300 мм соответственно. Последние используют исключительно газы – заменители ацетилена, поскольку имеют большие проходные каналы для них. К каждому резаку прилагается набор мундштуков с номерами от 0 до 6.
При отсутствии горючего газа для кислородной резки применяют пары керосина, и такие устройства называются керосинорезами (рис. 99). В комплект к нему входит бачок для керосина, работающий по тому же принципу, что и садовый опрыскиватель.
Рис. 99. Устройство керосинореза РК-71: 1 – гайка крепления головки; 2 – асбестовая набивка; 3 – гайка; 4 – кожух-экран; 5 – трубка-испаритель; 6 – инжекторная трубка; 7 – вентиль
При работе с резаками необходимо соблюдать несколько правил:
1. Перед использованием резака, следует внимательно прочитать прилагающуюся инструкцию.
2. Проверить исправность инструмента, правильность подсоединения всех шлангов, инжекцию в каналах горючих газов и герметичность соединений (при необходимости подтянуть их).
3. Установить рабочее давление ацетилена и кислорода согласно инструкции.
4. Зажечь резак, для чего на четверть оборота открутить кислородный вентиль и создать разряжение в газовых каналах, после чего открыть вентиль подачи газа и зажечь горючую смесь.
5. Прогреть металл (он должен окраситься в соломенный цвет), открыть кислородный вентиль и выполнить рез.
6. В процессе работы надо поддерживать нормальное подогревающее пламя. Для охлаждения мундштука можно использовать воду, при этом следует закрыть только газовый вентиль (кислородный должен быть открыт).
7. Чтобы прекратить резку, надо перекрыть сначала вентиль горючего газа, а потом кислородный.
То, насколько качественным получится рез, зависит от положения резака. При резке стали толщиной 50 мм действуют следующим образом:
1. Разогревают кромку до температуры плавления, направив на нее подогревающее пламя горелки.
2. Держат мундштук строго под прямым углом к поверхности металла, чтобы подогревающее пламя, а потом и струя режущего кислорода были направлены вдоль вертикальной оси листа. Только прогрев металл, открывают кислородную струю.
3. Прорезав металл сначала на всю толщину, резак перемещают вдоль линии реза. При этом угол наклона устройства изменяют на 30° (10–15°, если режут сталь толщиной 100200 мм) в сторону, противоположную направлению движения, а скорость движения уменьшают.
Если требуется разрезать несколько листов, прибегают к пакетированию (рис. 100), уложив их таким образом, чтобы кромки располагались под углом.
Рис. 100. Газовая резка пакетированных листов стали
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
ТЕХНОЛОГИЯ И МАТЕРИАЛЫ
ТЕХНОЛОГИЯ И МАТЕРИАЛЫ Главное при пошиве бескаркасного предмета мебели — не нарушить технологию и правильно подобрать материалы.ТканьВнутренний чехол-капсулу, куда засыпается наполнитель, нужно делать из достаточно прочной и плотной ткани, желательно скользкой. Если
Технология строительства
Технология строительства При рационально организованном процессе возведение конструкции дома идет размеренно, быстро и без простоев. Оптимальная технологическая последовательность предполагает организацию и компоновку работ по их видам в соответствии с этапом
Технология дуговой резки
Технология дуговой резки Разработано и используется несколько способов резки металлов (стали, чугуна, цветных металлов) электрической дугой.1. Дуговая резка металлов осуществляется с помощью:1) металлического плавящегося электрода. Этот способ состоит в том, что металл
Технология применения затирки
Технология применения затирки Еще совсем недавно было принято класть кафель исключительно встык. Однако практика показала, что лучше между плитками оставлять швы. Благодаря этому облицовка не только надежнее держится, но и более эстетично выглядит. Это объясняется тем,
Технология
Технология Потом залили это все шампанским. Он говорит: «Вообще, ты кто таков? Я, например, наследник африканский!» «А я, говорю, – технолог Петухов!» Юрий Визбор Один мой хороший знакомый, ювелир и оружейник высочайшей квалификации, рассказывал, что когда он преподавал в
Технология рубки
Технология рубки Стены рубленых бревенчатых домов состоят из бревен, уложенных друг на друга горизонтальными рядами и связанных в углах врубками. Каждый ряд бревен в стене называют венцом. Их укладывают комлями попеременно в разные стороны. Первыми укладывают два
Технология создания фундамента
Технология создания фундамента
Технология обеззараживания почвы
Технология обеззараживания почвы Администрация тепличного хозяйства организует подготовительные работы.Осмотр герметичности теплиц и проводит дополнительно остекление, при необходимости – изоляцию теплиц от производственных помещений с помощью полиэтиленовой
Резка металла кислородом - сущность процесса
Кислородная резка металла – это термический способ разрезания металла с помощью газового пламени. В подаваемой струе кислорода разрезаемый металл сгорает, одновременно с этим процессом сгорают и выделяемые оксиды. Для поддержания стабильного процесса используют горючие газы – ацителен, пропан-бутановую смесь, МАФ, а также в отдельных случаях – пары бензина и керосина. Время нагрева газа для низкоуглеродистой стали полностью зависит от толщины заготовки. Для эффективной резки металл должен быть с низким коэффициентом теплопроводности.
Технология кислородной резки
- • скоростная, нормальная и кислородно-флюсовая, предназначены для прямолинейной и фигурной резки;
- • строжка поверхности и канавок, обточка – используют в поверхностных обработках;
- • кислородное копье и струя – применяют в сверлении и прожигании.
Резка металла кислородом под водой
Данный вид обработки используется только при необходимости проведения специальных операций: спасательных, строительных, аварийных, подъемных. Резаком для подводной резки можно кроить стальные сплавы толщиной до 70 мм, находясь при этом на глубине до 30 м. Бензокислородный резак может работать со сталью, толщина которой достигает 100 мм.
По типу разреза подразделяются на:
Особенности кислородной резки труб
Ручной способ кислородного раскроя применяется для обработки торцов трубопровода перед сварочными работами, для удаления дефектов. Операция может выполняться в любом пространственном положении. Для ее выполнения применяют вставные и универсальные резаки. Настройка режима зависит от толщины обрабатываемого изделия.
Классификация оборудования для резки кислородом
По способу обработки резка бывает ручная и механизированная. Существуют ручные резаки, работа которых характеризуется достаточно высокой точностьюю Они подразделяются на универсальные, специальные, для фигурного и прямого раскроя. При необходимости обработки больших объемов металла рационально использовать переносные аппараты "Гугарк", большие партии одинаковых изделий успешно вырезаются с помощью шарнирных машин АСШ-86. Промышленные предприятия чаще всего используют портально-консольные устройства.
Особенности рабочего процесса
Резка, как и другой рабочие процесс, требует внимательности и соблюдения техники безопасности:
- • запрещено проводить подогрев металла одним только сжиженным газом;
- • запрещено использовать жидкое горючее в газосварочных работах;
- • при работе в закрытых помещениях должны быть предусмотрены вентиляционные системы;
- • баллоны с сжиженным газом должны располагаться на расстоянии не менее 5 м от газосварочных работ.
Как подготовить поверхность перед резкой
Перед проведением раскроя металла кислородом необходимо очистить поверхность от коррозии, грязи, масляных пятен и окалин. Если резка выполняется вручную, достаточно всего лишь очистить место реза плазменным резаком. Если процесс механизирован, то листы правят на вальцовочных аппаратах, а очищают с помощью химических или дробеструйных работ.
Резка металла газом
Копьевая резка - с помощью данной операции производится обработка нержавейки, чугуна и низкоуглеродистой стали больших диаметров. Суть резки заключается в том, что копье разогревается до температуры плавления и прижимается к разрезаемой заготовке. Метод распространен в области машиностроения и металлургии.
Кислородно-флюсовая резка используется для работы с высоколегированными хромистыми и хромоникелевыми сплавами. Данный способ характеризуется тем, что в струю газа (кислорода) начинает вводится порошкообразный флюс, он служит дополнительным источником тепла.
Воздушно-дуговая резка основана на расплавлении металла посредством электрической дуги. При использовании данного метода газ подается вдоль всего электрода.
Резка пропаном выполняется при необходимости раскроя титана, низколегированных и низкоуглеродистых стальных сплавов. Оборудование данного типа не может раскроить металл толще 300 мм.
Толщина материала, см | Пробивание, сек. | Ширина реза, см | Расход пропана, м 3 | Расход кислорода, м 3 |
---|---|---|---|---|
0,4 | От 5 до 8 | 0,25 | 0,035 | 0,289 |
1,0 | От 8 до 13 | 0,3 | 0,041 | 0,415 |
2,0 | От 13 до 18 | 0,4 | 0,051 | 0,623 |
4,0 | От 22 до 28 | 0,45 | 0,071 | 1,037 |
6,0 | От 25 до 30 | 0,5 | 0,071 | 1,461 |
Как рассчитать стоимость услуги за метр
При расчете стоимости в рассмотрение принимается: толщина металла, максимальный размер детали, ширина реза, кромка, особенности конфигурации, исходный материал – черный или цветной металл, а также предусмотрена резка под углом. Как правило, формула для расчета принимает во внимание прямой рез, если же она осуществляется по окружности/сектору, тогда используется повышающий коэффициент 2.0. Стоимость одного отверстия = 0,25 стоимости реза 1 п.м. металла.
Расход газа при резке металла
Рабочий диапазон, мм | Резательное сопло NX | Кислород (давление, bar) | Горючий газ (давление, bar) | Кислород (потребление, m3/h) | Горючий газ (потребление, m3/h) |
---|---|---|---|---|---|
3-5 | 000 NX | 1,0-2,0 | 0,5 | 1,5-2,0 | 0,20 |
5-10 | 00 NX | 1,5-2,0 | 0,5 | 2,0-3,0 | 0,30 |
10-15 | 0 NX | 2,0-3,0 | 0,5 | 3,0-3,5 | 0,35 |
15-25 | 1 NX | 2,5-3,5 | 0,5 | 3,5-4,5 | 0,40 |
25-50 | 2 NX | 3,5-4,0 | 0,5 | 4,0-4,8 | 0,40 |
50-75 | 3 NX | 3,0-4,5 | 0,5 | 5,0-6,5 | 0,40 |
75-150 | 4 NX | 3,5-5,5 | 0,5 | 6,5-9,5 | 0,50 |
150-200 | 5 NX | 4,5-5,5 | 0,5 | 10,0-14,0 | 0,60 |
200-300 | 6 NX | 5,5-6,5 | 0,5 | 15,0-19,0 | 0,70 |
Особенности резки в размер
Газовая резка позволяет проводить фигурный раскрой листа. Используя газовый резак, можно получить ровный вертикальный край без рваных швов. Также повысить качество можно применяя трафаретную резку. Среди достоинств метода – мобильность оборудования, благодаря чему можно совершать одинаковые операции по шаблонным задачам.
Преимущества метода газовой резки
- ● быстрота и универсальность
- ● оптимальная стоимость и высокое качество
- ● любой уровень сложности
- ● любая конфигурация реза
- ● возможность работы с металлом разной толщины
Возможность деформации
Процесс раскроя металла
● Резка начинается с точки, от которой должен идти разрез.
● Эта точка разогревается до температуры 1000-1300 С. После воспламенения материала пускается узконаправленная струя кислорода.
● Резак плвно ведется по линии (угол - 84-85 градусов), сторона - противоположная от резки.
● Когда линия раскроя достигнет 20 мм, угол наклона меняется на 20-30 градусов.
Устройство ручного газового резака
Устройство инжекторного резака
От чего зависит расход газа:
● квалификации мастера
● технических характеристик оборудования
● вида и толщины разрезаемой детали
● глубины и ширины реза
Технологический процесс кислородной резки металла
Мощность подогревающего пламени должна обеспечить быстрый прогрев стали в начале резки и необходимый подогрев до температуры воспламенения стали — в процессе резки. Для начала процесса резки сталь должна быть нагрета до температуры воспламенения в кислороде, которая для низколегированной стали составляет 1350—1360°С.
Скорость резки зависит от толщины металла, метода резки (машинный или ручной), формы линии резки (прямолинейной или фасонной), вида резки и требования к качеству резки. При малой скорости резки происходит сплавление реза, при слишком большой — значительно отстает кислородная струя, в результате образуются непрорезанные до конца участки и нарушается непрерывность резки.
Ширина реза зависит от толщины металла и составляет ориентировочно 2—3,5 мм при толщине 5—60 мм. Для ответственных конструкций, подверженных динамическим нагрузкам, применяются методы высококачественной кислородной резки. К таким способам относится смыв-процесс. Для этого способа применяют трехструнный резак, в котором имеются капал для режущей струи кислорода и каналы для зачищающих струй кислорода. Скорость резки при смыв-процессе в 1,5—2,8 раза выше, а расход кислорода в 1,8—2,9 раза выше, чем при обычной резке.
Удаление грата, приваривающегося к нижней кромке металла, занимает от 20 до 70% времени резки. Для безгратовой резки применяют кислород высокой чистоты (99,5%) с минимальной для данной толщины скоростью и минимальной мощностью подогреваемого пламени. Рекомендуется повышать давление режущего кислорода, что улучшает выдувание шлака из мест разреза. Смазывание нижней поверхности разрезаемого листа обмазкой из жидкого стекла слоем 1—1,7 мм также препятствует привариванию грата.
Резка с кислородной завесой обеспечивает безгратовую резку и производится резаками со специальными мундштуками, у которых между каналом для выхода режущей струи кислорода и каналом для выхода подогревающей смеси имеется дополнительный канал, из которого с небольшой скоростью вытекает кислород. Этот дополнительный кислород образует завесу, защищающую режущий кислород от загрязнения продуктами сгорания пламени и азота воздуха. В результате этого высокая чистота режущего кислорода сохраняется по всей длине, что повышает интенсивность сгорания металла и увеличивает скорость резки до 50%. Технологическим процессом кислородной резки необходимо предусматривать меры, предупреждающие деформации, возникающие от местного нагрева металла. Так, резку полос производят одновременно двумя резаками, расставленными на необходимую ширину полосы. Отверстия в деталях вырезают до вырезки наружного контура. Детали сложной формы, а также узкие и длинные полосы вырезают, оставляя неразрезанные участки длиной 6—10 мм через каждые 600—800 мм, которые прорезают по окончании вырезки всех деталей из листа. В некоторых случаях для уменьшения деформаций применяют предельно допустимое повышение скорости резки или искусственное охлаждение разрезаемого листа водой в непосредственной близости от резака.
Техника кислородной резки
Перед резкой поверхность разрезаемого металла должна быть тщательно очищена от ржавчины, окалины, масла, краски и грязи. Для ручной резки иногда достаточно очистить подогревающем пламенем резака, места реза - узкой полосой (не более 30-50 мм) с последующей зачисткой металлической щеткой. Перед механизированной резкой на стационарных машинах, листы обычно правят на листоправильных вальцах и очищают всю поверхность механическим путем (дробеструйная обработка), реже химическим путем. Правка листа помимо того, что облегчает работу блоков резки (поддержание высоты резака над поверхностью листа), еще снижает внутренние напряжения в листе, что в свою очередь снижает тепловые деформации.
Листы должны укладываться горизонтально на опоры. Величина свободного пространства под листом должна равняться половине толщины листа плюс 100 мм.
II. Положение и перемещение резака в процессе резки
Перед началом резки подогревающее пламя устанавливается на край разрезаемого металла для нагрева кромки до температуры воспламенения стали (ярко малиновый цвет - т.е. около 1350°С), после чего открывается вентиль режущего кислорода. При машинной резке эта операция, как правило, автоматизирована.
Положение резака в начале резки зависит от толщины разрезаемой стали. При резке листовой стали толщиной до 50 мм, резак в начале процесса устанавливается вертикально, а при большей толщине к поверхности торца листа. Затем его наклоняют на 20-30° в сторону, обратную движению резака.
Такое расположение способствует лучшему прогреву металла по толщине и повышению производительности резки. Оно может быть использовано при ручной и машинной прямолинейной резке, но при вырезке фигурных деталей положение резака должно быть строго перпендикулярным к поверхности разрезаемого металла. При резке заготовок круглого сечения, начало резки производится с увеличением угла атаки пламени и с постепенным уменьшением угла атаки, до перпендикулярного расположения резака в середине реза.
Для облегчения начала резки и ускорения прогрева металла, до воспламенения целесообразно делать зарубку зубилом в начальной точке реза.
III. Пробивка отверстий и вырезка внутреннего контура
При небольшой толщине металла (до 20 мм) и выполнении резки вручную, пробивка отверстий внутри контура листа производится резаком. После предварительного нагрева металла до температуры воспламенения металла, подогревающее пламя на короткое время выключается и включается пуск режущего кислорода плавным открыванием вентиля на резаке, после чего подогревающее пламя вновь зажигается в раскаленном металле.
Такая техника пробивки отверстий исключает возможность возникновения хлопков и обратных ударов. При толщине металла свыше 150 мм (при ручной резке внутреннего контура) первоначальное отверстие сверлится.
При машинной резке пробивка отверстий производится на толщинах до 120 мм. Для этого после нагрева металла в месте пробивки до температуры воспламенения, резак автоматически приподнимается и давление режущего кислорода постепенно поднимается до необходимого, затем резак автоматически опускается. Это делается для того, чтобы брызги металла не попадали на торец резака и уменьшалась вероятность хлопков и обратных ударов. Отверстие как правило пробивается вблизи внутреннего контура и рез плавно выходит на контур.
Машинная вырезка внутреннего контура с одновременным снятием фасок, возможна лишь при минимальных размерах отверстия 350Х350 мм (или минимальном диаметре 350 мм).
IV. Расстояние от торца мундштука до металла
Расстояние от торца мундштука до разрезаемого металла, следует поддерживать постоянным в процессе резки и оно должно быть не менее 2 мм.
При ручной резке для этой цели можно применять специальное приспособление в виде тележки прикрепленной к головке резака. Для более сложных работ эффективно применяют шестиосевые роботы, которые выполняют резку объемных деталей и других сложных фигур, которые не вырезать вручную или применяя портальную машину.
При резке стали толщиной свыше 100 мм и при использовании газов-заменителей ацетилена, высоту резака над металлом несколько увеличивают во избежание перегрева мундштука.
Читайте также: