Как происходит окисление металла с повышением температуры

Обновлено: 07.01.2025

Скорость и характер процесса химической коррозии металлов зависят от многих факторов.

Внешними называют факторы, связанные с составом коррозионной среды и условиями коррозии (температура, давление, скорость движения среды и др.). Внутренними называют факторы, связанные с составом и структурой сплава, внутренними напряжениями в металле, характером обработки поверхности и др.

Температура

Температура очень сильно влияет на скорость процессов химической коррозии металлов. С повышением температуры процессы окисления металлов протекают значительно быстрее, несмотря на уменьшение их термодинамической возможности. Характер влияния температуры на скорость окисления металлов определяется температурной зависимостью константы скорости химической реакции kc (при кинетическом контроле процесса окисления металлов) или коэффициента диффузии kД (при диффузионном контроле процесса), которая выражается одним и тем же экспоненциальным законом (уравнение Аррениуса), связывающим температуру с относительной долей частиц, обладающих энергией выше некоторого порогового значения.

С повышением температуры скорость окисления железа и стали очень сильно возрастает по закону, близкому к экспоненциальному.

Колебания температуры, особенно попеременные нагрев и охлаждение, увеличивают скорость окисления металлов, например железа и стали, так как в защитной окисной пленке вследствие возникновения в ней термических напряжений образуются трещины и она может отслаиваться от металла.

Состав газовой среды

Влияние состава газовой среды на скорость коррозии металлов велико, специфично для разных металлов и изменяется с температурой.

Состав газовой среды оказывает большое влияние на скорость окисления железа и стали. Особенно сильно влияют кислород, соединения серы и водяные пары.

Насыщение воздуха парами воды увеличивает скорость коррозии стали в два-три раза. При наличии в газовой среде соединений серы железо и сталь часто подвергаются межкристаллитной коррозии, особенно при температурах выше 1000 ˚С.

Если газовой средой являются продукты горения топлива, то газовая коррозия углеродистых и низколегированных сталей тем сильнее, чем выше коэффициент расхода воздуха, с которым сжигается топливо. Присутствие в газовой среде SO2 значительно увеличивает коррозию углеродистых сталей.

Значительное влияние на коррозию сталей и сплавов оказывают продукты горения топлива, содержащие ванадий. При сжигании дешевого загрязненного ванадием жидкого топлива (мазута, погонов нефти) образуется большое количество золы, содержащей V2O5. Зола, налипая на металл, увеличивает скорость его окисления (в несколько раз или даже в десятки раз) и вызывает межкристаллитную коррозию при температуре выше температуры плавления золы.

Таким образом, V2O5, участвуя в процессе окисления металлов, на образование их окислов почти не расходуется. Взаимодействуя с различными окислами железа, никеля и хрома, V2O5 разрушает защитную пленку, образуя в ней поры, по которым относительно легко проникают кислород газовой фазы и жидкая V2O5, окисляющие металл.

Повышение содержания в газовой среде окиси углерода CO сильно понижает скорость коррозии углеродистых и низколегированных сталей, однако при большом количестве CO в газовой фазе может произойти науглероживание поверхности стали.

Различия в скорости коррозии металлов в разных газовых средах в значительной степени определяются защитными свойствами образующихся на металлах пленок продуктов коррозии.

Режим нагрева

Как указывалось выше, колебания температуры при нагреве или эксплуатации металлов при высоких температурах, особенно переменные нагрев и охлаждение, увеличивают скорость окисления металлов, например железа и сталей, так как в защитной окисной пленке вследствие возникновения в ней термических напряжений образуются трещины и она может отслаиваться от металла, т. е. нарушается сохранность защитной пленки в связи с низкой ее термостойкостью. В ряде случаев термостойкость может быть повышена за счет внутреннего окисления сплава, способствующего врастанию образующейся окалины в металл.

Состав сплава

Защитные свойства образующейся пленки продуктов коррозии и, следовательно, коррозионная стойкость сплава находятся в зависимости от его состава.

Применительно к наиболее важному и распространенному металлическому конструкционному материалу – сплавам на железной основе и наиболее распространенному процессу химической коррозии металлов – газовой коррозии – можно отметить следующее.

При высоких температурах (800 ˚С и выше) с увеличением содержания углерода в стали скорость ее окисления, а также видимое и истинное обезуглероживание уменьшаются вследствие более интенсивного образования окиси углерода, что приводит к торможению окисления железа, самоторможению окисления углерода и усилению образования в окалине газовых пузырей.

Сера, фосфор, никель и марганец не влияют на окисление железа.

Титан, медь, кобальт и берилий заметно замедляют окисление железа, что связано с повышением защитных свойств образующейся окалины.

Хром, алюминий и кремний сильно замедляют окисление железа из-за образования высокозащитных окисных пленок.

Нагрев металла перед прокаткой

Нагрев металла перед прокаткой осуществляется с целью повышения его пластичности и уменьшения его сопротивления деформации. Нагрев является одной из важных и основных операций в процессе прокатки. Он должен обеспечить равномерное распределение температуры по сечению прокатываемого металла, его минимальное окисление и обезуглероживание.

Характер передачи тепла определяет способ нагрева металла. Различают два способа; прямой и косвенный. Если тепло аккумулируется непосредственно в самом металле, а температура окружающей среды остается ниже температуры металла, то такой способ называется прямым. Если тепло металлу передается за счет соприкосновения его поверхности с какой-либо средой (газообразной, жидкой, твердой), нагретой до более высокой температуры, то такой способ нагрева называется косвенным.


Передача тепла металлу при косвенном нагреве происходит за счет конвекции и излучения. Количество тепла, передаваемое излучением в нагревательных печах, достигает 80 % всего тепла. При нагреве металла происходит активное химическое взаимодействие его с окружающими газами, в результате чего поверхностные слои его окисляются и обезуглероживаются. Окисление поверхности металла называется угаром. При нагреве стали окисленный слой представляет собой окалину, которая образуется в результате диффузионного процесса окисления железа и примесей, входящих в состав стали. Окалина состоит из окислов железа в виде соединений Fe203, Fe304 и FeO, располагающихся в трех слоях. Наружный ее слой Fe203 - гематит составляет примерно 2% от общей толщины окалины, промежуточный слой Fe304 - магнетит примерно 18%, а внутренний FeO - вюстит - 80%.

Образование окалины при нагреве приводит к потере годного металла. При нормальной работе нагревательных устройств угар металла составляет 1-2% массы металла, а при неудовлетворительной их работе 4-5%. Если учесть, что в процессе прокатки металл нагревается несколько раз, то можно принять угар в среднем 3-4% от массы металла. Активное окалинообразование при нагреве стали начинается при температуре около 700 °С и возрастает особенно быстро при температурах выше 900 °С.

На величину угара, то есть на величину образования окалины, влияют:
- температура нагрева;
- атмосфера рабочего пространства нагревательного устройства;
- продолжительность нагрева;
- химический состав металла;
- форма и размеры нагреваемой заготовки.

На рисунке показано влияние температуры и продолжительности нагрева металла в печи на окалинообразование. Видно, что окисление металла тем больше, чем больше времени он находится в печи при высоких температурах, и тем меньше, чем больше скорость нагрева.
1 – влияние температуры в печи на окалинообразование;
2 - влияние продолжительности нагрева на окалинообразование.

При нагреве легированных сталей и сплавов окалинообразование снижается в результате наличия Cr, Ni, Al, Si и т.д. Эти легирующие компоненты образуют плотную пленку окислов, которая препятствует дальнейшему окислению металла.

На скорость окисления оказывает влияние состояние наружной поверхности металла. При наличии слоя окалины, образовавшегося в результате предыдущего нагрева, металл окисляется с меньшей скоростью, так как этот слой окалины предохраняет в какой-то степени металл от окисления. Отношение поверхности нагреваемого металла к его объему также оказывает влияние на окисление металла: чем больше это отношение, тем сильнее окисление металла.

Одновременно при нагреве металла происходит и обезуглероживание его поверхностного слоя, представляющее процесс взаимодействия печных газов с углеродом стали, приводящее к уменьшению содержания углерода в поверхностном слое металла.

Глубина обезуглероженного слоя зависит:
- от содержания углерода в стали;
- температуры нагрева;
- продолжительности нагрева.

Углеродистые стали с содержанием углерода до 0,30-0,40% почти не обезуглероживаются, а с содержанием углерода выше 0,40% процесс обезуглероживания протекает тем интенсивнее, чем больше содержание углерода. Повышение температуры и продолжительности нагрева также увеличивают глубину обезуглероженного слоя. Таким образом, на процесс обезуглероживания влияют те же факторы, что и на окалинообразование.

При температурах нагрева, близких к точке плавления стали, внутрь ее проникает кислород, который окисляет зерна. В результате связь между зернами стали настолько ослабляется, что металл при прокатке разрушается. Это явление называется пережогом. Оно происходит тем легче, чем выше температура нагрева и чем больше окислительная атмосфера в печи. Явления перегрева и пережога чаше всего возможны при вынужденной задержке металла в печи. Чтобы избежать перегрева и пережога необходимо понижать температуру печи и уменьшать количество подаваемого воздуха.

При назначении режимов нагрева металла обычно исходят из следующих параметров: температуры и скорости нагрева, времени выдержки при постоянной температуре (томления). При прокатке металл нагревают до возможно высоких температур, так как в этом случае снижаются расход энергии, усилие деформации, износ инструмента. При назначении температуры нагрева, как правило, верхний предел температуры нагрева ограничивается явлениями перегрева и пережога и устанавливается на 100-150 °С ниже точки плавления, а нижний предел - температурой рекристаллизации, т.е. минимально допустимой температурой конца прокатки. У некоторых сталей и сплавов температурный интервал прокаткидостаточно узкий, ограниченный различными изменениями в структуре металла.

Скорость нагрева зависит от теплопроводности металла. Чем выше теплопроводность, тем выше скорость нагрева, и наоборот. Для сталей с низкой теплопроводностью нагрев со слишком большими скоростями может привести к образованию трещин в результате возникновения внутренних напряжений из-за перепада температур между поверхностями и внутренними слоями. Поэтому нагрев таких сталей следует вести медленно, особенно до 600-650 °С. При температуре нагрева выше 700 °С все стали можно нагревать с максимально возможной скоростью. Большая скорость нагреваобеспечивает не только высокую производительность нагревательных устройств, но и предотвращает образование некоторых дефектов.

После достижения заданной температуры нагрева с целью выравнивания температуры металла по его сечению его в течение определенного времени выдерживают в печи. Этот третий период нагрева улучшает качество нагреваемого металла, так как происходят некоторые структурные изменения, выравнивание химического состава в результате диффузии и соответствующее улучшение механических свойств, диффузионное удаление водорода, наличие которого в некоторых сталях приводит к образованию флокенов после прокатки.

В зависимости от технологии нагрева нагревательные устройства могут обеспечить одно-, двух-, трех- и многоступенчатый нагрев.

Одноступенчатый нагрев осуществляется при постоянной температуре печи или при постоянном тепловом потоке. Его применяют для нагрева листов, труб, заготовок, сутунок и одиночных горячих слитков.

При двухступенчатом нагревена первой ступени осуществляется собственно нагрев, на второй - выдержка при постоянной температуре.Двухступенчатый нагрев применяется для нагрева горячего посада всех марок стали в двухзонных методических печах и холодного посада углеродистой стали в нагревательных колодцах.

Трехступенчатый нагрев состоит из первой ступени, на которой скорость нагрева поддерживается небольшой, на второй - ускоренный нагрев, и на третьей - томление при постоянной температуре. Этот режим применяют в трехзонных нагревательных печах, нагревательных колодцах и др.

Многоступенчатый нагрев применяется при термической обработке. Он состоит из ряда периодов нагрева, выдержки и охлаждения.

По режиму нагрева различают камерные и методические печи. В рабочем пространстве камерной печитемпература одинакова. В методической печи температура изменяется по длине печи.

По способу загрузки и выгрузки различаются печи периодического и непрерывного действия. В печах периодического действия металл в процессе нагрева остается неподвижным. В печах непрерывного действия нагреваемый металл перемешается вдоль печи.

По типу источников тепла печи разделяются на электрические (индукционные, сопротивления) и пламенные (газовые и др.).

По способу использования тепла продуктов сгорания печи делятся на рекуперативные и регенеративные. Нагревательные колодцы применяют для нагрева слитков и бывают регенеративные, рекуперативные и электрические. Регенеративные и рекуперативные колодцы называются так потому, что в них используются регенераторы и рекуператоры - специальные устройства (насадки, трубы) для подогрева воздуха (до 800-850 °С) и газа (до 300-350 °С) за счет частичного использования тепла отходящих продуктов горения. Слитки нагревают в вертикальном положении, что предотвращает опасность смешения усадочной раковины и устраняет их кантовку. Большая часть поверхности слитков омывается продуктами сгорания и получает тепло излучения от кладки, что обеспечивает равномерный и быстрый нагрев.

В настоящее время предпочтение отдается рекуперативным нагревательным колодцам с отоплением из центра подины или с отоплением одной верхней горелкой, которые характеризуются, высоким уровнем и качеством нагрева, достаточно простой конструкцией, компактностью. Каждая группа колодцев состоит из четырех камер. Годовая производительность одной группы составляет 250000 т нагретого металла в год. Угар металла в рекуперативных нагревательных колодцах достигает 2,5-3 % от массы нагревательных слитков.

Для нагрева блюмов, слябов и заготовок перед прокаткой используются методические нагревательные печи непрерывного действия различных типов и конструкций. Современные печи бывают двух-, трех- и многозонными.

Наиболее важными классификационными признаками методических печей являются:
- температурный режим по длине печи;
- характер нагрева металла;
- способ выдачи металла из печи (боковая или торцовая выдача).

Нагреваемый металл в методической печи, перемещаясь от окна загрузки к окну выдачи, проходит последовательно зоны с различной температурой, соответствующей заданному режиму нагрева. По мере продвижения металл отбирает тепло у печных газов, движущихся ему навстречу, и постепенно (методически) нагревается. Печные газы, отдавая тепло металлу, в конце печи через соответствующие каналы попадают в регенераторы или рекуператоры и в боров, а через него в дымовую трубу. В I зоне - методической происходит нагрев до невысоких температур, во II зоне - сварочной - нагрев до температуры обработки, а в томильной зоне III - выдержка.

По способу перемещения нагреваемых заготовок методические печи разделяются на толкателъные, с шагающим подамили балками и с вращающимся подом.

В толкательных печах заготовки, подаваемые в рабочую камеру толкателем заполняют весь пол, соприкасаясь друг с другом. По мере заталкивания новой заготовки вся масса нагреваемого металла продвигается к окну выдачи по водоохлаждаемым глиссажным трубам, и очередная заготовка по наклонным направляющим падает на приемный рольганг.

Принцип перемещения металла в печах с шагающим подом (балками) иной. Под печи состоит из подвижных (шагающих) и неподвижных балок. Шагающие балки поднимают заготовки, затем совершают движение вперед и опускают их на неподвижные балки. После этого подвижные балки возвращаются в исходное положение. Такое движение повторяется многократно. При этом заготовки, лежащие на шагающих балках с зазорами, перемещаются вдоль печи. По сравнению с толкательными печи с шагающим подом (балками) имеют следующие преимущества:
- сокращение продолжительности нагрева и повышение его равномерности благодаря расположению заготовок на балках с зазорами и тем самым возможности обогрева их с трех или четырех сторон;
- более легкое освобождение печи от металла в случае аварийных ситуаций;
- возможность нагрева заготовок любой формы поперечного сечения;
- отсутствие ограничений печи по длине и ширине;
- лучшие технические показатели работы печи.

Для нагрева заготовок при поштучной прокатке тонких листов применяют печи с вращающимся подом или карусельные. Заготовки укладываются через боковое окно загрузки на под печи, а обогрев печи осуществляется при помощи горелок, расположенных по окружности печи с внутренней и наружной сторон. По мере вращения пода на полный оборот заготовка нагревается до необходимой температуры и перемещается к боковому окну выдачи. Продолжительность нагрева определяется скоростью движения пода и длиной окружности печи.

Прогрессивным способом нагрева является индукционный нагрев. Металл, перемещаясь при помощи толкателя через индуктор, нагревается за счет возникающих в нем вихревых токов (токи Фуко), создаваемых магнитным полем индуктора.

Индукционный нагрев происходит быстро, экономично, с точной выдержкой заданной температуры.

Электроконтактный способ нагрева обеспечивает равномерное распределение температуры по поперечному сечению и высокую скорость нагрева. Металл при этом способе нагрева нагревается в 30-50 раз быстрее, чем при топливном нагреве. После нагрева практически не образуются окалина иобезуглероженный слой.

Дефекты нагрева

При нагреве металла в пламенных печах происходят процессы, которые оказывают влияние на дальнейшую обработку и качество металла. Состав печной атмосферы является главным фактором, влияющим на качество нагрева металла. В результате нагрева поверхность металла окисляется и обезуглероживается.

При окислении металла на поверхности заготовки образуется окалина, которая ухудшает качество поверхности и уменьшает линейные размеры заготовки. Поэтому размеры заготовок, подвергаемых нагреву, должны иметь припуск, учитывающий потери металла на угар (окалина).

При нагреве под обработку давлением припуски составляют 2—5%, при термической обработке 0,5—2%, а в общем цикле горячей обработки достигают.7—8%. Из приведенных цифр видно, что потери металла на угар составляют значительную величину.

При температурах 1150—1350°С вместе с процессом окисления металла происходит процесс его интенсивного обезуглероживания, т. е. снижения содержания углерода на поверхности заготовки. Обезуглероживание изменяет механические свойства поверхности нагреваемого металла. С повышением содержания углерода в стали обезуглероживание увеличивается. Инструментальная сталь при обезуглероживании становится мягкой, а инструмент из такой стали — нестойким.

Перегрев приводит к образованию большой величины зерна стали и является исправимым браком, который устраняют повторной термообработкой. Пластические свойства стали в результате перегрева ухудшаются и при деформировании в ней могут возникать трещины.

Если перегретый металл продолжать нагревать в печи длительное время при высоких температурах, то произойдет пережог — окисление границ зерен. Пережог является неисправимым браком. Пережженный металл идет на переплавку.

Для предупреждения указанных дефектов при нагреве металла необходимо соблюдать следующие условия: сжигать топливо с минимально возможным количеством воздуха, что приводит к уменьшению количества свободного кислорода в составе печных газов; размещать в печи заготовки так, чтобы они омывались печными газами, а факелы пламени горелок или форсунок не были направлены на заготовки.

Интервалгорячей пластической деформации 1180 - 850 С. Пригорячей пластической деформации температура начала прокатки, ковки и других операций должна обеспечивать возможно более полное превращение аустенита в б-феррит во избежание образования трещин или рванин. Присутствие аустенита в стали в момент пластической деформации способствует возникновению дефектов вследствие различия фазовых составляющих по физическим свойствам, а также прочности и пластичности. По данным А. А. Бабакова [70], необходимо, чтобы в начале горячей пластической деформации сталь содержала не более 8 - 10 %, а в конце ее 25 - 30 % аустенита. Особенно важно соблюдать эти условия при горячей прокатке на непрерывных станах и горячей прошивке труб

4. Типы прокатных клетей, применяющиеся в составе толстолистовых станов, их характеристика.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.



© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

Большая Энциклопедия Нефти и Газа

Высокотемпературное окисление металлов является процессом реакционной диффузии атомов кислорода и металла, диффундирующих встречно через кристаллические решетки твердых фаз, образующих окалину. Плотная оксидная бездефектная пленка, незначительно испаряющаяся при рабочих температурах, сохраняющаяся в процессе эксплуатации, - необходимое условие высокой жаростойкости материала. Такая пленка, существенно замедляя диффузию кислорода ( или металла), значительно снижает скорость окисления сплава. [1]

Процесс высокотемпературного окисления металлов является более сложным, чем рассмотренный выше случай, так как может включать внутреннюю диффузию не только окислителя, но и металла, а иногда только металла, но указывает, как показала Л. П. Емельяненко, на неоправданность полного игнорирования внешней массопередачи ( диффузии) окислителя. [2]

Характерной особенностью процессов высокотемпературного окисления металлов и сплавов является образование и непрерывное нарастание на их поверхности слоя твердых продуктов реакции. Этот слой разделяет металл и окружающую среду, поэтому ход процесса окисления зависит от диффузии металла и окислителя. Практически самой распространенной газовой средой является воздух, единственный окисляющий компонент которого - кислород, поэтому продуктами газовой коррозии обычно бывают окислы. [3]

Чаще всего взаимодействующим газом при высокотемпературном окислении металлов и сплавов бывает воздух. Активной составной частью воздуха является кислород, а взаимодействие с азотом протекает, как правило, гораздо медленнее, так что им обычно можно пренебречь. Малая примесь влаги, обычно содержащейся в воздухе, иногда оказывает каталитическое воздействие и способна ускорять окисление, но она может также действовать и в обратном направлении, несколько уменьшая скорость окисления. [4]

Типичными примерами химической коррозии являются процессы высокотемпературного окисления металлов и сплавов. [5]

Игнорирование стадии внешней мас-сопередачи в преобладающем большинстве работ по высокотемпературному окислению металлов является поразительным и неоправданным. [7]

Параболическая зависимость, как правило, характерна для описания процессов высокотемпературного окисления металлов и сплавов при длительной эксплуатации. [8]

Далеко не всегда можно судить о характеристиках окислительного изнашивания по результатам высокотемпературного окисления металлов в статических условиях. [9]

Зависимость скорости химической и электрохимической коррозии от температуры имеет сложный характер. В процессах высокотемпературного окисления металлов ( химическая коррозия) с ростом температуры падает термодинамическая возможность окисления каждого металла, поскольку увеличивается упругость диссоциации его окисла. [10]

Равномерная, коррозия включает общеизвестные ржавление железа или потускнение серебра. Помутнение никеля и высокотемпературное окисление металлов также являются примерами равномерной коррозии. [12]

Сюда же относится потускнение никеля и высокотемпературное окисление металлов . Эти единицы выражают глубину проникновения в металл или потерю массы металла. При этом продукты коррозии ( плотно прилегающие и рыхлые) с поверхности металла удаляются. Например, сталь в морской воде корродирует с относительно постоянной скоростью, равной 25 мг / дм2 - день, или 0 127 мм / год. Эти цифры представляют средние значения во времени, причем начальная скорость коррозии обычно больше, чем конечная. Поэтому, приводя скорость коррозии, всегда следует указывать продолжительность испытания, так как часто нельзя с уверенностью экстраполировать значение скорости для времени, значительно превышающего время испытания. [13]

Изложены закономерности учения о коррозии металлов и основы технологии противокоррозионной защиты. Рассмотрены биогенная и почвенная коррозия, высокотемпературное окисление металлов , питтинговая и межкристаллитная коррозия, коррозионное растрескивание, влияние радиации и блуждающих токов. Охарактеризована стойкость основных групп металлических конструкционных материалов, в том числе новых сплавов, используемых в химической, атомной, энергетической и других отраслях промышленности. [14]

По механизму процесса различают химическую и электрохимическую коррозию металлов. В первом случае протекает обычная гетерогенная химическая реакция между атомами металла и металлоида, например высокотемпературное окисление металлов кислородом, окисление поверхности алюминия на воздухе, взаимодействие металлов с серой и хлором. Во втором случае коррозионный процесс протекает в растворах электролитов и окисление-восстановление осуществляется электрохимическим путем. Скорость электрохимической коррозии в отличие от химической зависит от потенциала корродирующего металла. [15]

Чудеса современной технологии включают в себя изобретение пивной банки, которая, будучи выброшенной, пролежит в земле вечно, и дорогого автомобиля, который при надлежащей эксплуатации заржавеет через два-три года. Законы Мерфи (еще. )

Окисление - металл

Окисление металла за счет атмосферы незначительно, потому что зеркало ванны по отношению к ее объему мало. [2]

Окисление металла при температурах выше 1000 С создает облако желто-беловатого цвета, что затрудняет условия труда. [4]

Окисление металлов при повышенных температурах с образованием на их поверхности окалины является типичным видом химической коррозии. [5]

Окисление металлов при нагревании их приносит промышленности большие, убытки. Вследствие того, что стойкость обычных железных сплавов против газовой коррозии крайне невелика, изделия, предназначаемые для работы в условиях высоких температур, изготовляют из специальных жаростойких сплавов или, если возможно, наносят специальные покрытия, повышающие устойчивость обычных железных сплавав к газовой коррозии. [6]

Окисление металлов при их нагревании приносит промышленности большие убытки. Вследствие того что стойкость обычных железных сплавов против газовой коррозии крайне невелика, изделия, предназначаемые для работы при высоких температурах, изготовляют из специальных жаростойких сплавов или, если возможно, наносят покрытия, повышающие устойчивость обычных железных сплавов против действия газовой коррозии. Практикуются также процессы насыщения сплавами алюминий-кремний, хром-кремний. Для защиты стальных изделий от атмосферной коррозии применяют насыщение их поверхности цинком. [7]

Окисление металлов при нагреве в печах открытого пламени не такой простой процесс, как указывается химическими реакциями взаимодействия кислород - металл, потому что по мере образования окислов на поверхности нагреваемого металла скорость дальнейшего окисления определяется не химическими реакциями, а диффузией реагирующих компонентов в слое образовавшейся окалины и зависит от структуры этого слоя. Структура окалины, образующейся из стали данного состава, зависит от состава газовой среды, температуры и продолжительности нагрева. [8]

Окисление металла под слоем буры легко достигается благодаря пористости покрытия нагревом токами высокой частоты в течение нескольких секунд. [9]

Окисление металлов в известной степени зависит от констант равновесия, например от упругости диссоциаций. Они прежде всего определяют, какие соединения образуются, если они вообще образуются, тогда как скорость их образования представляет собой главным образом задачу кинетики. К счастью, скорости реакций изменяются в широких пределах, причем реакции, которые не заканчиваются, например, через столетие, практически могут считаться совсем не происходящими. [10]

Окисление металла с течением времени разрушает его. Например, стальные детали под действием ржавления становятся хрупкими и ломкими; медь под действием даже очень слабых кислот растворяется в них, тем самым разрушая деталь, и образует ядовитые вещества. [11]

Окисление металлов кислородом воздуха особенно заметно в условиях высокотемпературной нефтепереработки. При высоких температурах скорость взаимодействия газа с металлом велика, поэтому там, где может возникнуть эта проблема, необходимо особенно тщательно подбирать металл для конструкций. Скиннер, Мейзон и Моран [10] описывают сопротивление различных сплавов этому виду коррозии и отмечают, что сопротивляемость Fe-Ni-Cr - сплавов зависит в основном от содержания хрома. Однако при переменных температурах для коррозионного сопротивления более важным становится присутствие других компонентов сплава. Кремний и алюминий заметно увеличивают сопротивляемость окислению. Имеются подробные рекомендации для соответствующего выбора сплава. [12]

Окисление металла газами происходит как в дуговом промежутке ( в процессе переноса капель электродного металла в сварочную ванну), так и в сварочной ванне. При этом окисляются ( выгорают) химические элементы, содержащиеся в электродном и основном металле. При сварке стали в первую очередь окисляется железо, содержание которого является максимальным. Окисление других элементов происходит с различной интенсивностью. Чем больше степень сродства химического элемента с кислородом, тем быстрее идет окисление элемента. [13]

Окисление металлов представляет собой сложный-ге-терогенный процесс. [14]

Окисление металла и углеводородных смазок развивается при трении как сопряженный процесс, от хода которого зависят условия трения и сопутствующие ему явления. [15]

Читайте также: