Качественная реакция на цинк металлический
Нитрат цинка при нагревании разлагается на оксид цинка, оксид азота (IV) и кислород:
Сульфат цинка при сильном нагревании разлагается аналогично — на оксид цинка, сернистый газ и кислород:
Комплексные соли цинка
Для описания свойств комплексных солей цинка — гидроксоцинкатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоцинкат на две отдельные частицы — гидроксид цинка и гидроксид щелочного металла.
Например , тетрагидроксоцинкат натрия разбиваем на гидроксид цинка и гидроксид натрия:
Na2[Zn(OH)4] разбиваем на NaOH и Zn(OH)2
Свойства всего комплекса можно определять, как свойства этих отдельных соединений.
Таким образом, гидроксокомплексы цинка реагируют с кислотными оксидами .
Например , гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид цинка не реагирует с углекислым газом, следовательно, просто выпадает в осадок:
Аналогично тетрагидроксоцинкат калия реагирует с углекислым газом:
А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид цинка реагирует с сильными кислотами.
Например , с соляной кислотой:
Правда, под действием небольшого количества ( недостатка ) сильной кислоты осадок все-таки выпадет, для растворения гидроксида цинка кислоты не будет хватать:
Аналогично с недостатком азотной кислоты выпадает гидроксид цинка:
Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-цинкат:
Гидролиз солей цинка
Растворимые соли цинка и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:
I ступень: Zn 2+ + H2O = ZnOH + + H +
II ступень: ZnOH + + H2O = Zn(OH )2 + H +
Более подробно про гидролиз можно прочитать в соответствующей статье.
Цинкаты
Соли, в которых цинк образует кислотный остаток (цинкаты) — образуются из оксида цинка при сплавлении с щелочами и основными оксидами:
Для понимания свойств цинкатов их также можно мысленно разбить на два отдельных вещества.
Например, цинкат натрия мы разделим мысленно на два вещества: оксид цинка и оксид натрия.
Na2ZnO2 разбиваем на Na2O и ZnO
Тогда нам станет очевидно, что цинкаты реагируют с кислотами с образованием солей цинка :
Под действием избытка воды цинкаты переходят в комплексные соли:
Сульфид цинка
Сульфид цинка — так называемый «белый сульфид». В воде сульфид цинка нерастворим, зато минеральные кислоты вытесняют из сульфида цинка сероводород (например, соляная кислота):
ZnS + 2HCl → ZnCl2 + H2S
Под действием азотной кислоты сульфид цинка окисляется до сульфата:
(в продуктах также можно записать нитрат цинка и серную кислоту).
Концентрированная серная кислота также окисляет сульфид цинка:
При окислении сульфида цинка сильными окислителями в щелочной среде образуется комплексная соль:
ZnS + 4NaOH + Br2 = Na2[Zn(OH)4] + S + 2NaBr
Общая характеристика IV группы
К четвертой группе катионов относятся ионы Аl 3+ , Cr 3+ , Zn 2+ .
Хорошо растворимы в воде сульфаты, нитраты, хлориды, бромиды и иодиды алюминия, цинка и хрома (III). Ионы Аl 3+ и Zn 2+ бесцветны, соединения хрома (III) окрашены в зеленый или фиолетовый цвет.
Гидроксиды катионов четвертой группы труднорастворимы и являются слабыми электролитами. Кроме того, они обладают амфотерными свойствами. Это свойство гидроксидов используется в систематическом ходе анализа.
Групповым реагентом является NaOH в избытке. Гидроксиды алюминия, хрома (III) и цинка растворяются в избытке щелочи и при действии группового реактива переходят в раствор в виде соединений Na[Al(OH)4], Na2[Zn(OH)4], Na3[Cr(OH)6].
Так как гидроксиды катионов четвертой аналитической группы являются очень слабыми основаниями, соли этих катионов в водных растворах гидролизованы. Соли очень слабых кислот, например сульфиды, карбонаты алюминия и хрома (III), подвергаются необратимому гидролизу и не могут существовать в водном растворе.
Ионы А1 3+ , Сг 3+ и Zn 2+ обладают способностью к комплексообразованию.
Для соединений хрома (III) характерна склонность к окислительно-восстановительным реакциям, что используется при анализе. Одной из самых характерных реакций открытия катиона Сг 3+ является окисление его до желтого иона СгО4 2 - .
Соединения катионов четвертой группы входят в состав многих лекарственных препаратов. Гидроксид алюминия А1(ОН)3 обладает адсорбирующими свойствами и поэтому применяется как наружное средство в присыпках, а внутрь - при отравлениях. Его также применяют при заболеваниях желудочно-кишечного тракта. Квасцы KAl(SO4)2 применяют как кровоостанавливающее средство и для прижиганий. Сульфат цинка ZnSO4 применяют в виде глазных капель, а оксид цинка ZnO входит в состав многих мазей для лечения кожных заболеваний.
Частные реакции катионов четвертой аналитической группы
Реакции катиона хрома (III) Сг 3+
1. Гидроксиды щелочных металлов NaOH и КОН из раствора соли хрома (III) выделяют серо-зеленый аморфный осадок гидроксида хрома (III):
СгС13 + ЗКОН → Сг(ОН)з ↓ + ЗКС1
Осадок растворяется в разбавленных кислотах, а также в избытке растворов щелочей с образованием комплексного соединения:
Сг(ОН)3 + ЗКОН → Кз[Сг(ОН)6], что указывает на амфотерность гидроксида хрома (III).
2. Пероксид водорода Н2O2 в присутствии щелочи окисляет ион хрома Сг 3+ в хромат-ион СгО4 2 - . Реакция сопровождается характерным внешним признаком — изменением окраски раствора в ярко-желтую, обусловленную присутствием иона CrO4 2 -
Если полученный раствор хромата подкислить разбавленной серной кислотой, то пероксид водорода окисляет хромат в надхромовую кислоту H2CrO6 синего цвета, легко переходящую в эфирный слой.
3. Окисление перманганатом калия. Перманганат калия в сернокислой среде при нагревании окисляет катион Сг 3+ в дихроматион Сг2О7 2 - .
Реакции катиона цинка Zn 2+
1. Гидроксиды щелочных металлов NaOH или КОН из раствора солей цинка выделяют белый студенистый осадок гидроксида цинка:
Гидроксид цинка обладает амфотерными свойствами и поэтому растворяется в разбавленных кислотах и в избытке щелочей:
2. Гексацианоферрат (III) калия Кз[Fе(СN)6] с солями цинка дает коричневато-желтый осадок гексациано-феррата (III) цинка:
Осадок растворяется в хлороводородной кислоте и растворе аммиака.
3. Гексацианоферрат (II) калия K4[Fe(CN)6 ] реагирует с солями цинка с образованием белого осадка гексацианоферрата(П) цинка-калия:
Осадок нерастворим в разбавленной хлороводородной, растворяется в щелочах, поэтому реакцию нельзя проводить в щелочной среде.
Реакция является фармакопейной.
4. Сульфид натрия Na2S осаждает из нейтрального раствора ион цинка в виде белого аморфного сульфида цинка:
Zn 2+ + S 2 - → ZnS↓
Осадок не растворяется в уксусной кислоте, но растворяется в минеральных кислотах. Реакция является фармакопейной.
5. Микрокристаллоскопическая реакция. Тетрароданохидраргират (II) аммония (NH4)2[Hg(SCN)4] образует в нейтральном или слабокислом растворе с ионами цинка бесцветные кристаллы в виде крестов или дендритов Если в растворе находилось большое количество минеральной кислоты, а солей цинка небольшое количество, то кристаллы выпадают в виде клиньев
6. Образование «зелени Ринмана». Кусочек фильтровальной бумаги, смоченной раствором соли цинка и раствором нитрата кобальта, высушивают и озоляют в фарфоровом тигле на газовой горелке. При сжигании дает золу, окрашенную в зеленый цвет цинкатом кобальта («зелень Ринмана»).
При этом происходит реакция:
Проведению реакции мешают ионы А1 3+ и Сг 3+ .
Реакции катиона алюминия А1 3+
1. Гидроксиды щелочных металлов NaOH или КОН с солями алюминия образуют белый осадок гидроксида алюминия:
Вследствие амфотерного характера гидроксида алюминия осадок растворяется в разбавленных кислотах и в избытке щелочи:
2. Сухой хлорид аммония NH4CI выделяет из тетрагидроксоалюмината калия гидроксид алюминия:
3. Ализарин (1,2-диоксиантрахннон) образует с гидроксидом алюминия ярко-красное соединение, так называемый алюминиевый лак. Это одна из наиболее чувствительных реакций на ион А1 3+ . Ионы Сг 3+ и Zn 2+ мешают проведению этой реакции. Эту реакцию можно проводить полумикрометодом или капельным методом.
Выполнение реакции . На лист фильтровальной бумаги наносят 1-2 капли раствора соли алюминия. Бумагу держат 1-2 минуты в парах аммония - над склянкой с концентрированным раствором аммиака. Пары аммиака, соприкасаясь с влажным пятном, образуют на бумаге гидроксид алюминия. На пятно наносят каплю ализарина и снова держат бумагу в парах аммиака. Пятно вначале окрасится в фиолетовый цвет. Бумагу подсушивают, наносят 1-2 капли уксусной кислоты и снова подсушивают. Пятно становится розово- красным.
Цинк. Химия цинка и его соединений
Цинк расположены в побочной подгруппе II группы (или в 12 группе в современной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение цинка и свойства
Электронная конфигурация цинка в основном состоянии :
+30Zn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2
3s 3dХарактерная степень окисления цинка в соединениях +2.
Физические свойства
Цинк при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (быстро тускнеет на воздухе, покрываясь тонким слоем оксида цинка).
Температура плавления цинка 420°С, температура кипения 906°С, плотность 7,13 г/см 3 .
Нахождение в природе
Среднее содержание цинка в земной коре 8,3·10 -3 мас.%. Основной минерал цинка: сфалерит (цинковая обманка) ZnS..
Цинк играет важную роль в процессах, протекающих в живых организмах.
В природе цинк как самородный металл не встречается.
Способы получения
Цинк получают из сульфидной руды. На первом этапе руду обогащают, повышая концентрацию сульфидов металлов. Сульфид цинка обжигают в печи кипящего слоя:
2ZnS + 3O2 → 2ZnO + 2SO2
Чистый цинк из оксида получают двумя способами.
При пирометаллургическом способе , который использовался издавна, оксид цинка восстанавливают углём или коксом при 1200—1300 °C:
ZnO + С → Zn + CO
Далее цинк очищают от примесей.
В настоящее время основной способ получения цинка — электролитический (гидрометаллургический) . При этом сульфид цинка обрабатывают серной кислотой:
При это получаемый раствор сульфата цинка очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу.
При электролизе чистый цинк осаждается на алюминиевых катодах, с которых его удаляют и подвергают плавлению в индукционных печах. Таким образом можно получить цинк с высокой чистотой (до 99,95 %).
Качественные реакции
Качественная реакция на ионы цинка — взаимодействие избытка солей цинка с щелочами . При этом образуется белый осадок гидроксида цинка.
Например , хлорид цинка взаимодействует с гидроксидом натрия:
ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl
При дальнейшем добавлении щелочи амфотерный гидроксид цинка растворяется с образованием комплексной соли тетрагидроксоцинката:
Обратите внимание , если мы поместим соль цинка в избыток раствора щелочи, то белый осадок гидроксида цинка не образуется, т.к. в избытке щелочи соединения цинка сразу переходят в комплекс:
Химические свойства
1. Цинк – сильный восстановитель . Цинк – довольно активный металл, но на воздухе он устойчив, так как покрывается тонким слоем оксида, предохраняющим его от дальнейшего окисления. При нагревании цинк реагирует со многими неметаллами .
1.1. Цинк реагируют с галогенами с образованием галогенидов:
Реакция цинка с иодом при добавлении воды:
1.2. Цинк реагирует с серой с образованием сульфидов:
Zn + S → ZnS
1.3. Цинк реагируют с фосфором . При этом образуется бинарное соединение — фосфид:
1.4. С азотом цинк непосредственно не реагирует.
1.5. Цинк непосредственно не реагирует с водородом, углеродом, кремнием и бором.
1.6. Цинк взаимодействует с кислородом с образованием оксида:
2Zn + O2 → 2ZnO
2. Цинк взаимодействует со сложными веществами:
2.1. Цинк реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:
Zn 0 + H2 + O → Zn +2 O + H2 0
2.2. Цинк взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой и др.). При этом образуются соль и водород.
Например , цинк реагирует с соляной кислотой :
Zn + 2HCl → ZnCl2 + H2↑
Демонстрация количества выделения водорода при реакции цинка с кислотой:
Цинк реагирует с разбавленной серной кислотой:
2.3. Цинк реагирует с концентрированной серной кислотой . В зависимости от условий возможно образование различных продуктов. При нагревании гранулированного цинка с концентрированной серной кислотой образуются оксид серы (IV), сульфат цинка и вода:
Порошковый цинк реагирует с концентрированной серной кислотой с образованием сероводорода, сульфата цинка и воды:
2.4. Аналогично: при нагревании гранулированного цинка с концентрированной азотной кислотой образуются оксид азота (IV) , нитрат цинка и вода :
При нагревании цинка с очень разбавленной азотной кислотой образуются нитрат аммония , нитрат цинка и вода :
2.5. Цинк – амфотерный металл, он взаимодействует с щелочами. При взаимодействии цинка с раствором щелочи образуется тетрагидроксоцинкат и водород:
Zn + 2KOH + 2H2O = K2[Zn(OH)4] + H2
Цинк реагирует с расплавом щелочи с образованием цинката и водорода:
В отличие от алюминия, цинк растворяется и в водном растворе аммиака:
2.6. Цинк вытесняет менее активные металлы из оксидов и солей .
Например , цинк вытесняет медь из оксида меди (II):
Zn + CuO → Cu + ZnO
Еще пример : цинк восстанавливает медь из раствора сульфата меди (II):
CuSO4 + Zn = ZnSO4 + Cu
И свинец из раствора нитрата свинца (II):
Восстановительные свойства цинка также проявляются при взаимодействии его с сильными окислителями: нитратами и сульфитами в щелочной среде, перманганатами, соединениями хрома (VI):
Оксид цинка
Оксид цинка можно получить различными методами :
1. Окислением цинка кислородом:
2. Разложением гидроксида цинка при нагревании:
3. Оксид цинка можно получить разложением нитрата цинка :
Химические свойства
Оксид цинка — типичный амфотерный оксид . Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.
1. При взаимодействии оксида цинка с основными оксидами образуются соли-цинкаты.
Например , оксид цинка взаимодействует с оксидом натрия:
2. Оксид цинка взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—цинкаты, а в растворе – комплексные соли . При этом оксид цинка проявляет кислотные свойства.
Например , оксид цинка взаимодействует с гидроксидом натрия в расплаве с образованием цинката натрия и воды:
Оксид цинка растворяется в избытке раствора щелочи с образованием тетрагидроксоцинката:
3. Оксид цинка не взаимодействует с водой.
ZnO + H2O ≠
4. Оксид цинка взаимодействует с кислотными оксидами . При этом образуются соли цинка. В этих реакциях оксид цинка проявляет основные свойства.
Например , оксид цинка взаимодействует с оксидом серы (VI) с образованием сульфата цинка:
5. Оксид цинка взаимодействует с растворимыми кислотами с образованием солей.
Например , оксид цинка реагирует с соляной кислотой:
ZnO + 2HCl = ZnCl2 + H2O
6. Оксид цинка проявляет слабые окислительные свойства .
Например , оксид цинка при нагревании реагирует с углеродом и угарным газом:
ZnO + С(кокс) → Zn + СО
ZnO + СО → Zn + СО2
7. Оксид цинка — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.
Например , из карбоната бария:
Гидроксид цинка
1. Гидроксид цинка можно получить пропусканием углекислого газа, сернистого газа или сероводорода через раствор тетрагидроксоцинката натрия:
Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить исходное вещество Na2[Zn(OH)4] на составные части: NaOH и Zn(OH)2. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Zn(OH)2 не реагирует с СО2, то мы записываем справа Zn(OH)2 без изменения.
2. Гидроксид цинка можно получить действием недостатка щелочи на избыток соли цинка.
Например , хлорид цинка реагирует с недостатком гидроксида калия с образованием гидроксида цинка и хлорида калия:
1. Гидроксид цинка реагирует с растворимыми кислотами .
Например , гидроксид цинка взаимодействует с азотной кислотой с образованием нитрата цинка:
2. Гидроксид цинка взаимодействует с кислотными оксидами .
Например , гидроксид цинка взаимодействует с оксидом серы (VI) с образованием сульфата цинка:
3. Гидроксид цинка взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—цинкаты, а в растворе – комплексные соли . При этом гидроксид цинка проявляет кислотные свойства.
Например , гидроксид цинка взаимодействует с гидроксидом калия в расплаве с образованием цинката калия и воды:
Гидроксид цинка растворяется в избытке щелочи с образованием тетрагидроксоцинката:
4. Г идроксид цинка разлагается при нагревании :
Соли цинка
Нитрат и сульфат цинка
Z nS + 4NaOH + Br2 = Na2[Zn(OH)4] + S + 2NaBr
ZnSО4 • 7Н2О М.м. 287,56г/моль
В природе цинк встречается в виде минералов галлия ZnСО3 и цинковой обманки ZnS. Цинк найден в мышечной, зубной нервной ткани организма человека. Применение соединений цинка в медицине основано на том, что цинк, как и некоторые другие тяжелые металлы, дает соединения с белками — альбуминаты, растворимые альбуминаты оказывают действие от слабо вяжущего до резко прижигающего. Нерастворимые альбуминаты обычно образуют пленку на тканевой поверхности и такиv образом способствуют заживлению ткани (подсушивающее действие).
Соединения цинка в больших дозах токсичны, при местном применении они могут быть использованы в качестве вяжущих и прижигающих средств, при введении внутрь соединения цинка вызывают рвоту.
Получение
Цинка сульфат получают растворением очищенного от примесей металлического цинка и разведенной серной кислоте:
Из раствора кристаллизуют гептагидрат цинка сульфата (ZnSO4 •7H2O) при температуре 39-41 °С.
Свойства
Бесцветные прозрачные кристаллы или мелкокристаллический порошок без запаха, имеющий вяжущий металлический вкус. Выветривается на воздухе, а при 280°С полностью теряет кристаллизационную воду. Очень легко растворим в воде, медленно в глицерине. Его водные растворы имеют кислую реакцию среды, практически нерастворим в этаноле.
Химические свойства
Соединения цинка проявляют амфотерные свойства. При растворении цинка оксида в минеральных кислотах образует соли: сульфаты в серной кислоте, хлориды в хлористоводородной, нитраты в азотной:
ZnO + 2HCl →ZnCl2 + H2O
При растворении оксида цинка в избытке растворов гидроксидов щелочных металлов образуются растворимые в воде гидроксокомплексы:
При растворении в избытке аммиака образуется растворимая комплексная соль:
Подлинность.
Катион цинка доказывают официальными реакциями:
1. С натрия сульфидом по образованию белого осадка сульфида цинка, нерастворимого в уксусной кислоте, растворимого в минеральных кислотах:
2. С гексацианоферратом (II) калия по образованию белого гелеобразного осадка комплексной соли, нерастворимого в кислотах, растворимого в растворах щелочей:
3. Специфичной (не официальной) реакцией на цинк во всех его соединениях является реакция образования зелени Ринмана. Окись цинка прокаливается с нитратом кобальта, при этом получается характерное зеленое окрашивание — зелень Ринмана
4. Сульфат-ион в цинка сульфате доказывают с бария хлоридом по образованию белого осадка бария сульфата, нерастворимого в кислотах и растворах щелочей:
Испытание на чистоту.
1. Устанавливают допустимые общие примеси: хлориды, мышьяк (с помощью эталонных растворов)
2. Недопустимые общие примеси
Ø железо, медь и алюминий обнаруживают по реакции с раствором аммиака (исследуемый раствор должен быть прозрачным и бесцветным);
Ø магний и кальций - по реакции с натрия гидрофосфатом (раствор должен остаться без изменений);
Ø нитриты - по реакции с дифениламином (на границе слоев не должно появляться голубое окрашивание);
Ø карбонаты - по реакции с кислотой хлористоводородной разведенной (не должно наблюдаться выделения пузырьков газа; раствор должен быть бесцветным и прозрачным).
3. Контролируют кислотность, визуально, с помощью рН индикаторов (метилового оранжевого или фенолфталеина).
Количественное определении
Трилонометрическим методом (по иону цинка), который основан на образовании прочных, бесцветных, хорошо растворимых комплексов металла с трилоном Б аналогично определению соединений магния и кальция), f = 1.
Хранение.
Препараты цинка хранят в хорошо укупоренной таре, цинка сульфат на воздухе теряет кристаллизационную воду. По списку Б.
Применение.
Цинка сульфат применяют в глазной практике при конъюнктивитах (0,1- 0,5% растворы), при ларингите (0,25-0,5% растворы для смазывания или пульверизации), внутрь для профилактики гипоцинкемии и рвотного средства.
Форма выпуска:
Субстанция, глазные капли в стеклянных флаконах и полиэтиленовых тюбиках-капельницах, мази, пасты, линименты.
Цинк и его характеристики
Цинк – тридцатый элемент Периодической таблицы. Обозначение – Zn от латинского «zincum». Расположен в четвертом периоде, IIB группе. Относится к металлам. Заряд ядра равен 30.
Главные природные соединения цинка, из которых его добывают, — минералы галмей ZnCO3 и цинковая обманка ZnS. Общее содержание цинка в земной коре составляет приблизительно 0,01% (масс.).
Цинк – голубовато-серебристый металл (рис. 1). При комнатной температуре он довольно хрупок, но при 100-150 o С он хорошо гнется и прокатывается в листы. При нагревании выше 200 o С цинк становится очень хрупким. На воздухе он покрывается тонким слоем оксида или основного карбоната, предохраняющим его от дальнейшего окисления. Вода почти не действует на цинк.
Рис. 1. Цинк. Внешний вид.
Атомная и молекулярная масса цинка
Относительной молекулярная масса вещества (Mr) – это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (Ar) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.
Поскольку в свободном состоянии цинк существует в виде одноатомных молекул Zn, значения его атомной и молекулярной масс совпадают. Они равны 65,38.
Изотопы цинка
Известно, что в природе хром может находиться в виде пяти стабильных изотопов 64 Zn, 66 Zn, 67 Zn, 68 Zn и 70 Zn. Их массовые числа равны 64, 66, 67, 68 и 70 соответственно. Ядро атома изотопа цинка 64 Zn содержит тридцать протонов и тридцать четыре нейтрона, а остальные изотопы отличаются от него только числом нейтронов.
Существуют искусственные нестабильные изотопы цинка с массовыми числами от 54-х до 83-х, а также десять изомерных состояний ядер, среди которых наиболее долгоживущим изотопом является 65 Zn с периодом полураспада равным 243,66 суток.
Ионы цинка
На внешнем энергетическом уровне атома цинка имеется два электрона, которые являются валентными:
1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 .
В результате химического взаимодействия цинк отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:
Молекула и атом цинка
В свободном состоянии цинк существует в виде одноатомных молекул Zn. Приведем некоторые свойства, характеризующие атом и молекулу цинка:
Энергия ионизации атома, эВ
Радиус атома, нм
Сплавы цинка
Широкое промышленное значение имеют сплавы цинка с алюминием, медью и магнием. С медью цинк образует важную группу сплавов – латуни. Латуни содержат до 45% цинка. Различают простые и специальные латуни. В состав последних входят другие элементы, например железо, алюминий, олово, кремний.
Примеры решения задач
Задание | Технический цинк массой 0,33 г обработали разбавленным раствором серной кислоты. Выделившийся водород занимает при нормальных условиях объем 112 мл. Рассчитайте массовую долю цинка в техническом металле. |
Решение | Запишем уравнение реакции взаимодействия цинка с разбавленной серной кислотой: |
Найдем количество моль выделившегося в ходе реакции водорода:
n (H2) = 112×10 -3 / 22,4 = 0,005 моль.
Согласно уравнению реакции n (H2):n (Zn) = 1:1, т.е. n (H2) = n (Zn) =0,005 моль. Тогда, масса чистого цинка (без примесей) будет равна (молярная масса – 65 г/моль):
mpure (Zn) = n (Zn) × M (Zn);
mpure (Zn)= 0,005 × 65 = 0,325 г.
Массовая доля цинка в техническом металле рассчитывается как:
ω(Zn) = 0,325/ 0,33 × 100%;
Задание | Рассчитайте массу цинка, который нужно растворить в соляной кислоте, чтобы получить водород, необходимый для восстановления оксида меди (II) массой 20 г до металла. |
Решение | Запишем уравнения реакций, которые протекают согласно условию задачи: |
Рассчитаем количество вещества оксида меди (II) (молярная масса – 80 г/моль):
n (CuO) = m (CuO) / M (CuO);
n (CuO) = 20 / 80 = 0,25 моль.
Согласно уравнению (2) n (CuO):n (H2) = 1:1, т.е. n (CuO) = n (H2) =0,25 моль. Тогда, число моль цинка вступившего в реакцию взаимодействия с соляной кислотой будет равно 0,25 моль, поскольку n (Zn):n (H2) = 1:1, т.е. n (Zn) = n (H2).
Читайте также: