Как влияет характер переноса электродного металла на качество сварного шва
Во время сварки происходит расплавление и частичное испарение электродного материала. Расплавленный металл и шлак переходят на деталь главным образом в виде капель. В зависимости от их размеров и длины дуги перенос электродного металла может осуществляться без замыкания или с замыканием дугового промежутка. Для современных режимов сварки толстопокрытыми электродами более характерен первый вид переноса.
Перенос без замыканий дугового промежутка.
В формировании и отрыве капель при переносе без замыканий дугового промежутка главную роль играют сила тяжести, сила поверхностного натяжения капель расплавленного металла и сила давления газов, образующихся при расплавлении металла электрода. Характер переноса и размеры капель зависят в основном от силы давления газа.
Процесс расплавления электрода сопровождается интенсивным растворением кислорода, поступающего в капли из окружающей газовой среды и шлака. Это способствует выгоранию углерода с образованием практически нерастворяющегося в металле газа — окиси углерода. По подсчетам из одного кубического сантиметра расплавленного электродного металла при сварке толстопокрытыми электродами выделяется 20—70 см 3 , а при сварке непокрытыми электродами 60—110 см 3 окиси углерода. Количество выделяющегося газа увеличивается за счет паров металла.
Газ, включая и пар, во время расплавления непокрытых электродов выделяется частично непосредственно через поверхность капель, частично собирается в виде пузырьков внутри капель.
При выделении газа непосредственно через поверхность капель без образования пузырьков создаются реактивные силы, действующие на поверхность капель. Эти силы препятствуют; отрыву капель и обусловливают их подвижность на конце электрода, увеличивающуюся с увеличением содержания углерода в электроде. Слой шлака на каплях при сварке толстопокрытыми электродами затрудняет выделение газа непосредственно через поверхность и способствует этим уменьшению подвижности капель. Большую роль играют пузырьки газа внутри капель. Давление газа в пузырьках, наряду с силой тяжести, способствует отрыву капли. При взрывах пузырьков капли электродного металла приобретают большую скорость и отбрасываются к детали.
На фиг. 47 изображены составленные автором схемы развития пузырьков и отрыва капли при сварке в нижнем положении на умеренных силах тока. Пузырьки газа зарождаются обычно у границы расплавления электрода (фиг. 47, а). Зародившись, они быстро растут за счет поступления в их полости новых порций окиси углерода и пара. Одновременно пузырьки поднимаются вверх, вследствие меньшего удельного веса газа по сравнению с металлом, и концентрируются вблизи границы расплавления (фиг. 47, б). В некоторый момент газ прорывает тонкий слой жидкого металла и шлака. Происходит взрыв (фиг. 47, в), в результате которого от электрода отрывается крупная капля н образуется несколько мелких капель. К моменту взрыва возникают новые пузырьки, которые затем также растут, взрываются и отрывают определенные порции металла и шлака.
Фиг.47.Схема образованияи отрыва капель при сварке без замыканий без дугового промежутка
Пузырьки газа могут зарождаться также на границе между металлом и шлаком. Эти пузырьки не достигают больших размеров. В результате их взрывов от сравнительно крупной капли расплавленного металла на конце электрода отрываются мелкие капли, размер которых составляет доли миллиметра.
Исследования показывают, что во время расплавления электрода одновременно образуются капли различных размеров. Весовое соотношение между ними зависит от количества образующегося газа, характера и скорости его выделения. Л это, в свою очередь, зависит от состава электродных стержней и покрытий, рода сварочного тока и полярности, силы тока.
Величина тока при этом оказывает наибольшее влияние. С увеличением тока увеличиваются температура расплавленного металла на конце электрода, скорость выделения газа, частота и интенсивность взрывов. Вследствие этого увеличивается число капель, образующихся за единицу времени, и уменьшается их размер. Например, во время сварки на прямой полярноста постоянного тока электродами ОММ-5 диаметром 5 мм получены следующие данные. При силе тока в 160 а 83,9% электродного металла переходит на деталь в виде капель размером более 5 мм. Причем за 1 сек. таких капель образуется примерно 1 шт. При токе в 315 а максимальный размер капель не превышает 4 мм. При этом 30—34% металла переходит на деталь в виде капель менее 1 мм. Таких капель образуется за секунду примерно 200—300 шт.
Фиг.48.Схема переноса электродного металла с замыканиями дугового промежутка
Фиг.49.Распределение электродного металла по поверхности свариваемого изделия
Перенос электродного металла с замыканиями дугового промежутка. При сварке короткой дугой на небольших токах перенос электродного металла происходит при замыкании дугового промежутка. В таких случаях образующаяся на конце электрода капля (фиг. 48, а) соприкасается с поверхностью сварочной ванны, и металл капли сливается с металлом ванны (фиг. 48, б). Под действием взрыва газов и паров мостик жидкого металла разрушается, значительная часть металла капли отделяется от электрода (фиг. 48, в). Затем капля образуется снова, и процесс повторяется.
В зависимости от режимов сварки число замыканий дугового промежутка может составлять от 1—2 до 30—50 в сек. В периоды между замыканиями от крупной капли идет постоянный отрыв мелких капель за счет действия выделяющихся газов.
Перенос с замыканиями дугового промежутка играет наибольшую роль при сварке в потолочном положении. В этом случае для улучшения переноса сварка должна вестись на самой короткой дуге.
Разбрызгивание электродного металла.
Хорошо известно, что расплавленный электродный металл не весь переходит в шов: часть его в виде брызг вылетает из зоны сварки и составляет потери на разбрызгивание. Наличие таких потерь уменьшает производительность процесса сварки, увеличивает расход электродов, электроэнергии и требует дополнительного времени на очистку изделий от брызг.
Явление разбрызгивания представляет частный случай переноса металла в дуге. При взрывообразном выделении газа из расплавленного электродного металла капли металла приобретают сравнительно большие скорости и разлетаются в различных направлениях. Распределение капель по поверхности изделия соответствует графику, представленному на фиг. 49.
Прямая ей обозначает ширину сварочной ванны. Как видно, основная часть электродного металла распределяется вблизи от шва и попадает в сварочную ванну. Заштрихованная часть графика соответствует потерям на разбрызгивание.
Величина потерь зависит от состава электродных стержней и покрытий, рода, силы тока и его полярности, а также от других факторов, влияющих на процесс газовыделения при расплавлении электрода. Она зависит также от длины дуги, вида сварного соединения и техники выполнения сварки.
С увеличением тока и длины дуги потери сильно возрастают. Потери возрастают также при увеличении содержания углерода в электроде, например, за счет применения доменного ферромарганца вместо электропечного в покрытиях ОММ-5 и ЦМ-7.
Обычно величина потерь на разбрызгивание определяется совместно с потерями на угар. Средние значения общих потерь для различных марок электродов приведены в главе III. Потери на угар, как правило, составляют незначительную величину по сравнению с потерями на разбрызгивание.
Большая Энциклопедия Нефти и Газа
Качество сварных соединений, выполненных аргоно-дуговой сваркой плавящимся электродом, в значительной степени зависит от стабильности горения дуги и характера переноса электродного металла через дуговой промежуток. При аргоно-дуговой сварке плавящимся электродом могут иметь место два вида переноса электродного металла: крупнокапельный и струйный. Характер переноса металла в первую очередь зависит от величины сварочного тока. Сварка на малых токах характеризуется крупнокапельным переносом, значительным разбрызгиванием и окислением металла. При увеличении сварочного тока более критического перенос металла становится мелкокапельным, или, иначе, струйным. Электродный металл как бы стекает с электрода непрерывным потоком мелких капель. Разбрызгивание и окисление электродного металла при этом невелико. Форма провара своеобразная с резким увеличением глубины провара в средине шва. [16]
Смеси инертных и активных газов находят все более широкое применение при сварке плавящимся электродом сталей различных классов ввиду их технологических преимуществ: меньшей по сравнению с активными газами интенсивностью химического воздействия на металл сварочной ванны, высокой устойчивости дугового процесса, благоприятного характера переноса электродного металла через дугу. По сравнению с чистым аргоном смеси инертных и активных газов имеют преимущества при сварке конструкционных сталей. Известно, что при плавящемся электроде лучшие характеристики процесса сварки обычно достигаются на постоянном токе обратной полярности. Однако при сварке стали применение в качестве защитного газа чистого аргона сопровождается нестабильностью положения катодного пятна на поверхности изделия. В результате получаются плохо сформированные сварные швы. [17]
Характер переноса электродного металла определяется в основном материалом электрода, составом защитного газа, плотностью сварочного тока и рядом других факторов. [19]
Характер переноса электродного металла в сварочную ванну оказывает большое влияние как на формирование шва, так и на металлургические реакции в зоне сварки, что влияет на состав и качество шва. [21]
Силы, действующие на каплю. Характер переноса электродного металла зависит от соотношения сил, действующих на каплю металла на торце электрода. Основные из них: сила тяжести, сила поверхностного натяжения, электромагнитная сила, электростатическая сила, сила реактивного давления паров и нейтрализовавшихся на катоде ионов, аэродинамическая сила. [22]
Характер переноса электродного металла в сварочную ванну существенно влияет на степень развития физико-химических процессов при взаимодействии металлической, шлаковой и газовой фаз, а также на устойчивость самого процесса сварки. В зависимости от типа сварочной ванны наблюдается перенос электродного металла через газовую или шлаковую среду. Механизм переноса в обоих случаях имеет свои особенности. [23]
При достаточно высоких плотностях постоянного по величине ( без импульсов или с импульсами) сварочного тока обратной полярности и при горении дуги в инертных газах может наблюдаться очень мелкокапельный перенос электродного металла. Изменение характера переноса электродного металла с капельного на струйный происходит при увеличении силы сварочного тока до критического для данного диаметра электрода. [24]
При достаточно высоких плотностях постоянного по величине ( без импульсов или с импульсами) сварочного тока обратной полярности и при горении дуги в инертных газах может наблюдаться очень мелкокапельный перенос электродного металла. Изменение характера переноса электродного металла с капельного на струйный происходит при увеличении сварочного тока до критического для данного диаметра электрода. [26]
Коэффициент потерь зависит от способа сварки, типа электрода и параметров режима. На потери значительное влияние оказывает характер переноса электродного металла в сварочной дуге. В тех случаях, когда в составе электродных покрытий или наполнителей порошковой проволоки содержится значительное количество металлических составляющих, коэффициент Р отрицателен, поскольку ан больше ар. [27]
Коэффициент потерь зависит от способа сварки, типа электрода и параметров режима. На потери значительное влияние оказывает характер переноса электродного металла в сварочной дуге. В тех случаях, когда в составе электродных покрытий или наполнителей порошковой проволоки содержится значительное количество металлических составляющих, коэффициент F отрицателен, поскольку ан больше ар. [28]
На качество швов большое влияние оказывает характер переноса электродного металла через дуговой промежуток. При сварке в среде углекислого газа уменьшение диаметра электродной проволоки и дляны дуги способствует уменьшению размера капель электродного металла. В результате повышается стабильность дуги, уменьшаются потери электродного металла на разбрызгивание и улучшается формование металла шва. [29]
Динамические характеристики системы дуга - источник питания обусловлены механизмом первоначального возбуждения и в последующем, при горении дуги, - характером переноса электродного металла в сварочную ванну. При этом ток резко увеличивается до / шах, что приводит к сжатию капли и перегоранию мостика между каплей и электродом. В дальнейшем напряжение почти мгновенно возрастает и дуга вновь возбуждается, после чего процесс периодически повторяется. [30]
Струйный перенос электродного металла возникает при сварке проволокой малого диаметра с большой плотностью тока. Например, при полуавтоматической сварке в аргоне проволокой диаметром 1 6 мм струйный перенос металла осуществляется при критическом токе 300 А. При сварке на токах ниже критического наблюдается капельный перенос металла. Обычно струйный перенос электродного металла приводит к меньшему выгоранию легирующих примесей в сварочной проволоке и к повышенной чистоте металла капель и шва. Скорость расплавления сварочной проволоки при этом увеличивается. Поэтому струйный перенос электродного металла имеет преимущества перед капельным. [3]
Сварка со струйным переносом электродного металла проводится в смесях газов, содержащих 90 % Аг, металлов толщиной 2 мм. В этом процессе электродный металл переходит через дугу в виде мелких капель диаметром, равным или меньшим диаметра электрода. Поэтому разбрызгивание минимально, а формирование шва плавное, с гладкой поверхностью. Для каждого диаметра проволоки существует критический сварочный ток, при котором процесс из крупнокапельного переходит в струйный. С увеличением сварочного тока диаметр капель уменьшается, а частота переноса возрастает. Глубокое проплавле-ние дугой со струйным переносом дает возможность односторонней сварки листов без скоса кромок толщиной до 5 мм. [4]
При сварке в инертных газах возможен капельный и струйный перенос электродного металла . При струйном переносе дуга имеет наиболее высокую стабильность и значительно улучшается перенос электродного металла в сварочную ванну; практически исключается разбрызгивание металла. Это особенно важно при сварке швов в вертикальном и потолочном положениях. [5]
При сварке в газовых смесях Аг и СО2 можно обеспечить мелкокапельный и даже струйный перенос электродного металла . Струя капель, летящих в осевом направлении, обеспечивает большую глубину про-плавления металла детали по оси шва, при этом ширина валика несколько увеличивается. Данный вид сварки особенно рекомендуется для обеспечения глубокого про-плавления основного металла; обычно он применяется при выполнении швов в нижнем положении, так как удержать металл в сварочной ванне при выполнении швов в других положениях сложнее. [6]
Для сварки металлов толщиной более 5 мм может быть использована сварка плавящимся электродом со струйным переносом электродного металла на повышенных токах. Сварку плавящимся электродом осуществляют от источников постоянного тока на обратной полярности. [7]
Сварку плавящимся электродом коррозионностойких аустенптных сталей и сплавов следует выполнять на токе выше критического, обеспечивающем струйный перенос электродного металла . При этом исключается разбрызгивание расплавленного металла и образование очагов коррозии в местах приварившихся брызг. [8]
При сварочном токе 400 - 420 А и более ( диаметр проволоки 2 мм, обратная полярность) происходит струйный перенос электродного металла . Проволокой Св - 08Г2СНМТ можно успешно производить сварку на ветру, с зазорами и в других условиях, при которых трудно избежать попадания воздуха в зону дуги. Сварка этой проволокой позволяет также применять форсированные режимы, без образования в швах пор. [9]
Сварку потолочных швов ведут углом назад непрерывной или импульсной дутой с применением тонкой проволоки на режимах с частыми короткими замыканиями или струйным переносом электродного металла при пониженных напряжениях. Металл толщиной до 4 мм сваривают без поперечных колебаний электрода, а толщиной более 6 мм - с колебаниями. В последнем случае шов выполняют за несколько проходов. [10]
Сварку потолочных швов ведут углом назад непрерывной или импульсной дугой с применением тонкой проволоки на режимах с частыми короткими замыканиями или струйным переносом электродного металла при пониженных напряжениях. Металл толщиной до 4 мм сваривают без поперечных колебаний электрода, а толщиной более 6 мм - с колебаниями. В последнем случае шов выполняют за несколько проходов. [11]
При сварке сталей широко используется смесь, содержащая 80 % аргона и 20 % углекислого газа. Она обеспечивает мелкокапельный и струйный перенос электродного металла . Применение многокомпонентных смесей, в состав которых входят аргон, углекислый газ, оксид азота, водород и другие газы, позволяет повысить производительность расплавления и наплавки более чем в два раза при благоприятной форме проплавления и высококачественной наружной поверхности шва. [12]
Такие смеси рекомендуется применять при сварке плавящимся электродом легированных сталей, когда требуется струйный перенос электродного металла . При сварке низкоуглеродистых и низколегированных сталей плавящимся электродом применяют смесь С02 20 % 02, обеспечивающую глубокое проплавление и хорошее формирование шва, минимальное разбрызгивание, высокую плотность металла шва. [13]
При сварке плавящимся электродом, так же как и при сварке неплавящимся электродолг, внешние магнитные поля отклоняют дугу. Однако эффект от использования внешнего магнитного поля наблюдается при сварке длинной дугой и наиболее заметен при струйном переносе электродного металла . В этом случае расплавленный торец электрода колеблется синхронно с частотой внешнего магнитного поля. При поперечных колебаниях увеличивается ширина шва и уменьшается глубина проплавления. В результате образующийся шов не имеет повышенной глубины проплавления по его оси. [14]
При сварке плавящимся электродом, так же как и при сварке неплавящимся электродом, внешние магнитные поля отклоняют дугу. Однако эффект от использования внешнего магнитного поля наблюдается при сварке длинной дугой и наиболее заметен при струйном переносе электродного металла . В этом случае расплавленный торец электрода колеблется синхронно с частотой внешнего магнитного поля. При поперечных колебаниях увеличивается ширина шва и уменьшается глубина проплав-ления. В результате образующийся шов не имеет повышенной глубины проплавления по его оси. [15]
Технология переноса металла с электрода в сварочную ванну
Характер переноса электродного металла в сварочную ванну оказывает большое влияние как на формирование шва, так и на металлургические реакции в зоне сварки, что влияет на состав и качество шва.
Как показали исследования, проверенные способом скоростной киносъемки, перенос металла с электрода в сварочную ванну происходит в виде капель разного диаметра, причем независимо от положения шва в пространстве капли всегда переходят с электрода на изделие.
Отрыв и перенос капель в дуге вызван многими факторами: силой тяжести, действующей на каплю, силой поверхностного натяжения жидкого металла, электромагнитными силами, давлением образующихся газов внутри капли.
Сила тяжести способствует переносу капли в сварочную ванну при сварке в нижнем положении, но противодействует ее переносу при сварке в потолочном и вертикальном положениях.
Сила поверхностного натяжения, обусловленная действием межмолекулярного притяжения и стремящаяся придать капле форму шара при ее перемещениях в дуге, способствует слиянию капли с жидким металлом ванны. Сила поверхностного натяжения способствует также удержанию жидкого металла ванны от вытекания при сварке в потолочном и вертикальном положениях.
Электромагнитные силы, возникающие вследствие появления магнитного поля вокруг проводника с током и оказывающие на поверхность электрода и каплю сжимающее действие (рис. 11), способствуют отрыву капли от электрода и переходу ее на свариваемое изделие.
Наряду с этим в образующемся перешейке между каплей и электродом вследствие возросшего сопротивления при прохождении тока выделяется большое количество тепла, вызывающее взрывообразное перегорание перешейка и возникновение дополнительных сил, толкающих каплю к изделию.
Рис. 11. Схема действия электромагнитных сил на каплю электродного металла в момент ее отрыва при дуговой сварке.
При протекании металлургических реакций внутри капли жидкого металла образуется газообразная окись углерода, объем которой во много раз превышает объем капли.
Вследствие этого мгновенно выделяющийся из металла газ способствует отрыву капли от электрода, ее дроблению и переходу на изделие. При сварке открытой дугой взрывообразное выделение газа приводит к вылетанию части жидкого металла за пределы сварочной ванны, т. е. к разбрызгиванию жидкого металла (потерям его).
Характер переноса капель с электрода в сварочную ванну зависит от величины сварочного тока и напряжения дуги. С увеличением тока (при прочих равных условиях) размер капель уменьшается, а количество их образования в единицу времени сильно возрастает.
Время образования каждой из капель на конце электрода и время перелета ее через дуговой промежуток в сварочную ванну при этом уменьшается. С увеличением напряжения на дуге (длины дуги), наоборот, размер капель увеличивается, а количество их в единицу времени уменьшается (рис. 12).
Время образования капли на конце электрода и время перелета ее через дуговой промежуток при этом возрастает. В процессе сварки на минимальных плотностях тока ( отношение сварочного тока к площади сечения электрода) капли электродного металла переходят в ванну при коротких замыканиях. При повышенных плотностях тока и напряжении дуги происходит струйный перенос расплавленного электродного металла без коротких замыканий.
Рис. 12. Изменение величины капель электродного металла:а — в зависимости от напряжения на дуге (17В, 20В, 24В) при сварке со скоростью 30 м/ч в углекислом газе постоянным током обратной полярности 90А проволокой диаметром 0,8 мм, б — кривые зависимости среднего размера капель от силы тока при различных способах сварки; 1 — сварка открытой незащищенной дугой постоянным током обратной полярности малоуглеродистой проволокой, 2 — сварка в аргоне проволокой Св-06Х19Н9Т диаметром 2 мм током обратной полярности, 3 — ручная сварка электродами OMM-5 током прямой полярности, 4 — сварка под флюсом АН-348А малоуглеродистой проволокой током прямой полярности (цифры на левом рисунке указывают напряжение на дуге в вольтах)
В электрошлаковом процессе наблюдается капельный перенос электродного металла в сварочную ванну. С увеличением сварочного тока количество капель, переносимых в 1 с, резко возрастает, однако средняя масса капли и диаметр ее значительно при этом уменьшаются.
В отличие от дуговой сварки при электрошлаковом процессе увеличение напряжения сварки при неизменном токе вызывает увеличение количества капель, переносимых в 1 с, а средняя масса капли и диаметр ее уменьшаются, т. е. при электрошлаковой сварке изменение сварочного тока и напряжения одинаково влияет на перенос электродного металла в сварочную ванну.
90.Как влияет характер переноса электродного металла на качество сварного шва?
Вопрос администрации
Тесты с ответами и комментариями, без рекламы.
Панель авторизации
Инструкция по пользованию сайтом
В данной инструкции изложены основные функции сайта, и как ими пользоваться
Здравствуйте,
Вы находитесь на странице инструкции сайта Тестсмарт.
Прочитав инструкцию, Вы узнаете функции каждой кнопки.
Мы начнем сверху, продвигаясь вниз, слева направо.
Обращаем Ваше внимание, что в мобильной версии все кнопки располагаются, исключительно сверху вниз.
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы, попадете на главную страницу.
«Главная» - отправит вас на первую страницу.
«Разделы сайта» - выпадет список разделов, нажав на один из них, попадете в раздел интересующий Вас.
На странице билетов добавляется кнопка "Билеты", нажимая - разворачивается список билетов, где выбираете интересующий вас билет.
«Полезные ссылки» - нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.
В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.
Опускаемся ниже, в серой полосе расположились кнопки социальных сетей, если Вам понравился наш сайт нажимайте, чтобы другие могли так же подготовиться к экзаменам.
Следующая функция «Поиск по сайту» - для поиска нужной информации, билетов, вопросов. Используя ее, сайт выдаст вам все известные варианты.
Последняя кнопка расположенная справа, это селектор нажав на который вы выбираете, сколько вопросов на странице вам нужно , либо по одному вопросу на странице, или все вопросы билета выходят на одну страницу.
На главной странице и страницах категорий, в середине, расположен список разделов. По нему вы можете перейти в интересующий вас раздел.
На остальных страницах в середине располагается сам билет. Выбираете правильный ответ и нажимаете кнопку ответ, после чего получаете результат тестирования.
Справой стороны (в мобильной версии ниже) на страницах билетов располагается навигация по билетам, для перемещения по страницам билетов.
На станицах категорий расположен блок тем, которые были добавлены последними на сайт.
Ниже добавлены ссылки на платные услуги сайта. Билеты с ответами, комментариями и результатами тестирования.
В самом низу, на черном фоне, расположены ссылки по сайту и полезные ссылки на ресурсы, они дублируют верхнее меню.
Надеемся, что Вам понравился наш сайт, тогда жмите на кнопки социальных сетей, что бы поделиться с другими и поможете нам.
Если же не понравился, напишите свои пожелания в форме обратной связи. Мы работаем над улучшением и качественным сервисом для Вас.
Читайте также: