К простым веществам относятся металлы

Обновлено: 21.01.2025

Название «щелочные металлы» произошло от их способности в реакциях с водой образовывать щелочи — основания, растворимые в воде. Слово «выщелачивать» славянского происхождения. В переводе оно означает «растворять».

Щелочными называют металлы IA группы таблицы Менделеева. Их шесть: литий, натрий, рубидий, калий, цезий, франций. По внешнему виду они представляют собой металлы серебристо-белого цвета, за исключением цезия — он золотисто-желтый. Основные физические свойства простых веществ:

  • пластичность;
  • мягкость;
  • невысокая плотность;
  • высокая химическая активность;
  • легкая окисляемость;
  • электропроводность;
  • теплопроводность;
  • легкоплавкость.

В связи со способностью быстро окисляться, т.е. вступать в реакцию с кислородом и другими веществами, в природе они встречаются в форме соединений.

Соли щелочных металлов окрашивают пламя спиртовки в различные цвета:

В отличие от этих двух представителей, литий, рубидий, цезий не встречаются в природе часто. Следовательно, они относятся к группе редких металлов. Франций — искусственно полученный элемент, отличающийся радиоактивностью.

Калий и натрий являются участниками водно-солевого, а также кислотно-щелочного баланса организма человека. Эти элементы важны для циркуляторных процессов крови, деятельности энзимов. Для жизнедеятельности растений особенно важен калий.

Щелочные металлы имеют валентность, равную единице (степень окисления +1).

Поскольку данная группа элементов в системе Менделеева следует непосредственно за инертными газами, у атомов щелочных металлов появляется новый энергетический уровень, на котором содержится один электрон. Электронная конфигурация — ns1.

Поскольку любой атом стремится приобрести конфигурацию инертного газа, атомы щелочных металлов способны легко отдать валентные электроны и проявлять восстановительные свойства. Этот факт свидетельствует о невысоких значениях энергии ионизации их атомов, а также о низких значениях электроотрицательности.

Сверху вниз по группе наблюдается увеличение радиуса атомов, снижение электроотрицательности, увеличение восстановительных свойств простых веществ.

Какие элементы относятся к щелочным металлам

Перечень щелочных металлов:

  • литий — Li;
  • натрий — Na;
  • калий — K;
  • рубидий — Rb;
  • цезий — Zs;
  • франций — Fr.

Они занимают IA группу в Периодической системе Д. И. Менделеева.

Электронная формула, в какую группу входят

Строение атомов щелочных металлов, которые расположены в IA группе, можно свести к таблице следующего вида:

В роли окислителей в таких взаимодействиях участвуют простые и сложные вещества. Это могут быть неметаллы, органические соединения, кислоты, соли, оксиды.

Каждый элемент взаимодействует индивидуально.

Оксид в качестве продукта образовывается только в реакциях лития:

4 L i + O 2 = 2 L i 2 O

В случае с натрием в ходе реакции образуется пероксид, а с калием, рубидием, цезием — надпероксид:

2 N a + O 2 = N a 2 O 2

  1. К реакциям с простыми веществами относится образование галогенидов:

2 N a + C l 2 = 2 N a C l

Рассматривая взаимодействие с H2, S, P, C, Si, необходимо знать, что для протекания данных реакций необходимо нагревание.

Литий реагирует с азотом при комнатной температуре.

  1. Реакции с водой протекают у щелочных металлов по-разному: литий — спокойно, всплывая на поверхность жидкости, натрий реагирует более активно с образованием пламени, калий, цезий и рубидий реагируют со взрывом. В общем виде

2 M + 2 H 2 O = 2 M O H + H 2 (М – металл)

  1. В два этапа протекают реакции с кислотами. Металл сначала вступает в реакцию с водой, а после, в момент образования щелочи, она реагирует с разбавленной кислотой и нейтрализуется. Такие реакции часто протекают со взрывом, поэтому на практике проводятся редко.
  2. В результате реакции с аммиаком образуются амиды:

2 L i + 2 N H 3 = 2 L i N H 2 + H 2

  1. Взаимодействие с этанолом, фенолами, в ходе которого щелочные металлы замещают атомы водорода в гидроксильной группе ОН этих соединений:

2 N a + 2 C 2 H 5 O H = 2 C 2 H 5 O N a + H 2

  1. Щелочные металлы могут использоваться для восстановления других металлов, к примеру, алюминия:

3 N a + A l C l 3 = A l + 3 N a C l

Физические свойства щелочных металлов объясняются металлической связью в кристаллической решетке. Для них характерен металлический блеск, отличная ковкость, пластичность, тепло- и электропроводность.

Самым твердым из всей группы является литий, а самая высокая плотность у цезия. Некоторые физические свойства щелочных металлов в сравнении представлены в следующей таблице:

Из таблицы следует, что все элементы получили свое применение благодаря низким температурам плавления (кипения). Их значения снижаются по мере увеличения порядкового номера в Периодической системе Менделеева.

Все металлы, за исключением лития, настолько мягки, что их можно разрезать ножом или на специальном оборудовании раскатать в лист фольги.

Еще одно свойство, которое имеет практическое значение в промышленности — низкая плотность. Плотность лития, натрия и калия ниже плотности воды.

Указанные физические свойства обусловлены слабой связью электронов внешних слоев с атомами щелочных металлов. Поэтому энергия ионизации атомов невысокая, и они при взаимодействии друг с другом образуют металлическую связь.

В периодической таблице в начале каждого периода стоит элемент с низкой температурой плавления (щелочной металл). По мере увеличения порядковых номеров в периоде слева направо этот показатель сначала увеличивается к середине периода (IV А группа), где расположены элементы, образующие преимущественно атомные кристаллические решетки (C, Si).

Затем в конце периода температуры плавления снова уменьшаются, поскольку в VII-VIII группах расположены элементы, простые вещества которых характеризуются молекулярными кристаллическими решетками (галогены, благородные газы).

Меры предосторожности при работе с ними

Из-за высокой химической активности работа со щелочными металлами должна осуществляться с большой осторожностью. Для их хранения выделяются отдельные емкости, которые запаивают и помещают в них слой вазелинового масла или керосина. Тогда предотвращается взаимодействие с воздухом, в частности с кислородом, и исключается горение.

На каждом предприятии, где осуществляются работы с этими химическими элементами и их соединениями, разрабатываются специальные правила безопасности и меры предосторожности, исключающие наступление аварийных ситуаций и производственных травм.

Все сотрудники перед получением допуска к работе должны пройти обязательный производственный инструктаж, который бывает предварительный (перед началом работы) и периодический (через равные промежутки времени — ежеквартально, ежегодно). Они включают качественное изучение требований нормативных документов по безопасности труда и производственному нормированию.

Сотрудники на своих рабочих местах должны находиться в защитной спецодежде, быть оснащены средствами индивидуальной защиты (для органов зрения, дыхания, кожных покровов).

Поскольку растворы щелочных металлов — щелочи, их воздействие на кожу может привести к ожогам и раздражениям. Щелочи при попадании брызг в глаза могут спровоцировать отторжение ветвей глазного нерва и вызвать полную слепоту.

Выше описана возможность бурной реакции металлов с кислородом вплоть до взрыва. Поэтому рабочие места укомплектовываются средствами пожаротушения, которые периодически проходят технические проверки своей исправности. Щелочные металлы нельзя тушить водой, так как они вступают в реакцию с ней.

Натрий и калий можно тушить аргоном и азотом. Аргон эффективнее, поскольку существенно тяжелее воздуха. Литий продолжает гореть в атмосфере азота и диоксида углерода. Для тушения горящего лития разработаны специальные порошковые составы Вексон-D3 на основе различных флюсов и графита с гидрофобизирующими добавками.

С соблюдением техники безопасности проводится и утилизация отходов после работы. Они подвергаются нейтрализации с применением специальных составов, разрешенных для применения компетентными органами.

Получение простых веществ, где применяются

Чистый натрий можно получать путем электролиза расплава хлорида натрия с графитовыми электродами, обладающими инертностью. Поскольку в таком расплаве имеются ионы Na и Cl, в ходе электролиза на катоде восстанавливаются катионы натрия до металлического натрия, а на аноде — окисляются анионы хлора до газообразного хлора.

Химические свойства металлов


Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Металлы средней активности

Общие химические свойства металлов

Взаимодействие с неметаллами

Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:

оксид образует только литий

натрий образует пероксид

калий, рубидий и цезий — надпероксид

Остальные металлы с кислородом образуют оксиды:

2Zn + O2 = 2ZnO (при нагревании)

Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:

С галогенами металлы образуют галогениды:

Медный порошок реагирует с хлором и бромом (в эфире):

При взаимодействии с водородом образуются гидриды:

Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):

Реакции с фосфором протекают до образования фосфидов (при нагревании):

Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).

Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:

Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:

С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:

Взаимодействие с водой

Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

Неактивные металлы с водой не взаимодействуют.

Взаимодействие с кислотами

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Схема взаимодействия металлов с сернистой кислотой

Схема взаимодействия металлов с азотной кислотой

Металлы IА группы:

Металлы IIА группы

Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Взаимодействие с солями

Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:

Zn + CuSO4 = ZnSO4 + Cu

На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.

Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

Взаимодействие с органическими веществами

Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.

3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Вопросы для самоконтроля

С чем реагируют неактивные металлы?

С чем связаны восстановительные свойства металлов?

Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Таблица «Химические свойства металлов»

Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb

Cu, Hg, Ag, Pt, Au

Восстановительная способность металлов в свободном состоянии

Возрастает справа налево

Взаимодействие металлов с кислородом

Быстро окисляются при обычной температуре

Медленно окисляются при обычной температуре или при нагревании

Взаимодействие с водой

Выделяется водород и образуется гидроксид

При нагревании выделяется водород и образуются оксиды

Водород из воды не вытесняют

Взаимодействие с кислотами

Вытесняют водород из разбавленных кислот (кроме HNO3)

Не вытесняют водород из разбавленных кислот

Реагируют с концентрированными азотной и серной кислотами

С кислотами не реагируют, растворяются в царской водке

Взаимодействие с солями

Не могут вытеснять металлы из солей

Более активные металлы (кроме щелочных и щелочноземельных) вытесняют менее активные из их солей

Взаимодействие с оксидами

Для металлов (при высокой температуре) характерно восстановление неметаллов или менее активных металлов из их оксидов

Простые и сложные вещества


Из этой статьи вы узнаете, какие вещества называются простыми, а какие сложными, в чем их различия и особенности строения.

Прежде чем переходить к понятиям простых и сложных веществ и к их строению, давайте вспомним, что такое химический элемент.

Химический элемент — это группа атомов с одинаковым зарядом ядра, который обусловливает его (элемента) химические свойства.

В зависимости от того, как соединяются друг с другом химические элементы, выделяют два типа веществ: простые и сложные.

Что такое простые вещества

Простые вещества — это вещества, образованные атомами только одного типа химического элемента. Например: H2, Na, P, Al.

Простые вещества делятся на два типа: металлы и неметаллы.

Металлы

Имеют общие между собой физические свойства. Обладают металлическим блеском, высокой тепло- и электропроводностью, твердые (за исключением ртути), пластичные и ковкие.

К простым веществам — металлам относятся: Na, Ca, Fe и т. д.

Почти все металлы имеют немолекулярное строение, т. е. состоят из атомов или ионов.

Неметаллы

Среди неметаллов выделить общие физические свойства практически невозможно. Они могут находиться в разных агрегатных состояниях, обладать различным цветом и т. д.

К простым веществам — неметаллам относятся: P, C, F2 и т. д.

Большинство неметаллов имеют молекулярное строение, т. е. состоят из молекул. При этом молекулы могут быть:

одноатомные: He, Si, Ar и другие;

двухатомные: F2, O2, H2, N2, Cl2, Br2, I2. Эти простые вещества всегда пишутся с индексом 2, их необходимо запомнить;

трехатомные — например, молекула озона O3;

и другие многоатомные.

Некоторые неметаллы имеют немолекулярное (атомное) строение: красный фосфор, кремний, алмаз и графит.

Металлы и неметаллы сильно отличаются друг от друга физическими и химическими свойствами.

При этом запоминать, к какому типу относится то или иное вещество, не нужно, достаточно посмотреть в таблицу Менделеева:

Проведите диагональ от 5-го до 85-го номера химических элементов.

Все химические элементы, находящиеся ниже и левее проведенной диагонали, образуют простые вещества — металлы (кроме водорода).

Выше диагонали химические элементы, находящиеся в главных подгруппах, образуют простые вещества — неметаллы, а в побочных — металлы.

Например, фосфор (порядковый номер — 15) расположен в таблице Менделеева выше диагонали и в главной подгруппе V группы. Значит, простое вещество фосфор — неметалл.

В большинстве случаев названия химического элемента и простого вещества совпадают. Поэтому необходимо научиться различать характеристики простого вещества и химического элемента.

Характеристика химического элемента

Характеристика простого вещества

Расположение в периодической системе (атомный номер, номер группы или периода)

Относительная атомная масса

Строение атома (число электронов, протонов или нейтронов, количество заполненных энергетических уровней)

Распространенность в природе

Содержание в соединении (например, в растительных белках или аминокислотах)

Значения электроотрицательности, сродства к электрону, энергии ионизации

Как правило, когда мы характеризуем простое вещество, то говорим о его физических или химических свойствах:

Влияние на живой организм

Температуры кипения и плавления

Взаимодействие с другими веществами

Содержание в каких-либо смесях веществ (например, газов)

Аллотропия

Аллотропия — это возможность образования химическим элементом нескольких простых веществ, которые отличаются друг от друга строением и свойствами.

Образующиеся простые вещества называют аллотропными модификациями.

Аллотропия характерна для следующих химических элементов:

углерод (алмаз, графит, графен, углеродные нанотрубки, фуллерен и другие);

фосфор (красный, белый и черный);

кислород (кислород и озон);

кремний (аморфный и кристаллический);

Рассмотрим две аллотропные модификации углерода:

Алмаз — аллотропная модификация углерода
Графит — аллотропная модификация углерода

The image 1 is a derivative of "Crystal" by manfredxy on Envato Elements.

The image 2 is a derivative of "Rough Graphite rock" by vvoennyy on Envato Elements.

Алмаз — бесцветное прозрачное вещество. Является одним из самых твердых веществ. Не проводит электрический ток.

Графит представляет собой вещество серо-черного цвета, обладает металлическим блеском. Имеет высокую тепло- и электропроводность.

Что такое сложные вещества

Сложные вещества — это вещества, образованные атомами нескольких химических элементов.

Например, молекула HNO3 состоит из одного атома водорода, одного атома азота и трех атомов кислорода.

К сложным веществам в химии относятся две большие группы веществ: неорганические и органические.

Неорганические вещества

Неорганические вещества делятся на 4 вида:

Оксиды — вещества, молекулы которых состоят из двух химических элементов, один из которых — кислород в степени окисления −2.

Основания — вещества, молекулы которых состоят из катиона металла и гидроксильной группы (—OH).

Кислоты — вещества, молекулы которых состоят из катиона водорода (H+), способного замещаться атомом металла, и кислотного остатка.

Соли — вещества, состоящие из катиона металла и кислотного остатка.

Кратко о классификации веществ можно узнать из схемы:

Классификация химических веществ

Номенклатура неорганических веществ

Названия простых веществ чаще всего совпадают с названием химического элемента, а для сложных веществ существует два вида номенклатуры: тривиальная и систематическая.

В тривиальной номенклатуре вещества названы в соответствии с их особенностями, например специфическим запахом или окраской.

В систематической номенклатуре название зависит от вида неорганического вещества.

Оксиды

Названия оксидов

Примеры названий оксидов:

Fe2O3 — оксид железа (III). Читается: феррум два о три;

Na2O — оксид натрия. Читается: натрий два о.

Основания

Примеры названий гидроксидов:

Fe(OH)3 — гидроксид железа (III). Читается: феррум о аш трижды;

NaOH — гидроксид натрия. Читается: натрий о аш.

Соли

Примеры названий солей:

KNO3 — нитрат калия. Читается: калий эн о три;

AlCl3 — хлорид алюминия. Читается: алюминий хлор три.

Кислоты

Названия кислот, кислотных остатков и их формулы необходимо выучить, они приведены в таблице ниже.

Виды простых и сложных веществ

В неорганической химии вещества по составу делятся на простые и сложные.

  • состоят из атомов одного химического элемента: сера S, углерод С, железо Fe, серебро Ag;
  • подразделяют на металлы и неметаллы (включая благородные газы).

Сложные вещества — соединения:

  • состоят из атомов двух или более химических элементов: N a 2 O , H C l , C u S O 4 ;
  • подразделяют на: оксиды, основания, кислоты и соли.

Классификация простых веществ

1. Простые вещества условно делят на две группы: металлы и неметаллы.

Неметаллы в Периодической системе — это все элементы VIII А-группы (благородные газы) и VII А-группы (галогены), элементы VI А-группы (кроме полония), элементы V А-группы: азот, фосфор, мышьяк; углерод, кремний (IV А-группа); бор (III А-группа), а также водород. Остальные элементы относят к металлам.

Отличия свойств металлов и неметаллов приведены в таблице 1:

  • газообразные: водород H 2 , азот N 2 , фтор F 2 ;
  • жидкие: только бром B r 2 ;
  • твёрдые: кремний Si, бор B, мышьяк As.

Амфотерные элементы находятся в А-группах Периодической системы: бериллий Be, алюминий Al, галлий Ga, германий Ge, олово Sn, свинец Pb, сурьма Sb, висмут Bi, полоний Po и др., а также большинство элементов Б-групп: хром Cr, марганец Mn, железо Fe, цинк Zn, кадмий Cd, золото Au и др., проявляют и металлические (оснóвные для соединений), и неметаллические (кислотные для соединений) свойства.

Благородные (инертные) газы (VIII А-группа Периодической системы): гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe и радиоактивный радон Rn:

  • обнаруживаются в воздухе, в малых количествах — в воде, горных породах, природных газах;
  • не имеют цвета, вкуса и запаха;
  • крайне химически инертны;
  • используются в источниках света для создания освещения различных цветов (Ne — огненно-красный, Xe— синевато-серый, тусклый, Ar — фиолетово-голубой и др).

2. Сложные соединения и их отличия от простых веществ.

Сложные вещества бывают органические, в основе которых лежит углерод, и неорганические (безуглеродные и некоторые углеродсодержащие соединения: карбиды, карбонаты, оксиды углерода и другие). Неорганические чаще всего подразделяют на оксиды, основания, кислоты и соли.

Главные отличия сложных неорганических веществ:

  1. Свойства элементов, входящих в соединение, не сохраняются. Например, металл кальций Ca и неметалл хлор C l 2 . Каждому из этих простых веществ присущи свои характеристики. А соль C a C l 2 имеет новые, отличные от характеристик простых веществ, свойства, сходные со свойствами класса солей.
  2. В ходе химических реакций сложное вещество может быть получено или разложено на составные части.
  3. Количественный состав сложного соединения всегда одинаков, независимо от места нахождения и способа получения (для веществ молекулярного состава).

Классификация неорганических соединений и их основные свойства приведены в таблице 2.

  • газы: N O , C O 2
  • жидкости: H 2 O
  • твёрдые: C u O , S i O 2
  • газы: H 2 S , H C l
  • жидкости: H N O 3 , H 2 S O 4
  • твёрдые: H 3 P O 4 , H 3 B O 3
  • оксиды металлов (оснóвные): K 2 O , CaO;
  • оксиды неметаллов (кислотные): N 2 O 5 , S O 3 ;
  • амфотерные: ZnO, A l 2 O 3 .
  • оснóвные: LiOH, C a ( O H ) 2 ;
  • амфотерные: B e ( O H ) 2 , C r ( O H ) 3 .
  • кислородсодержащие: H 2 S O 4 , H N O 3 ;
  • бескислородные: H J , H 2 S .
  • средние: N a 3 ( P O 4 ) 2 , C a C l 2 ;
  • кислые: K H C O 3 , N a 2 H P O 4 ;
  • оснóвные: Mg(OH)Cl, C u 2 ( O H ) 2 C O 3 ;
  • комплексные: K 2 [ B e ( C O 3 ) 2 ] .

Классы и номенклатура неорганических веществ

Номенклатура — способ называния веществ.

Химическая формула — представление состава вещества с использованием символов химических элементов, числовых индексов и других знаков. Химическое название определяется составом вещества и изображается с помощью слова или группы слов. Названия строятся по номенклатурным правилам, с использованием русских названий элементов, кроме случаев, когда традиционно употребляются латинские корни (таблица 3):

Ag — аргентC — карб, карбонH — гидр, гидрогенN — нитрPb — плюмб, Si — сил, силик, силиц
As — арс, арсенCu — купрHg — меркурNi — никкол S — сульфSn -станн
Au — аурFe — феррMn — манганO — окс, оксиген Sb — стиб
Например, оксид натрия N a 2 O , карбонат кальция C a C O 3 , перманганат калия K M n O 4

  1. Названия простых веществ чаще всего совпадают с русскими названиями соответствующих химических элементов. По необходимости к ним добавляется числовая греческая приставка: моно — 1, ди (латинский) — 2, три — 3, тетра — 4, пента — 5, гекса — 6, гепта — 7, окта — 8, нона (латинский) — 9, дека — 10. Например, (моно) кальций Ca, (моно) медь Cu, дикислород O 2 , трикислород O 3 , тетрафосфор P 4 . Исключение: аллотропные модификации: углерода С — графит, сажа, алмаз; кислорода — озон O3.
  2. Названия сложных веществ составляют по химической формуле справа налево. Для каждого класса веществ существуют свои правила составления формул и названий:
  • формула оксидов: ЭnOm, где n и m — числовые индексы, определяющиеся степенями окисления элементов. Например,

Li+1 и O-2→ L i 2 O ; Al+3 и O-2→ A l 2 O 3 ; N+5 и O-2→ N 2 O 5 .

Название оксида: слово «оксид» в именительном падеже + название элемента Э в родительном падеже: оксид лития L i 2 O , оксид алюминия A l 2 O 3 .

Если элемент образует несколько оксидов, то в конце добавляют степень окисления римскими цифрами, заключая их в скобки:

  • P 2 O 5 — пентаоксид (ди)фосфора или оксид фосфора (V), читается: «оксид фосфора пять»;
  • F e 2 O 3 — триоксид (ди)железа или оксид железа (III), читается: «оксид железа три».

Оксиды, которым соответствуют кислоты, также называют ангидридами: серный ангидрид S O 3 , азотный ангидрид N 2 O 5 и др.

  • формула оснований: Me+n(OH-)n, где нижний индекс n — количество гидроксид-анионов OH-.

K+1 и OH- → KOH, Mg+2 и OH- → M g ( O H ) 2 .

Название: слово «гидроксид» в именительном падеже + название элемента в родительном падеже: гидроксид калия, гидроксид магния.

Если элемент образует несколько гидроксидов, то в конце добавляют степень окисления римскими цифрами, заключая их в скобки:

F e ( O H ) 2 — гидроксид железа (II), C r ( O H ) 3 — гидроксид хрома (III).

  • формула кислот HnК, где K — кислотный остаток.

Названия бескислородных кислот: корень русского названия элемента, образующего кислоту + суффикс «о» + «-водородная кислота», например: HBr — бромоводородная кислота, HCl — хлороводородная кислота, H 2 S — сероводородная кислота.

Названия кислородсодержащих кислот: русское название образующего элемента + «кислота», с учетом правил:

  1. Если элемент находится в высшей степени окисления, то окончание будет «-ная» или «-овая»: H 2 S O 4 — серная кислота, H 3 A s O 4 — мышьяковая кислота. Окончание меняется с понижением степени окисления в последовательности: «-оватая» ( H C l O 3 — хлорноватая кислота), «-истая» ( H C l O 2 — хлористая кислота), «-оватистая» (HClO— хлорноватистая кислота).
  2. Если оксиду соответствует не одна кислота, то к названию кислоты с минимальным числом атомов кислорода, добавляется приставка «мета», а к названию кислоты с максимальным числом атомов кислорода — «орто», например, H P O 3 — метафосфорная кислота, H 3 P O 4 — ортофосфорная кислота.

Названия наиболее распространенных кислот и их остатков приведены в таблице 4:

Формула и название кислотыНазвание кислотного остатка, образующего соль
H A l O 2 метаалюминиеваяметаалюминат
H 3 A l O 3 ортоалюминиеваяортоалюминат
H A s O 3 метамышьяковая метаарсенат
H 3 A s O 4 ортомышьяковаяортоарсенат
H 3 B O 3 ортоборнаяортоборат
HBr бромоводороднаябромид
HBrO бромноватистаягипобромит
H B r O 3 бромноватаябромат
HCN циановодороднаяцианид
H 2 C O 3 угольная карбонат
HCl хлороводороднаяхлорид
HClO хлорноватистаягипохлорит
H C l O 2 хлористаяхлорит
H C l O 3 хлорноватаяхлорат
H C l O 4 хлорнаяперхлорат
HF фтороводороднаяфторид
HJ йодоводороднаяйодид
H M n O 4 марганцоваяперманганат
H N O 2 азотистаянитрит
H N O 3 азотнаянитрат
H P O 3 метафосфорнаяметафосфат
H 3 P O 4 ортофосфорная ортофосфат
H 2 S сероводородная сульфид
H 2 S O 3 сернистаясульфит
H 2 S O 4 сернаясульфат
H 2 S i O 3 метакремниеваяметасиликат
H 3 S i O 4 ортокремниеваяортосиликат

Название образуется в зависимости от типа соли.

  1. Средние соли — наименование кислотного остатка в именительном падеже + наименование катиона в родительном падеже, если необходимо, добавляется степень окисления: хлорид натрия NaCl, сульфат меди (II) C u S O 4 и т.д.
  2. Кислые (только для многоосновных кислот) — приставка «гидро», при необходимости добавляется числовое значение (ди—, три—, тетра— и т.д.) + название кислотного остатка + название катиона: гидрокарбонат натрия N a H C O 3 , дигидроортофосфат бария B a ( H 2 P O 4 ) 2 .
  3. Оснóвные — приставка «гидроксо» с числовым значением, если необходимо + название кислотного остатка + название катиона: гидроксохлорид магния MgOHCl, дигидроксохлорид железа (III) F e ( O H ) 2 C l .
  4. Двойные — анион в именительном падеже + катионы через дефис в родительном падеже: ортофосфат аммония—магния N H 4 M g P O 4 метасиликат алюминия—лития L i A l ( S i O 3 ) 2 .
  5. Смешанные — название анионов через дефис в именительном падеже + название катиона в родительном падеже: хлорид-гипохлорит кальция Ca(ClO)Cl; нитрат-йодат натрия N a 2 I O 3 ( N O 3 ) .
  6. Комплексные — название катиона в именительном падеже + название аниона в родительном падеже: хлорид диамминсеребра (I) [ A g ( N H 3 ) 2 ] C l ; тетрагидроксоалюминат натрия N a [ A l ( O H ) 4 ] .
  • номенклатура бинарных соединений.

Бинарные соединения — сложные вещества, состоящие из двух элементов. В таких соединениях встречается два типа химической связи: ковалентная полярная (для неметаллов и некоторых амфотерных элементов) или ионная (для солей бескислородных кислот).

Названия строятся по схеме: к корню более электроотрицательного элемента добавляется окончание -ид (оксид, гидрид, карбид и т.д.) в именительном падеже + название второго элемента в родительном падеже, при необходимости добавляется числовое значение степени окисления: C S 2 — дисульфид углерода или сульфид углерода (IV), M n F 4 — тетрафторид марганца или фторид марганца (IV).

Для некоторых есть тривиальные названия: N H 3 — аммиак, S i Н 4 — силан, P H 3 — фосфин и др.

Строение и химические свойства

Простые вещества состоят из атомов одного химического элемента:

  • одноатомные: благородные газы — гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe и радон Rn;
  • двухатомные: водород H 2 , кислород O 2 , азот N 2 и галогены: хлор C l 2 , йод J 2 , бром B r 2 ;
  • трех и более атомные: озон O 3 , белый фосфор P 4 , кристаллическая (ромбическая и моноклинная) сера S 8 .

Порядок соединения атомов при образовании из них веществ обусловливает особенности строения веществ. Различают вещества молекулярного и немолекулярного строения. Немолекулярное строение имеют все металлы и большинство их соединений, графит, красный фосфор, алмаз, кремний Si и др. Большинство неметаллов и их соединений состоят из молекул, т. е. имеют молекулярное строение.

Химические свойства металлов и неметаллов

1. Химические свойства металлов определяются способностью отдавать свободные электроны с внешнего уровня. Они являются восстановителями. Взаимодействие идет с:

  • неметаллами:
  • +кислород O 2 (кроме золота и металлов группы платины) → оксиды: 2 C a + O 2 → 2 C a O ;
  • +галогены ( F 2 , C l 2 , B r 2 ) → галогениды (фторид, хлорид, бромид и т.д.): C u + B r 2 → C u B 2 ;
  • +азот, фосфор, сера, водород → нитриды, фосфиды, сульфиды, гидриды: 3 C a + N 2 → C a 3 N 2 .
  • водой (только щелочные и щелочно-земельные металлы) → гидроксиды: 2 N a + 2 H 2 O → 2 N a O H + H 2 ↑ ;
  • кислотами (металлы, стоящие в ряду активности до водорода) → соль: M g + 2 H C l → M g C l 2 + H 2 ↑ ;
  • растворами солей менее активных металлов: F e + C u S O 4 → F e S O 4 + C u , при следующих условиях:
  • соли, вступающие в реакцию и получающиеся в ходе нее, должны быть растворимы;
  • металл вытесняет из соли другой металл, если находится левее в ряду активности;
  • щелочные и щелочно-земельные металлы в данном случае будут вступать в реакцию с водой, а не с солью.
  • оксидами (более активный металл вытесняет менее активный): F e 2 O 3 + 2 A l → A l 2 O 3 + 2 F e .

2. Химические свойства неметаллов обусловлены свободными электронами (от 3 до 7) на внешнем электронном уровне.

  • окислительные свойства наиболее характерны (стремятся присоединять электроны) в реакциях с:
  • металлами: O 2 + 2 M g → 2 M g O ; S + 2 N a → N a 2 S ;
  • неметаллами:
  • кислород O 2 (из галогенов реагирует только фтор): S + O 2 → S O 2 ;
  • водород H 2 (кроме кремния, фосфора и бора) : С + 2 H 2 → C 4 ;
  • неметалл c меньшей электроотрицательностью: 3 S + 2 P → P 2 S 3 (нагревание без доступа воздуха, сера — окислитель);
  • солями (вытесняют менее активные неметаллы): C l 2 + 2 N a B r → 2 N a C l + B r 2 .
  • восстановительные свойства (исключение: фтор F — всегда окислитель) в некоторых реакциях с:
  • неметаллами, электроотрицательность которых ниже: C + O 2 → C O 2 (углерод — восстановитель);
  • сложными веществами — окислителями ( C u O , H N O 3 ) : S + 6 H N O 3 → H 2 S O 4 + 6 N O 2 ↑ + 2 H 2 O .
  • и окислительные, и восстановительные свойства проявляют хлор, сера, фосфор, йод и бром в реакциях диспропорционирования:
  • C l 2 0 + H 2 O → H C l - 1 + H C l + 1 O ;
  • 3 S 0 + 6 N a O H → 2 N a 2 S - 2 + N a 2 S + 6 O 3 + 3 H 2 O .

Химические свойства благородных газов

  • плохо растворяются в воде и вступают в реакции с другими веществами только в специально созданных условиях;
  • не горят; вытесняют кислород из воздуха, снижая его содержание до критически низких показателей, приводящих к смерти.

Строение и основные химические свойства сложных веществ

Сложные соединения имеют ионную или ковалентную связь между атомами.

  • оснóвные + кислоты → соли: C a O + 2 H C l → C a C l 2 + H 2 O ;
  • кислотные + основания → соли: S O 3 + 2 N a O H → N a 2 S O 4 + H 2 O ;
  • амфотерные реагируют и с кислотами, и с основаниями → соли:

Z n O + H 2 S O 4 → Z n S O 4 + H 2 О ,

Z n O + 2 N a O H + H 2 O → N a 2 [ Z n ( O H ) 4 ] .

Все основания реагируют с кислотами (реакция нейтрализации):

  • K O H + 2 H C l → K C l + H 2 O ;
  • 2 F e ( O H ) 3 + 3 H 2 S O 4 → F e 2 ( S O 4 ) 3 + 6 H 2 O .

1. Щелочи взаимодействуют с:

  • неметаллами: 6 K O H + 3 S → K 2 S O 3 + 2 K 2 S + 3 H 2 O ;
  • кислотными оксидами: 2 N a O H + N O 2 → N a N O 2 + N a N O 3 + H 2 O .

2. Нерастворимые основания разлагаются при нагревании: C u ( O H ) 2 → C u O + H 2 O .

  • + основания (реакция нейтрализации): 2 F e ( O H ) 3 + 3 H 2 S O 4 → F e 2 ( S O 4 ) 3 + 6 H 2 O ;
  • + металлы, стоящие левее водорода в ряду активности: M g + 2 H C l → M g C l 2 + H 2 ↑ ;
  • + основные и амфотерные оксиды: C a O + H 2 S O 4 → C a S O 4 + H 2 O ; Z n O + H 2 S O 4 → Z n S O 4 + H 2 O ;
  • + соли: B a C l 2 + H 2 S O 4 → B a S O 4 + 2 H C l .
  • + кислоты (сильные): N a 2 S i O 3 + 2 H C l → H 2 S i O 3 ↓ + 2 N a C l ;
  • + щёлочи, если образуется нерастворимое основание: F e C l 3 + 3 N a O H → F e ( O H ) 3 ↓ + 3 N a C l ;
  • + металлы: Z n + P b ( N O 3 ) 2 → P b ↓ + Z n ( N O 3 ) 2 ;
  • + соли при условии необратимости реакции: N a 2 C O 3 + C a ( N O 3 ) 2 → C a C O 3 ↓ + 2 N a N O 3 .

Также о химических свойствах неорганических соединений можно почитать в статье «Классы неорганических соединений».

Урок 3. Молекулы и простые вещества

В уроке 3 «Молекулы и простые вещества» из курса «Химия для чайников» рассмотрим, что такое молекулы, простые вещества, а также металлы и неметаллы. Напоминаю, что в прошлом уроке «Относительная атомная масса химических элементов» мы рассмотрели разные способы выражения массы химических элементов.


Атомы химических элементов существуют в природе как в свободном, так и в связанном состоянии. Например, благородные газы — гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe — находятся в воздухе в виде одиночных атомов. Атомы всех остальных элементов в природе не существуют изолированно друг от друга. Они всегда стремятся соединиться, связаться с другими атомами за счет особых сил. Почему? Так они достигают более устойчивого состояния. Это одна из иллюстраций всеобщего принципа природы — стремления к максимально устойчивому состоянию.

Что такое молекула?

Из курса физики вы уже немного знаете о молекулах — частицах вещества, состоящих обычно из двух и более атомов. Что же такое молекула?

Молекула — наименьшая частица вещества, способная существовать самостоятельно и сохраняющая его химические свойства.

Модели молекул кислорода, водорода и азота

Молекулы благородных газов одноатомны, а молекулы таких веществ, как кислород, водород, азот, хлор, бром, состоят из двух атомов (рис. 34). Молекула фосфора содержит четыре атома, а серы — восемь (рис. 35).

Простые вещества

Если вещества состоят из атомов одного вида, то они относятся к простым веществам.

Простыми называются вещества, которые образованы атомами одного химического элемента.

Простые вещества — одна из форм существования химических элементов в природе. Простые вещества, состоящие из молекул, относятся к веществам молекулярного строения. При обычных условиях среди них есть газы (водород, кислород, азот, фтор, хлор, благородные газы), жидкости (бром) и твердые вещества (сера, иод, фосфор).

Элемент кислород существует в виде двух простых веществ молекулярного строения: одно из них (просто кислород) состоит из двухатомных молекул, а второе (озон) — из трехатомных.

Простые вещества немолекулярного строения

Связываясь друг с другом, атомы образуют не только молекулы. Гораздо больше простых веществ, которые имеют немолекулярное строение. Они обычно представляют собой твердые кристаллические вещества, построенные из атомов, например кристаллы алмаза, графита, меди, железа (рис. 36).

Металлы и неметаллы

Простые вещества по их свойствам делят на металлы и неметаллы.

Все металлы при комнатной температуре являются твердыми веществами (за исключением ртути), которые проводят электрический ток и теплоту, имеют характерный металлический блеск. Многие из металлов пластичны, т. е. меняют свою форму при механическом воздействии. Благодаря этому свойству металлы можно ковать, расплющивать, вытягивать в проволоку.

Большинство простых веществ — металлы, и все они имеют немолекулярное строение.

Твердые простые вещества


Хотя простых веществ неметаллов гораздо меньше, по своим свойствам они различаются между собой значительно сильнее, чем металлы. Почти все они плохо проводят электрический ток и теплоту. Многие из неметаллов при обычных условиях являются хрупкими твердыми веществами (рис. 37), другие — газами (рис. 38), а бром — жидкостью (рис. 39). Большинство неметаллов существует в виде молекул, но некоторые имеют немолекулярное строение, например бор, углерод, кремний.

Алмаз и графит — это простые вещества, состоящие из атомов одного и того же химического элемента — углерода. Хотя они оба имеют немолекулярное строение, свойства этих веществ сильно отличаются: алмаз — прозрачное, самое твердое в природе вещество, а графит — темно-серое, непрозрачное, мягкое вещество (рис. 40). Их свойства различны потому, что различно строение их кристаллов, хотя состоят эти кристаллы из одних и тех же атомов — атомов углерода.

Простые вещества

Названия простых веществ

В настоящее время известно более 400 простых веществ, хотя элементов пока открыто только 118. Названия большинства простых веществ такие же, как и названия соответствующих химических элементов. Только у элемента углерода простые вещества (как вы уже знаете) имеют собственные названия, да еще у элемента кислорода есть простое вещество озон.

Необходимо различать понятия простое вещество и химический элемент, поскольку в большинстве случаев их названия совпадают.

Химический элемент — это определенный вид атомов. Поэтому название химического элемента — это то, что объединяет атомы данного вида. У всех таких атомов есть общие черты. Каждый химический элемент обозначается с помощью соответствующего химического знака.

В то же время понятие простое вещество обозначает конкретное химическое вещество, образованное атомами одного вида. Оно характеризуется определенными составом, строением, физическими и химическими свойствами.

Например, если говорят о том, что в состав какого-то вещества входит азот, то имеют в виду атомы этого химического элемента, а когда говорят об азоте, который входит в состав воздуха, то, конечно, речь идет о простом веществе.

Более подробно о различии понятий «простое вещество» и «химический элемент» вы узнаете в главах 2, 3.

Краткие выводы урока:

  1. Молекула — наименьшая частица вещества, способная существовать самостоятельно и сохраняющая его химические свойства.
  2. Простые вещества состоят из атомов одного химического элемента.
  3. Простые вещества имеют молекулярное или немолекулярное строение.
  4. Простые вещества делят на металлы и неметаллы.

Надеюсь урок 3 «Молекулы и простые вещества» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Читайте также: