Как сделать металлическую пыль

Обновлено: 07.01.2025

Существующие методы получения металлических порошков можно подразделить на две группы:
1) получение порошков из металла в твердом, жидком или газообразном состоянии (механические, физико-механические и физические методы);
2) получение металлических порошков из соединений металлов (физико-химические методы).
К наиболее важным методам первой группы относятся: а) различные способы механического измельчения в порошок компактных или грубо измельченных твердых металлов; б) способы распыления в порошок расплавленных металлов.
Наиболее распространенным методом второй группы является получение порошков восстановлением окислов металлов. Менее распространены электролиз и термическое разложение карбонильных соединений металлов.


Измельчение в мельницах обычного типа. Механическое измельчение можно производить в обычного типа шаровых или молотковых мельницах. Для ковких металлов оно приводит не к дроблению, а к расплющиванию частиц, и поэтому его применяют только в случаях: а) измельчения хрупких и малопрочных скоплении (агломератов) частиц ковкого металла как заключительной операции других методов получения порошков (дробление восстановленной железной губки, измельчение хрупких электролитических осадков железа, размол спекшегося в результате довосстановления измельченного железа); б) измельчения ковких металлов с ослабленной связью между зернами; в) измельчения ковких металлов, которым искусственно придана хрупкость (например, дробление сплава железа и никеля — пермаллоя облегчается примесью незначительных количеств серы).
На рис. 1 показана схема молотковой мельницы, применяемой для дробления спекшихся кусочков железного порошка размерам 2—1 мм.
Недостатком измельчения металлов в обычного типа мельницах является также загрязнение порошков продуктами истирания стальных шаров и футеровки мельниц.

Получение металлических порошков


Измельчение в вихревых мельницах. Вихревая мельница (рис. 2) состоит из футерованного износоустойчивой марганцовистой сталью кожуха 1, в котором вращаются с большой скоростью (3000 об/мин) в противоположных направлениях два пропеллера 2, отлитых также из марганцовистой стали. Раздробляемый материал загружают в бункер 4 в виде грубоизмельченных кусочков (обрезков проволоки, стружки и т. п.), которые, сталкиваясь один с другим при большой скорости в вихревых потоках, дробятся на частицы размером от 0,02 до 0,4 мм. Мельница имеет приспособление 3 для воздушной сортировки порошков по размерам частиц. Кожух снабжен водяной рубашкой и охлаждается проточной водой для предохранения порошков От перегрева при измельчении. Для размола в атмосфере защитного газа имеется специальная подводка.
В более усовершенствованной конструкции вихревой мельницы поток воздуха подводится из центробежного вентилятора в кожух мельницы и разбивается билами, которые смонтированьи на одном валу с вентилятором.
В вихревой мельнице новой конструкции, разработанной Т. Окашура и К. Иганаки, встречные вихревые потоки вызываются быстрым вращением (2400 об/мин) расположенного эксцентрично к кожуху червячного вала, одна половина которого имеет правую, а другая — левую резьбу.
Основные преимущества вихревого размола: 1) порошок не загрязняется металлом дробящих тел. например стальных шаров, и 2) частицы порошка расплющиваются и теряют шероховатость в меньшей мере, чем при размоле в обычных мельницах.
Структура частиц порошков зависит от длительности вихревого размола. При кратковременном размоле (2—10 мин. иногда даже до 30—40 мин.) обрезков проволоки и стружки получают частицы преимущественно сферической формы, в табл. 1 показано влияние условий paзмола в вихревой мельнице на выход сферических частиц для случая измельчения обрезков проволоки различных металлов.
При более длительном вихревом размоле частицы ковкого металла сплющиваются и обычно имеют характерную форму тарелки с загнутыми краями (рис. 3).

Получение металлических порошков


Для улучшения прессуемости и снятия наклепа порошки отжигают в защитной среде (железные порошки в течение 1—2 час. при 800—1000°).
Производительность, вихревой мельницы с двигателем мощностью 20 квт около 7—10 кг/час (в зависимости от крупности порошка). Расход энергии на 1 кг порошка 2,5—3 квт*ч. Один рабочий может обслуживать одновременно несколько мельниц.
Получение железных порошков вихревым измельчением менее экономично и требует более высоких капиталовложений, чем получение распылением жидкого металла и восстановлением.


Первоначально измельчение металла в порошок распылением его в жидком состоянии применяли для сравнительно легкоплавких металлов — олова, свинца, цинка, алюминия, меди и их сплавов. За последние 15 лет в крупном производственном масштабе этими методами получают также железные порошки.

Получение металлических порошков


Для получения грубых порошков с частицами сферической формы размером 0,5—3 мм применяется наиболее простой способ — гранулирование при литье в воду. На рис. 4 схематически показана установка Реннерфельта — Каллинга для гранулирования малоуглеродистого чугуна с незначительным содержанием кремния. Расплавленный чугун гранулируется при литье в воду на вращающийся диск. Полученная дробь обезуглероживается при отжиге в атмосфере СО—СО2 во вращающейся печи.

Получение металлических порошков


Весьма интересен способ центробежного распыления, который совмещает распыление жидкого металла с механическим воздействием на частицы. Принципиальная схема распыления по этому способу показана на рис. 5. Тонкая струя расплавленного металла вытекает из сопля, окруженного рубашкой, в которую подается вода под давлением около 5 ат. Поток воды увлекает металл на быстро вращающийся диск (около 3000 об/мин) особой конструкции, снабженный специальными насадками для разбивания частиц порошка. Благодаря такому механическому воздействию частицы порошка получаются не гладкой сферической формы, как гранулированная дробь, а с шероховатым профилем. Размер частиц 20—400 мк. Типичный ситовый анализ железного порошка, полученного центробежным распылением, приведен ниже:

Получение металлических порошков


Большое распространение получило производство железного порошка распылением по методу Маннесмана (рис. 6). Исходным материалом является стальная стружка (можно с некоторым изменением схемы пользоваться также чугунной стружкой). К стружке добавляют 4% окалины для удаления кремния, 0,5% извести для удаления серы и образования шлака и 8% коксовой пыли. Расплавленную шихту распыляют сжатым воздухом в специальном агрегате с соплом. При этом железо частично окисляется в окалину, а углерод в СО2 и СО. Частицы распыленного металла собираются в водяной ванне. Порошок, содержащий около 6% О2 и 4% С, выгружают из выдвижных приемников, сушат и отжигают при 900° главным образом в «собственной» восстановительной атмосфере, образующейся в результате взаимодействия окислов И углерода, содержащихся в отжигаемом порошке. Во избежание окисления при охлаждении рекомендуется также некоторая подача защитного газа извне. Устройство камеры распыления показано на рис. 7. Сжатый воздух подается в камеру по двум каналам под давлением 4—6 ат. Из камеры воздух выходит с большой скоростью через узкую кольцеобразную щель, имеющую форму сопла Лаваля. Струя металла при 1350° вытекает через корундовое сопло в камеру распыления и разбивается сжатым воздухом.

Как сделать серебрянку огнестойкую, в чём растворить алюминиевую пудру, чтоб была огнеупорной?

Хочу покрасить буржуйку, но знаю что серебрянку нужно для этих целей растворять не в олифе, а в чём то другом, только не знаю в чём, в каком растворителе.

Серебрянка в порошке представляет из себя мелкодисперсную алюминиевую пудру, которую производят методом

мелкотертого размола из алюминия. Размол применяют двух различных категорий – ПАП-1 и ПАП-2.

Из алюминиевой пудры можно приготовить термостойкую смесь (краску).

Для получения термостойкого состава нам понадобиться термостойкий лак.

Вы можете приобрести в специализированных магазинах следующие термостойкие лаки: КО - 85, КО - 815, КО - 835, КО - 07, КО - 075.

Возьмем лак термостойкий КО - 815, изготавливается по ГОСТу 11066-74.

Лак термостойкий.

Лак представляет собой

смесь модифицированных кремнийорганических смол в органических растворителях.

Лак может применяется как самостоятельно, так и для приготовления

термостойкой эмали КО - 813 с использованием алюминиевой пудры категорий: ПАП - 1 и ПАП - 2.

Инструкцию по применению термостойкого лака КО-815 можно посмотреть здесь.

Подбираем ёмкость для приготовления необходимого объема краски.

Учтите, что посуда, в которой Вы будем размешивать серебрянку, уже невозможно будет отмыть, поэтому после проведения работ либо оставляете в ней краску на хранение, либо эту посудину придется выбросить.

Пропорция для приготовления краски - серебрянки 2 : 5, на две части алюминиевой пудры необходимо будет добавить пять частей термостойкого лака.

Засыпаете в ёмкость две часть алюминиевой пудры и начинаем добавлять частями лак, перемешивая состав лучше дрелью с насадкой или вручную до получения однородной консистенции, затем ещё добавляем и перемешиваем, пока опять не получим однородную смесь.

И затем полученную однородную смесь продолжаете разводить лаком до малярной консистенции.

Вы должны приготовить такую вязкость смеси, которая подходит для Ваших условий работы.

Покраску можно производить как обычными кисточками или валиком, так и краскораспылителем (пульверизатором).

Рекомендуется пропорция для кисточки и валика - 1 : 0,5, на одну часть полученной смеси половина части лака.

Для краскораспылителя необходимо будет подготовить более жидкую смесь - 1 : 1, на одну часть полученной смеси одна часть лака.

Для получения хорошего результата покраску поверхности следует производить в два, а лучше в три слоя, последующие слои следует наносить после полного высыхания предыдущего.

Серебрянка сохнет достаточно быстро, поэтому красить нужно стараться быстрее.

Срок годности серебряной пудры не ограничен. Срок хранения разведенного состава не должен превышать 6 месяцев при плюсовых температурах.

Металлический порошок

Металлический порошок

Металлический порошок можно получить из различных металлов и сплавов. Область его применения достаточно разнообразна. Он используется для изготовления особо прочных красок, устойчивых к атмосферным воздействиям. Кроме того, металлические порошки востребованы в 3D-печати, а также в производстве металлокерамических изделий.

Примечательно, что получение металлических порошков, по сути, делает их изготовление безотходным, что позволяет говорить о невысокой цене материала. И потому порошковая металлургия представляет собой активно развивающуюся область. Об особенностях такого производства мы поговорим далее.

Химические, физические и технологические свойства металлических порошков

В процессе изготовления металлическим порошкам придают определенный набор химических, физических, технологических характеристик:

Химические свойства

В металлических порошках присутствует азот, водород и другие газы, попавшие в сырье и адсорбированные с поверхности. Если говорить точнее, то в электролитических порошках есть водород, в карбонильных – примесь кислорода и двуокиси углерода, а в распыленных – газообразные вещества, участвующие в процессе производства.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Прежде чем подвергнуть готовый порошок прессованию, из него удаляют лишние газы методом вакуумирования. Это необходимо, чтоб защитить будущие изделия от появления трещин в ходе спекания.

Физические свойства

Зависят от формы, размеров, плотности частиц и прочих показателей. Каждой технологии получения металлического порошка свойственна своя форма частиц:

  • карбонильная технология – сферическая форма;
  • восстановительная – губчатая;
  • измельчение мельницей – осколочная;
  • вихревое дробление – тарельчатая;
  • электролиз – дендритная;
  • распыление – каплевидная.

Частицы могут иметь размеры от долей микрометра до десятых долей миллиметра. Наибольший разброс данного показателя встречается в порошках, при производстве которых был использован метод электролиза или восстановления.

На плотность влияют дефекты, присутствующие в кристаллической решетке, примеси в закрытых порах. Данную характеристику оценивают при помощи пикнометра.

Микротвердость определяется наличием и характером примесей. От данного показателя зависит возможность деформирования частиц порошка.

Технологические свойства

Такие характеристики связаны с текучестью, формуемостью, насыпной плотностью, прессуемостью.

Металлический порошок

Под первой понимают скорость, с которой условная единица объема заполняется порошком. Текучесть влияет на уровень производительности при прессовании.

Прессуемость – это способность металлического порошка приобретать необходимую плотность при прессовании. А благодаря формуемости он сохраняет определенную форму.

Способы изготовления металлических порошков

Все используемые при производстве металлического порошка подходы объединены такими характеристиками:

  • Экономичность, поскольку в роли сырья выступают отходы металлургической промышленности, например, окалина. Сейчас она задействуется только в данной сфере.
  • Высокая точность форм – изготавливаемые по этой технологии изделия имеют геометрические формы, которые не требуют последующей доработки. Таким образом удается сократить долю отходов производства.
  • Высокая износостойкость поверхности, обеспечиваемая мелкозернистой структурой, большой твердостью, прочностью изделий.
  • Относительно низкий уровень сложности технологий порошковой металлургии.

Применяемые на данный момент методы в данной сфере можно разделить на две категории:

  • Физико-механические. Предполагают измельчение сырья, благодаря чему удается получить частицы небольших размеров. А именно: на металл оказывают воздействие при помощи различной комбинируемой нагрузки.
  • Химико-металлургические. Позволяют изменить фазовое состояние сырья. Например, к таким технологиям относится восстановление солей, окислов и иных соединений металлов.

Металлический порошок

Для изготовления металлического порошка используют такие подходы:

  • При шаровом способе в шаровой мельнице тщательно дробят металлические обрезки, получая в результате мелкозернистый порошок.
  • Вихревой способ предполагает использование мельницы другого типа, формирующей сильный воздушный поток. Находящиеся в нем крупные частицы сталкиваются, превращаясь в металлический порошок мелкой фракции.
  • В основе действия дробилки лежит ударная нагрузка, иными словами, груз большой массы падает на сырье с определенной периодичностью.
  • Распыление сырья требует доведения металла до жидкого состояния и последующее его распыление под воздействием сжатого воздуха. Получившийся хрупкий состав попадает в специальное оборудование, где перемалывается до порошкообразного состояния.
  • Электролизом называют восстановление металла из жидкого состава при помощи тока. Поскольку таким образом повышается хрупкость материала, потом его можно быстро перемолоть в дробилках. Готовое зерно имеет дендритную форму.

Некоторые описанные методы активно используются современными предприятиями, например, при производстве металлического порошка для краски, так как отличаются высокой производительностью и эффективностью. Другие предполагают повышение стоимости получаемого сырья, поэтому сегодня практически не используются.

Сферы применения металлического порошка

Изготовление и обработка металлов порошковым способом включает в себя множество технологий, что позволяет производить детали с необходимым составом и характеристиками.

Металлический порошок нашел применения в таких сферах:

Изготовление элементов узлов трения

Металлокерамические изделия имеют пористую структуру, благодаря которой хорошо удерживают смазочные материалы. Поэтому из порошков производят детали, подверженные трению в процессе эксплуатации. А именно: подшипники скольжения, направляющие втулки, вкладыши, щетки электродвигателей.

Металлический порошок

С пропитанного маслом подшипника смазка попадает на трущиеся поверхности, поэтому подобные подшипники называют самосмазывающимися. Подобные детали из металлического порошка имеют ряд преимуществ:

  • Экономичность, ведь с их помощью удается снизить расход масла.
  • Повышенная стойкость к износу.
  • Экономия на материале, так как в этом случае железо используется вместо дорогостоящей бронзы и баббита.

На производствах могут усиливать пористость металлокерамических деталей, добавляя в их состав графит. А данный материал широко известен своими высокими смазывающими свойствами, поэтому подшипники с увеличенной долей данного компонента используются без дополнительного масла.

Производство композитных материалов

Современная высокотехнологичная техника не может обойтись без изделий из композитных материалов. Стоит пояснить, что композиты превосходят сплавы тем, что обеспечивают прочные соединения разнородных металлических и неметаллических элементов.

При выплавке традиционным способом с использованием металлургических печей невозможно создать растворы, например, вольфрама и меди. Однако с появлением композитных материалов эту проблему удалось решить.

Чтобы добиться необходимого эффекта, компоненты, в том числе металлический порошок, соединяют, придают смеси форму на прессе и спекают.

Получение твердых сплавов

Для этой цели применяют методы металлокерамики. Повышенная твердость обеспечивается посредством добавления в смесь карбидных включений, ведь с ростом доли углерода растет твердость основного металла.

Кроме того, благодаря карбидным соединениям достигается высокая вязкость, но остаются неизменными прочностные характеристики металлического порошка.

Металлический порошок

Металлокерамические элементы применяются в тех сферах, где основным качеством изделий является высокая износостойкость. Обычно это касается режущего инструмента, твердосплавных матриц, пуансонов для листовой штамповки.

Изготовление изделий из электроконтактных материалов

Электрические контакты, используемые в электронике и радиотехнике, также состоят из металлических, а именно ферромагнитных порошков.

Прочие сферы, в которых применяются порошки

Они отличаются жаростойкостью, поэтому могут использоваться как материал для элементов тормозных систем. При необходимости данное качество металлокерамики повышают, внося в ее состав хром, никель, вольфрам.

В изготовлении большинства магнитных деталей сегодня используется металлический порошок. Благодаря технологии порошковой металлургии удается соединять железо с силикатами.

Также металлокерамические изделия участвуют в фильтрации газов, горючих веществ.

Применение металлических порошков для печати на 3D-принтере

3D-печать металлами позволяет производить изделия практически из любых сплавов, что является главным достоинством этой технологии. Используются не только стандартные металлы, но и широкая номенклатура специальных сплавов.

Речь идет об уникальных высокотехнологичных материалах, которые создаются в соответствии с целями конкретного клиента.

Самым современным и распространенным способом использования металлических порошков в 3Д-принтерах является селективное лазерное плавление (SLM/DMP). В его рамках происходит последовательное послойное сплавление смесей под действием мощного излучения иттербиевого лазера.

Плюсы такого метода 3D-печати:

  • обеспечение плотности, в 1,5 раза превосходящей аналогичный показатель литья;
  • возможность изготовления объектов наибольших размеров, имеющих сложные геометрические или другие неповторимые формы в виде закрытых бионических структур;
  • большой выбор стандартных и специальных металлических сплавов;
  • меньшее количество циклов производства, благодаря чему сокращаются временные затраты на получение готовой продукции.

Металлический порошок

Использование металлических порошков позволяет восполнять потребности таких сфер, как:

  • авиакосмическая индустрия;
  • машиностроение;
  • автомобилестроение;
  • нефтегазовая отрасль;
  • электроника;
  • медицина;
  • пищевая промышленность;
  • экспериментальные работы и исследовательская деятельность, осуществляемая в конструкторских бюро, научных, учебных центрах.

На предприятиях порошкам для 3D-печати сообщают набор характеристик, необходимых для решения конкретных задач. Это нужно учитывать, если вы хотите купить металлический порошок для 3D-принтера. Поскольку подавляющее большинство металлов можно распылить, сегодня существует огромный выбор материалов для подобной печати.

Рекомендуем статьи

Доступные современной металлургии методы активно используются в аддитивном производстве, поэтому металлические порошки и уникальные сплавы применяются для создания изделий геометрически сложных форм, обеспечивая им повышенный уровень точности, плотности, повторяемости.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Изделия из металлических порошков

Изделия из металлических порошков

Для производства высококачественных деталей, предназначенных для машиностроения, радиоэлектроники и прочих областей промышленности, используются изделия из металлических порошков. Технология дает возможность формировать заготовки, спекать и окончательно обрабатывать изделия (включая калибровку, доуплотнение, выполнение чистовой механической обработки, термообработки и т. п.). Для готовых деталей, получаемых таким способом, характерны высокая прочность, соответствие заданным размерам и конфигурации. В этой статье подробнее остановимся на качествах металлопорошковых изделий.

Что собой представляет порошковая металлургия и в чем ее плюсы

Что собой представляет порошковая металлургия и в чем ее плюсы

Порошковая металлургия используется в том случае, когда отсутствует возможность создания нужных деталей или материалов при помощи традиционных методов металлообработки либо металлопорошковый способ производства оказывается экономически более целесообразным. Металлопорошковая технология помогает в создании композиционных материалов, имеющих риботехническое (речь о подшипниках скольжения, фрикционных накладках и дисках), электротехническое (контакты, магнитотвердые и магнитомягкие изделия) и инструментальное (твердые сплавы) назначение, а также конструкционных деталей (втулок, колец, храповиков, шестерней, крышек подшипников, кулачков и др.) и т. п.

Среди преимуществ создания изделий из металлических порошков следует отметить:

  • Снижение затрат на финальную обработку заготовки. В большинстве случаев изделия из металлических порошков имеют окончательные размеры и не требуют дополнительной механической обработки либо нуждаются в минимальной чистовой отделке, позволяющей добиться высокой точности изделий. Такая технология особо эффективна при создании деталей, имеющих сложную геометрическую форму.
  • Возможность изготовления деталей, обладающих регулируемой пористостью (фильтров, катализаторов, глушителей шума и пр.).
  • Возможность создания градиентных и композиционных материалов, получение которых при использовании традиционных технологий невозможно.

Основными сферами, в которых нашли применение изделия из механических порошков, являются автомобильная промышленность (на которую приходится примерно 70 % всего объема продукции), области приборостроения, производство бытовой техники.

История производства изделий из механических порошков

В 1999-2000 гг. Европейская Ассоциация порошковой металлургии провела статистические исследования и, проанализировав собранные данные, сделала вывод о том, что изготовление 1 000 тонн изделий из металлических порошков позволяет сэкономить 1 500–2 000 тонн металла, высвободить 50 металлорежущих станков, на 120 000 нормочасов снизить трудоемкость работ, более чем в 1,5 раза повысить производительность труда. Еще одним преимуществом порошковых деталей является их себестоимость, которая в среднем в 2-2,5 раза ниже, чем себестоимость изделий из металлического проката.

В 2000 году металлообрабатывающими предприятиями всего мира (за исключением предприятий стран СНГ) было выпущено более 700 000 тонн изделий из металлических порошков. Расширился ассортимент создаваемых по данной технологии деталей, стало возможным производство из металлокерамики шатунов двигателей, крышек подшипников, колец синхронизаторов КПП, роторомасляных насосов, седел клапанов, кулачков распределительных валов, узлов АКПП и т. п.

Рекомендуем статьи по металлообработке

С развитием этой металлообрабатывающей отрасли повышается качество исходных материалов, благодаря чему улучшается плотность и прочность готовых изделий и материалов; усложняются формы и увеличивается размерная точность деталей; повышаются механические и функциональные характеристики готовой продукции.

Решению поставленных перед отраслью задач способствует создание оборудования, обладающего высокой формовочной точностью и повышенной производительностью, открытие новых технологических процессов производства изделий из металлических порошков.

На сегодняшний день эта отрасль металлообработки позволяет не только экономить ресурсы, но эффективно создавать материалы, обладающие уникальными свойствами, что невозможно при использовании традиционных способов работы с металлами.

Свойства металлических порошков

Свойства металлических порошков

Технологическая пригодность металлических порошков, как и любых других материалов, определяется их стандартными характеристиками, среди которых:

  • пикнометрическая плотность, зависящая от химической чистоты и уровня пористости порошка;
  • насыпная плотность, под которой понимают массу порошка, получаемую при свободном наполнении емкости заданного объема;
  • текучесть порошков, определяемая в зависимости от скорости наполнения емкости определенного объема (этот параметр имеет существенное значение, поскольку влияет на производительность последующего прессования);
  • пластичность, под которой понимают свойство порошка принимать и сохранять определенную форму.

Независимо от того, каким способом получен металлический порошок, его дальнейшая обработка выполняется за счет давления и применения специальных пресс-форм.

Форма изделиям из металлических порошков придается при помощи прессования с использованием пресс-форм, прокатки и шликерной формовки.

Технология шликерной формовки аналогична формовочному литью, с ее помощью изготавливают втулки, оси, штуцеры, валики и др.

Технологический процесс производства металлических порошков

Технологический процесс производства металлических порошков

Прежде чем приступить к производству металлокерамических деталей, необходимо изготовить порошки. Различия во фракциях и размерах готовых измельченных частиц обусловлено разными способами производства.

Методы получения порошков делятся на две большие группы:

  • В основе физико-механических методов изготовления металлических порошков лежит измельчение твердых или жидких частиц металла механическим способом. Эта группа технологий сочетает в себе обработку за счет статических и ударных нагрузок.
  • При использовании химико-металлургических методов изменяют фазовое состояние исходного материала. Модификация достигается за счет восстановления окислов и солей, электролиза, термической диссоциации карбонильных соединений.

Получение металлических порошков возможно одним из следующих способов:

  • Шаровым. При этом происходит дробление и перетирание металлических обрезков и стружки при помощи шаровой мельницы.
  • Вихревым. В этом случае в специальных мельницах насосами нагнетается воздушный поток, под воздействием которого металлические частицы сталкиваются друг с другом. Зерна готового порошка имеют блюдцеобразную форму. Качество готового материала весьма высокое.
  • При помощи специальных дробилок, измельчающих частицы металла за счет ударного воздействия падающего груза.
  • Распылением. Этот способ подходит для работы с легкоплавкими металлами. Жидкий сплав распыляют за счет потока сжатого воздуха, а затем измельчают при помощи быстровращающегося диска.
  • Электролизом. Для восстановления металла используется электрический ток. В результате хрупкость металла повышается, что позволяет измельчать его в мельнице до порошкообразного состояния. Готовые зерна имеют дендритную форму.

Способы получения металлических порошков

1. Физико-механические методы.

Для получения порошка с нужными фракциями используются центробежные мельницы.

Промежуточным этапом является первичное измельчение, для которого используются конусные и валковые дробилки, позволяющие измельчить металл до частиц размером не более 1 см.

В зависимости от используемой технологии процесс занимает от одного часа до трех-четырех суток. При необходимости ускорения производства прибегают к помощи вибрационных мельниц.

Процесс измельчения при помощи таких мельниц отличается большей интенсивностью, поскольку прилагаются режущие усилия, а также создается переменное напряжение. Размер получаемых зерен варьируется от 0,009 до 1 мм.

Повышению производительности процесса измельчения металлических частиц способствует жидкостное воздействие, благодаря которому металл не распыляется. При этом объем используемой жидкости составляет около 40 % от массы обрабатываемого вещества.

Твердосплавные частицы измельчаются при помощи центробежных мельниц. К недостаткам этого типа мельниц относится периодичность работы.

При помощи физико-механических методов нельзя измельчать высокопластичные цветные металлы. Для работы с пластичными материалами используются вихревые мельницы, измельчающие частицы за счет ударов друг о друга.

2. Химико-металлургические методы.

Химико-металлургические методы

Наиболее распространенным способом изготовления металлических порошков является восстановление железа, выполняемое при помощи рудных окислов или окалины, которая является продуктом горячей прокатки. При этом важное значение имеет количество газообразных соединений в порошке.

Если их количество будет выше допустимой нормы, то готовый порошок будет излишне хрупким, что не позволит его в дальнейшем прессовать. Если превышение нормы все же произошло, излишняя часть газов удаляется при помощи вакуумной обработки.

Наиболее простым и дешевым способом является тот, в основе которого лежат распыление и грануляция. Для измельчения металла используются струи расплава либо инертного газа, распыляемые при помощи форсунок. Температуру и давление газового потока можно регулировать, для охлаждения используется вода.

Медные порошки с высокой степенью чистоты чаще всего получают за счет электролиза.

Какие изделия производят из металлических порошков

Какие изделия производят из металлических порошков

Технологические методы, позволяющие получать порошки, весьма многочисленны и разнообразны. Благодаря этому возможно изготовление изделий из металлических порошков, обладающих нужными свойствами и составом.

Технология порошковой металлургии дает возможность создавать новейшие композитные материалы, которые невозможно произвести иными способами. Порошковое покрытие металлических изделий позволяет экономно использовать материалы из-за их более низкого расходного коэффициента.

Без изделий из металлокерамических порошков сегодня не обходятся такие сферы промышленности, как приборо- и машиностроение, радиоэлектроника, изготовление инструментов, включая сверла, резцы.

На сегодняшний день изготовление металлопорошковых изделий автоматизировано, в связи с этим не требуется наличия на предприятии высококвалифицированных кадров. Эти факторы снижают себестоимость готовых металлических изделий.

Если пористость порошков находится в пределах нормы, то их коррозионная стойкость аналогична этому показателю у деталей, произведенных традиционными способами.

Изделия, изготовленные из металлических порошков, устойчивы к резким перепадам температур, что обуславливает сферу их использования.

Детали узлов трения

Благодаря пористой структуре изделия из металлических порошков хорошо удерживают смазку.

Именно поэтому металлопорошковые материалы используются для производства деталей, подвергающихся повышенному трению в процессе эксплуатации (подшипников скольжения, направляющих втулок, вкладышей, щеток электродвигателей).

Поскольку порошковые подшипники имеют пористую структуру, их можно пропитать смазочными материалами. В дальнейшем смазка начнет выходить на поверхность подшипника и перейдет на соприкасающиеся детали. Подобные подшипники называют самосмазывающимися.

Они обладают следующими преимуществами:

  • экономичностью (снижают расход смазки);
  • износостойкостью;
  • экономией на материалах (железо используется вместо дорогой бронзы и баббита).

Пористость изделий в процессе их изготовления можно усиливать путем добавления в металлические порошки графита, характеризующегося отличными смазывающими качествами. Подшипникам, в которых содержится высокий процент графита, смазка не требуется вовсе.

Композитные материалы

Высокотехнологичные машины и аппаратура комплектуются деталями и элементами, изготовленными из композитных материалов. Развитие высоких технологий повлекло за собой активное развитие металлопорошкового производства. В отличие от сплавов, композитные материалы могут состоять из различных компонентов, как металлических, так и неметаллических.

При помощи традиционных способов металлообработки, к примеру, плавления в металлургических печах, нельзя получить соединения вольфрама и меди. Производство компонентных материалов помогает решить эту проблему.

Для того чтобы изготовить композитные материалы, нужные компоненты просто смешивают друг с другом, затем придают им необходимую форму при помощи пресса, после чего спекают.

Среди композитных материалов можно также отметить ядерное топливо.

Благодаря современным технологиям можно получать твердосплавные изделия за счет добавления в их состав карбидных включений. Не секрет, что чем выше содержание в металле углерода, тем более твердым он является.

Карбид повышает вязкость порошков, при этом не отражаясь на его прочностных характеристиках. Металлокерамические детали отличаются повышенной износостойкостью, поэтому именно из них изготавливают режущие инструменты, твердосплавные матрицы и пуансоны, при помощи которых выполняется листовая штамповка металлов.

Контактные материалы

Металлические ферромагнитные порошки используются также для создания электроконтактных материалов, т. е. электрических контактов, без которых невозможен выпуск электронных и радиотехнических деталей.

Возможно использование металлических порошков и в других сферах.

Благодаря устойчивости к воздействию высоких температур, порошки оптимальны для производства различных тормозных механизмов. Для повышения жаростойких качеств в металлокерамику добавляют хром, никель и вольфрам.

Для производства абсолютного большинства современных магнитных изделий используются порошки из металла. За счет инновационных технологий железо можно соединять с разного рода силикатами.

Изделия из металлических порошков применяются для создания фильтрующих устройств для газов и горючих веществ.

Обработка металла перед покраской

Обработка металла перед покраской

Обработка металла перед покраской необходима для нанесения качественного ЛКП и предотвращения дальнейшей коррозии. Если этап подготовки пропустить, то лакокрасочный слой на изделии продержится недолго, что приведет к его преждевременному старению.

Применяется как механическая, так и химическая обработка металлической поверхности перед нанесением слоя краски. Первая заключается в удалении ржавчины, изъянов, вторая – в обезжиривании, грунтовании, фосфатировании. О том, как правильно проводится обработка металла перед покраской, вы узнаете из нашего материала.

Причины коррозии металла под лакокрасочным покрытием

Лакокрасочные покрытия не способны обеспечить металлу полную защиту от влаги, действуя по принципу полупроницаемой мембраны. Эксплуатация в непростых климатических условиях с высокой влажностью, скачками температуры приводит к тому, что под действием осмотического давления влага попадает на само изделие через поры покрытия. В результате на металлической подложке запускаются коррозионные процессы. Ржавчина негативно сказывается на адгезии между конструкцией и лакокрасочным слоем, поэтому со временем последнее начинает отслаиваться.

Использование химических средств для обработки металла перед покраской приводит к формированию конверсионных покрытий. Они улучшают физико-механические и защитные характеристики лакокрасочного слоя, продлевая срок службы окрашенных металлических поверхностей.

Обработка металла перед покраской предполагает обязательную очистку и создание защитного конверсионного покрытия. Покрытия представляют собой неорганические соединения, которые формируются на поверхности металлов под воздействием специальных химических составов. Это могут быть фосфатные, хроматные и оксидные соединения – все зависит от использованного для подготовки средства.

За счет микрокристаллической структуры конверсионные покрытия обладают разветвленной поверхностью, что позволяет им формировать прочные адгезионные связи с лакокрасочным слоем.

Такого рода покрытия стабильны и затормаживают подпленочную коррозию. А при появлении царапин или сколов на лакокрасочном слое не позволяют ржавчине распространяться по всему изделию.

4 этапа обработки металла перед покраской

От добросовестной обработки холоднокатаного и иного металла перед покраской на 50–60 % зависит качество итогового покрытия, а также его срок службы.

Большинство металлических поверхностей нуждается в очистке перед окрашиванием, что наиболее актуально для изделий, прежде уже обрабатывавшихся краской. Подготовка зависит от металла изделия, его общего состояния, назначение покрытия и требований к его свойствам.

Прежде чем наносить грунтовку, необходимо выполнить такие этапы:

Очистить поверхность от грязи и пятен масла

Это обязательный шаг обработки металла перед порошковой или любой другой покраской. Когда на предмете есть лишь загрязнения, такие как смазка, пыль, можно ограничиться обезжириванием с применением растворителей и щелочных водных моющих средств. Возможно использование механической обработки.

4 этапа обработки металла перед покраской

Однако если на металле есть следы коррозии, окалина, старая краска, новое покрытие наносить нельзя. Все загрязнения необходимо убрать химическим способом, то есть травлением, например, может использовать обработка металла ортофосфорной кислотой перед покраской, либо при помощи механических методов.

Процедуру травления проводят после обезжиривания либо параллельно с ним.

Обезжиривание металла

В роли действующего средства здесь выступают растворители. Они одновременно убирают пыль, мусор и удаляют все виды жира, так как последние способны изменить свойства красящего состава. После обезжиривания поверхность оставляют на несколько минут, чтобы она успела просохнуть.

Если на изделии присутствует сильно въевшаяся ржавчина, рекомендуется протереть его десятипроцентным раствором уксусной кислоты. После такой обработки металла от ржавчины перед покраской важно тщательно смыть кислоту водой и просушить предмет.

Грунтование

Грунтовка позволяет решить сразу несколько задач: создать дополнительную защиту, придать поверхности большую ровность и обеспечить хорошее сцепление финишного покрытия и основания.

Для нанесения грунтовки могут использоваться разные инструменты:

  • Валик. С ним просто работать, однако данный способ предполагает значительный расход состава и низкую скорость нанесения в сравнении с краскораспылителем.
  • Кисть. Может использоваться лишь в труднодоступных местах.
  • Краскораспылитель. Обеспечивает низкий расход грунтовки. Так, при работе с данным устройством на квадратный метр поверхности уходит 60 г грунта ГФ-021, а в случае с кистью и валиком этот показатель находится на уровне 100 г/м2. Скорость окрашивания распылителем в 10–20 раз выше, чем другими способами.

Здесь важно равномерно нанести грунтовку на поверхность изделия и дать ему время высохнуть.

Устранение локальных инородных включений

Покрытую грунтовкой поверхность обрабатывают мелкой наждачной бумагой – таким образом удаляются соринки, оказавшиеся на металле вместе с защитным составом. Далее изделие протирают чистой тряпкой, после чего можно переходить к нанесению краски.

Обработку металла перед покраской ручным или механизированным инструментом выбирают в соответствии с тем, из какого именно материала изготовлена конструкция.

Поскольку подготовка поверхности к нанесению ЛКП предполагает несколько этапов, необходимо после каждого из них отслеживать качество проведенных работ. Обычно для этого используют преимущественно визуальный контроль.

Методы механической обработки металла перед покраской

Подобная обработка металла осуществляется при помощи ручного или механизированного инструмента с применением разнообразных абразивных материалов и механических установок.

За счет механической обработки с поверхности снимают окалину, следы коррозии и обугливания, окислы, остатки прежнего покрытия, грубые загрязнения, песок и шлак. Кроме того, данный подход позволяет создать шероховатую поверхность, что положительно сказывается на адгезии красочного слоя.

Прежде чем заниматься механической очисткой, изделия со следами масла очищают уайт-спиритом, растворителем Р-4 либо щелочным водным раствором. Если металл имеет толщину от 6 мм, значительные органические слои загрязнений можно убрать посредством газопламенной очистки кислородно-ацетиленовой горелкой.

Методы механической обработки металла перед покраской

Ручные инструменты, такие как проволочные щетки, шпатели, скребки, идут в ход при небольшом количестве работ. Тогда как с большими объемами справляются механизированным способом, применяя щетки, шарошки, абразивные круги, бесконечную абразивную ленту, игольчатые пистолеты.

Также может использоваться галтовка и виброабразивная обработка – оба способа предполагают использование насыпных абразивов.

Галтовка представляет собой метод обработки металла перед покраской, при котором мелкие детали очищаются во вращающихся барабанах. Существует две разновидности галтовки: сухая, то есть используется лишь абразив, и мокрая. Во втором случае абразив дополняется специальными жидкими составами. В любом случае, с поверхности изделий удаляется окалина, заусенцы, неровности, снижается шероховатость.

Виброабразивная обработка – это механический либо химико-механический процесс, при помощи которого с обрабатываемого изделия снимают мельчайшие частицы металла и его оксиды. Немаловажно, что данный подход способствует сглаживанию небольших дефектов за счет множества микроударов абразивом.

Также сегодня активно используется струйная очистка металла с применением абразивных материалов. Это может быть сухая или водная абразивная очистка, а также водная струйная очистка. Все названные виды обработки металла перед покраской требуют применения специализированного оборудования. Роль абразивов обычно играют металлический песок либо дробь, стеклянные шарики, шлаки.

Очистка струйным абразивным методом подходит только для металла толщиной от 3 мм. Обработка тонкостенных изделий может проводиться лишь при условии, что она не приведет к изменению геометрии предмета. По завершению сухой чистки изделия избавляют от пыли и обезжиривают, если это требуется.

После данной процедуры металл очень активен, поэтому его важно как можно скорее покрыть грунтовкой либо покрасить, чтобы не допустить формирования вторичной коррозии. По той же причине при механической очистке нужно следить, чтобы влажность воздуха не выходила за пределы 85 %, а температура изделия была выше точки росы минимум на 3 °C.

Механические методы обработки металла перед покраской выгодно отличаются от других тем, что подходят для изделий из черных и цветных металлов вне зависимости от их габаритов. Также подготовка конструкции осуществляется без ее перемещения в другие цеха – прямо на рабочем месте.

Среди минусов данного способа стоит назвать высокую цену и большие трудозатраты. Кроме того, он не может использоваться для тонкостенных изделий сложной конфигурации.

За счет механической обработки создается шероховатая поверхность, а значит, обеспечивается лучшая адгезия лакокрасочного покрытия. Однако метод не способен защитить металл от ржавчины. Добиться сразу двух целей можно химическими способами.

Химическая обработка металла перед покраской

Данная технология предполагает работу в несколько этапов и использование водных растворов специальных составов. Количество стадий подбирают в соответствии с типом металла, состоянием поверхности, условиями эксплуатации изделий в будущем.

Химическая обработка металла перед покраской

Чаще всего в процесс химической обработки металла перед покраской входят такие этапы:

  • Обезжиривание, очистка.
  • Удаление следов ржавчины, окислов.
  • Активация.
  • Конверсионная обработка.
  • Финальная обработка или пассивация, промывка обессоленной водой.
  • Просушивание.

После каждого этапа изделия промывают водой, в некоторых случаях даже дважды.

Если планируется использовать конструкцию в тяжелых условиях, то есть на открытом воздухе, выполняют всю описанную подготовку с нанесением защитных конверсионных покрытий. Для изделий, которые будут использоваться в закрытых помещениях при нормальной влажности, достаточно лишь обезжиривания.

Если поверхность конструкции из черного металла прошла только очистку от следов жира, ее защищают пассивацией от вторичной коррозии в процессе сушки. Рекомендуется применять средства на базе трех- либо шестивалентного хрома. Важно подчеркнуть, что здесь нельзя использовать растворы нитрита натрия, три- и моноэтаноламина.

Химическая подготовка черных металлов к покраске

Обработка металла перед покраской с формированием конверсионных покрытий также во многом зависит от типа металла.

Черные металлы, к которым относятся сталь, чугун, фосфатируют. Алюминий, магний и сплавы на их основе – хроматируют. Для цинка и кадмия, оцинкованной стали и цинковых сплавов допускаются оба названных типа обработки.

По составу среди фосфатных покрытий выделяют кристаллические или цинкофосфатные и аморфные, то есть железофосфатные. Первые имеют более высокую стойкость к ржавчине, поэтому их советуют выбирать для обработки металла перед покраской, если конструкция будет эксплуатироваться в сложных климатических условиях.

Именно цинкфосфатирование позволяет подготовить поверхности автомобильных кузовов, сельхозтехники, строительных конструкций. Железофосфатирование необходимо для обработки заготовок металлической мебели, бытовых приборов, светильников, пр.

Химическая подготовка черных металлов к покраске

Весь процесс фосфатирования включает в себя не менее 5-6 этапов, при этом могут использоваться методы погружения и распыления. Если данную обработку совмещают с обезжириванием, удается сократить число стадий до 3-4.

Наиболее современные фосфатирующие составы призваны улучшить потребительские свойства фосфатных покрытий и экологическую составляющую данного вида обработки металла перед покраской. Для этого в состав вводят катионы никеля и марганца, а также сокращают долю цинка.

Химическая подготовка цветных металлов к покраске

Когда цветные металлы обрабатывают вместе со сталью, стараются использовать фосфатирование. Нужно отметить, что далее идет этап пассивирования, который должен присутствовать в обработке любых металлов перед покраской.

Учитывая дальнейшие условия эксплуатации конструкции, иногда можно отказаться от сложной подготовки в пользу одного обезжиривания. Тогда важно помнить про недостаточную стойкость цветных металлов к воздействию щелочных моющих средств. Дело в том, что обработка сильнощелочными водными растворами приводит к травлению и потемнению поверхности. А значит, лучше обезжиривать подобные материалы специализированными моющими составами.

Полная подготовка алюминия с нанесением конверсионного хроматного или бесхроматного покрытия отличается своими тонкостями. Важно избавиться от оксидной пленки на поверхности заготовки травлением в сильнощелочных или в кислых растворах.

Если присутствует незначительная зажиренность изделия, травление допускается совместить с обезжириванием.

Химическая подготовка цветных металлов к покраске

Среди российских производителей распространено мнение, что таким металлам, как алюминий и оцинкованная сталь не требуется полной обработки перед покраской с нанесением конверсионных покрытий. Однако это не так.

Использование предметов из этих металлов при высокой влажности чревато тем, что без хроматирования, пассивации, фосфатирования под ЛКП появится легкая белая коррозия. Она приводит к потере надежного сцепления металла с краской, что может вызывать отслаивание последней.

Сейчас самым эффективным методом обработки металла перед покраской считается хроматирование, на производствах применяют желтое и зеленое хроматирование. Но высокая токсичность соединений хрома вносит свои коррективы в возможность повсеместного использования этих процессов.

Передовые западные предприятия переходят на бесхроматную обработку цветных металлов, в основе которой лежит применение средств на основе комплексных фторидных соединений циркония, титана. Либо на производствах формируют защитные покрытия из сложных окислов никеля, кобальта, оксисиланов.

Если требуется подготовка к покраске цинка и оцинкованной стали, хроматирование может быть заменено фосфатированием, что наиболее актуально, когда параллельно ведутся работы с предметами из стали.

Нужно понимать, что выбор технологии обработки металла перед покраской и используемых материалов представляет собой ответственный этап. Поэтому его осуществляют квалифицированные специалисты с учетом особенностей конкретной ситуации.

Читайте также: