Износостойкость это свойство металла

Обновлено: 07.01.2025

1. Понятие конструкционная прочность материалов и критерии её оценки

Факторы, которые определяют работу конструкционных материалов:

  • статические, циклические и ударные нагрузки;
  • низкие и высокие температуры;
  • контакт с различными средами.

Эти факторы определяют требования к конструкционным материалам, основные из которых – эксплуатационные, технологические, экономические.

Эксплуатационные требования имеют первостепенное значение. Для того чтобы обеспечить работоспособность конкретных машин и приборов, конструкционный материал должен иметь высокую конструкционную прочность.

Конструкционной прочностью называется комплекс механических свойств, обеспечивающих надёжную и длительную работу материала в условиях эксплуатации.

Надо помнить, что требуемые характеристики механических свойств материала для конкретного изделия зависят не только от силовых факторов, но и воздействия на него рабочей среды и температуры.

Рабочая среда – жидкая, газообразная, ионизированная, радиационная, как правило, оказывает отрицательное влияние на механические свойства материала (коррозионное растрескивание, окисление, изменение химического состава и как результат охрупчивание и т.д.)

Температурный диапазон от -269 до 2000 о С. От материала требуется – жаропрочность, а при низких температурах – хладостойкость.

Технологические требования направлены на обеспечение наименьшей трудоёмкости изготовления деталей и конструкций. Технологичность материала характеризует возможные методы его обработки. Она оценивается: обрабатываемостью резанием, давлением, свариваемостью, способностью к литью, прокаливаемостью, склонностью к деформации и короблению при термической обработке. От неё зависят производительность и качество изготовления детали.

Экономические требования сводятся к тому, чтобы материал имел невысокую стоимость и был доступным. Использование материалов, содержащих легирующие элементы (особенно дефицитные), должно быть обоснованно повышением эксплуатационных свойств детали. Эти требования приобретают особое значение при массовом масштабе производства.

Конструкционная прочность – комплексная характеристика, включающая сочетание критериев:

  • прочности;
  • надёжности;
  • долговечности.

Критерии прочности материала выбирают в зависимости от условий его работы.

При статических нагрузках, при испытании на растяжения, предел прочности (σв) или предел текучести (σ0,2, σт) – характеризуют сопротивление материала пластической деформации (рис.1). Для приближенной оценки статической прочности используют твёрдость НВ или НR (рис.2, 3) (для стали справедливо эмпирическое соотношение σв = НВ/3).

Испытание на растяжение

Рис.1 Испытание на растяжение

Измерение твёрдости по Бринеллю

Рис.2 Измерение твёрдости по Бринеллю

При циклических нагрузках: предел выносливости σR (при симметричном круговом изгибе σ-1).

Надо помнить – чем больше прочность материала, тем большие допустимые рабочие напряжения и тем самым меньшие размеры и масса детали.

Однако – повышение уровня прочности материала и, как следствие, рабочих напряжений сопровождается увеличением упругих деформаций:

εупр = σупр/Е,

где Е – модуль нормальной упругости (модуль Юнга), характеристика жёсткости металла. Именно критерии жёсткости, а не прочности обуславливают размеры станин станков, корпусов редукторов и других деталей, от которых требуется сохранение точных размеров и формы.

Возможно и противоположное требование. Для пружин, мембран и других чувствительных упругих элементов приборов, важно обеспечить большие упругие перемещения. Тогда от материала требуется высокий предел упругости σупр и низкий модуль упругости Е.

Измерение твёрдости по Роквеллу

Рис.3 Измерение твёрдости по Роквеллу

Дополнение: для материалов, используемых в авиационной и ракетной технике, важное значение имеет эффективность материала по массе. Она оценивается удельными характеристиками:

  • удельной прочностью σв/ρg (ρ – плотность, g – ускоренное свободное падение);
  • удельной жёсткостью Е/ ρg.

Примечание: для оценки конструкционной прочности необходимы характеристики прочности при рабочих температурах и в эксплуатационных средах.

Вывод – в качестве критериев конструкционной прочности выбирают те характеристики, которые наиболее полно отражают прочность в конкретных условиях эксплуатации.

Надёжность свойство материала противостоять хрупкому разрушению (внезапному отказу).

Для предупреждения хрупкого разрушения конструкционные материалы должны обладать:

Маятниковый копёр для определения ударной вязкости

Рис. 4 Маятниковый копёр для определения ударной вязкости

Испытания на ударную вязкость

Рис.5 Испытания на ударную вязкость

Однако эти параметры определены на лабораторных образцах, без учёта реальных условий эксплуатации конкретной детали. Необходимо учитывать то, что в условиях эксплуатации действуют факторы, дополнительно снижающие их пластичность, вязкость и увеличивающие опасность хрупкого разрушения:

  • концентраторы напряжений (надрезы);
  • понижение температуры;
  • динамические нагрузки;
  • увеличение размеров деталей (масштабный фактор).

Для того чтобы избежать внезапных поломок в условиях эксплуатации, необходимо учитывать трещиностойкость.

Трещиностойкость – группа параметров надёжности, характеризующих способность материала тормозить развитие трещины.

Трещины являются острыми концентраторами напряжений, местные (локальные) напряжения в вершине которых могут во много раз превышать средние расчётные напряжения.

Для трещины длиной l и радиусом r напряжения в вершине:

σуmах = σср 2√ l/ r

Концентрация напряжений тем больше, чем длиннее трещина и острее её вершина. Для пластичных материалов опасность таких дефектов не велика. Хрупкие материалы, наоборот, чрезвычайно чувствительны к надрезам.

Оценку надёжности высокопрочных материалов по размеру допустимого дефекта (трещины) проводят по критерию Ж.Ирвина (К).

К = σср √ α π lкр , (МПа х мм 1/2 )

где π – безразмерный коэффициент, характеризующий геометрию трещины.

К – критерий вязкости разрушения, зависит от степени пластической деформации у вершины трещины (её затуплении) и характеризует развитие вязкой трещины. Чем он больше, тем выше надёжность материала.

Для оценки надёжности материала используют также параметры:

  • ударную вязкость КСU, КСV, КСТ (МДж/м 2 );
  • температурный порог хладноломкости Т50 .

Параметром КСV оценивают пригодность материала для сосудов давлении, трубопроводов и других конструкций повышенной надёжности.

Параметр КСТ, определяемый на образцах с трещиной усталости у основания надреза, более показателен. Он учитывается при выборе материала для конструкций особо ответственного назначения (летательных аппаратов, роторов турбин).

Порог хладноломкости Т50 характеризует влияние снижения температуры на склонность материала к хрупкому разрушению. Его определяют по результатам ударных испытаний образцов с надрезом при понижающейся температуре (рис.6). Т50 – обозначает температуру при которой в изломе образца имеется 50% волокнистой составляющей, и величина КСТ снижается на половину.

порог хладноломкости

Рис.6 Температура Тхл.50) порог хладноломкости

Долговечность – свойство материала сопротивляться развитию постепенного разрушения (постепенного отказа), обеспечивая работоспособность деталей в течение заданного времени (ресурса).

Постепенный отказ – потеря материалом работоспособности, при наступлении которой детали заменяют без угрозы аварийных последствий.

Причины потери работоспособности, т.е. постепенного отказа:

  • развитие процессов усталости;
  • изнашивание;
  • ползучести;
  • коррозии;
  • радиационного разбухания и пр.

Эти процессы вызывают постепенное накопление необратимых повреждений в материале и его разрушение. Обеспечение долговечности материала означает уменьшение до требуемых значений скорости его разрушения.

Для большинства деталей машин (более 80%) долговечность определяется сопротивлением материала усталостным разрушениям (циклической долговечностью) или сопротивлением изнашиванию (износостойкостью).

Циклическая долговечность характеризует работоспособность материала в условиях многократно повторяющихся циклов напряжения. Цикл напряжения – совокупность изменения напряжения между двумя его предельными значениями σmaх и σmin в течение периода Т.

Синусоидальный цикл изменения напряжения характеризуется коэффициентом асимметрии цикла R = σmin / σmaх; амплитудой напряжения σa = (σmaх σmin) /2; средним напряжением цикла σm = (σmaх + σmin) /2.

Процессы постепенного накопления повреждений в материале под действием циклических нагрузок, приводящие к изменению его свойств, образованию трещин, их развитию и разрушению, называют усталостью, а свойства противостоять усталости – выносливостью (рис.7).

Разрушение от усталости по сравнению с разрушением от статической нагрузки имеет ряд особенностей:

  1. Оно происходит при напряжениях, меньших, чем при статической нагрузке;
  2. Разрушение начинается на поверхности локально;
  3. Разрушение протекает в несколько стадий и имеет характерное строение излома:
    • очаг зарождения трещины;
    • зону усталости. В это зоне видны характерные бороздки, которые имеют конфигурацию колец, что свидетельствует о скачкообразном продвижении трещины усталости.
    • зону долома.

О способности материала работать в условиях циклического нагружения судят по результатам испытаний образцов на усталость. Результаты испытаний изображают в виде кривой усталости: σmaх от числа циклов нагружения N. Горизонтальный участок определяет напряжение, которое не вызывает усталостного разрушения после неограниченного большого числа циклов. Это напряжение представляет собой физический предел выносливости σR (R – коэффициент асимметрии цикла), при симметричном цикле σ-1.

Испытание на выносливость

Ри.7 Испытание на выносливость

Кривые усталости позволяют определить следующие критерии выносливости:

  • циклическую прочность – наибольшее напряжение, которое он способен выдержать за определённое время работы. Ограниченный предел выносливости;
  • циклическую долговечность – число циклов (часов), которое выдерживает материал до образования усталостной трещины или до усталостного разрушения при заданном напряжении.

Циклическая прочность и долговечность зависят от большого числа факторов, из которых решающее значение имеют структура и напряжённое состояние поверхностного слоя, качество поверхности и воздействие коррозионной среды. (Отверстия, канавки, проточки, риски, поры, раковины, неметаллические включения и др.).

Дополнительные критерии выносливости:

  1. живучесть – определяемая скоростью роста трещины усталости (СРТУ). При высокой живучести можно своевременно путём дефектоскопии обнаружить трещину, заменить деталь и обеспечить безаварийную работу.
  2. износостойкость – свойство материала оказывать в определённых условиях трения сопротивление изнашиванию. Износпроцесс постепенного разрушения поверхностных слоёв материала путём отделения его частиц под влиянием сил трения. Его определяют по изменению размеров, объёма или массы. Существует три периода износа:
    • начальный, период приработки;
    • период установившегося (нормального) износа;
    • период катастрофического износа. Материал, устойчивый к изнашиванию в одних условиях, может катастрофически быстро разрушаться в других.

    Эта задача решается рациональным выбором материала трущихся пар и способа его обработки.

    • ползучесть – определяется скоростью развития пластической деформации материала при постоянном напряжении и при высоких температурах.

    Таким образом, работоспособность материала детали в условиях эксплуатации характеризуют следующие критерии конструкционной прочности:

    1. критерии прочности σв, σ0,2, σ-1, которые при заданном запасе прочности определяют допустимые рабочие напряжения, массу и размеры деталей;
    2. модуль упругости Е, который при заданной геометрии детали определяет величину упругих деформаций, т.е. её жёсткость;
    3. пластичность δ, ψ, ударная вязкость КСТ, КСV, КСU, вязкость разрушения К, температурный порог хладноломкости Т50, которые оценивают надёжность материала при эксплуатации;
    4. циклическая долговечность, скорости изнашивания, ползучести, коррозии, определяющие долговечность материала.

    2. Методы повышения конструкционной прочности

    1. Технологические.
    2. Металлургические.
    3. Конструкторские.

    Технологические. Цель – повышение прочности материала. Методами: легирования, пластической деформации, термической, термомеханической и химико-термической обработки. Повышение прочности указанными методами основано на ряде структурных факторов:

    • увеличение плотности дислокаций. Чем больше плотность дислокаций, тем выше сопротивление пластическому деформированию;
    • создание дислокационных барьеров в виде границ зёрен, субзёрен, дисперсных частиц вторичных фаз. Важная особенность этого фактора упрочнения состоит в том, что измельчение зёрен (увеличение протяжённости их границ) сопровождается повышением ударной вязкости. Сильное торможение дислокаций создают дисперсные частицы вторичной фазы.
    • образование полей упругих напряжений искажающих кристаллическую решётку. Такие поля образуются вблизи точечных дефектов – вакансий, примесных атомов и, главным образом, атомов легирующих элементов. Образования атмосфер Коттрелла атомами внедрения.

    Вместе с тем повышение прочности, основанное на уменьшении подвижности дислокаций, сопровождается уменьшением пластичности, вязкости и тем самым надёжности.

    Проблема повышения конструкционной прочности состоит не столько в повышении прочностных свойств, сколько в том, как при высокой прочности обеспечить высокое сопротивление вязкому разрушению, т. е. надёжность материала.

    Например, в углеродистых сталях закалкой на мартенсит и низким отпуском можно получить при содержании 0,4%С ϬB ~ 2400МПа, при 0,6%С ϬB ~ 2800МПа. Однако при такой прочности стали хрупки (КСТ ~ 0), эксплуатационно не надёжны.

    Рациональное легирование предусматривает введение в сталь и сплавы нескольких элементов при невысокой концентрации каждого с тем, чтобы повысить пластичность и вязкость. Измельчение зерна осуществляется легированием и термической обработкой, особенно при использовании высокоскоростных способов нагрева – индукционного и лазерного.

    Для повышения циклической прочности и износостойкости важно затруднить деформацию поверхности деталей. Это достигается технологическими методами поверхностного упрочнения: поверхностной закалкой, ХТО, поверхностным пластическим деформированием (обдувкой дробью, обкаткой роликами).

    Металлургические. Цель – повышение чистоты металла и сплава, т.е. удаление вредных примесей: серы, фосфора, газообразных элементов (кислорода, водорода, азота и зависящих от содержания неметаллических включений).

    Методы переплава: вакуумно-дуговой (ВДП), электронно-лучевой (ЭЛП), электрошлаковый (ЭШП), а также вакуумно-индукционную плавку (ВИ), рафинирование синтетическим шлаком.

    Конструкторские методы предусматривают обеспечение равнопрочности высоконапряжённых деталей. При их проектировании избегают – резких перепадов жёсткости, глубоких канавок, галтелей малого радиуса и других конструктивных надрезов. Если этого избежать нельзя, то для смягчения концентрации напряжений применяют местное упрочнение для формирования остаточных напряжений сжатия.

    Испытания металла на износостойкость


    Этот показатель стали очень важен для обеспечения прочности конструкций, особенно если они испытывают нагрузку или подвержены износу.

    Что такое износостойкость металла

    Давайте дадим с вами определение: износостойкость - это способность металла и стали противостоять изменению свойств и разрушению с течением времени при механическим, физическом или химическом воздействии.

    Существует достаточно много разновидностей износа, как правило, это происходит из-за воздействия внешних механических, физических или химических факторов. Это стоит принимать во внимание при проектировании и при контроле качества в строительной испытательной лаборатории.

    Также есть еще так называемые подвиды износа: абразивный, кавитационный, контактный, динамический и т.д. Как мы уже сказали выше, все зависит от вида воздействия.

      Так, например, механический износ металла происходит в результате трения двух поверхностей. Как правило, это относится к подвижным конструкциям или конструкциям, которые испытывают постоянную нагрузку. При этом стоит учитывать, что тут возможны 2 разных вида механического износа. Первый - это истирание, а второй - деформация, хотя часто бывают случаи, когда они могут появиться одновременно.

    Все эти параметры должны учитываться при проектировании, а задача испытательной лаборатории - провести испытания, а затем сверить соответствие полученных результатов с величиной нагрузки на этот металл.

    Какие свойства металлов определяют испытаниями на износостойкость

    Металл, как и любой другой материал, имеет ряд свойств, которые учитывают при строительных испытаниях, ведь они напрямую влияют на способность стали образовывать прочные сварные соединения, выдерживать перепады температур и нагрузки.

    Наиболее важные из них:

    • Литейные - способность металла принимать нужную форму
    • Усадка - изменение объема в зависимости от изменения температур
    • Химический состав
    • Способность к сварке
    • Стойкость при давлении
    • Прочность при резке
    • Стойкость при трении
    • Коррозионная стойкость
    • Ударная вязкость
    • Жаростойкость и устойчивость к холоду
    • Антифрикционность - способность взаимодействовать с другими металлами

    Методы испытания стали на износостойкость

    Основные методы, которыми пользуются при испытании металла строительные лаборатории, - это механические и физические. Механические испытания металлов - это динамические и статические воздействия. К динамическим относят испытания на ударный изгиб, а к статическим - растяжение, изгиб и скручивание.

    Также есть метод испытания металла ультразвуком.

    Кроме того, для испытания стали используют химические методы, но это уже больше относится к производственным испытаниям, чем к строительным.

    Иногда могут использоваться оптические средства испытаний, то есть сталь просматривается под большим увеличением для того, чтобы обнаружить в ней дефекты.

    Еще один метод - это радиографическое изучение металла при помощи гамма-лучей. То есть своеобразный рентген для стали. Очень часто данный метод применяют для испытания сварных швов.

    Конечно, это далеко не все методы, но мы не будем углубляться, так как основные методы, используемые для испытаний металла на строительных объектах, мы перечислили.

    Подробнее про некоторые методы мы поговорим в других наших статьях.

    Расчет износостойкости металлов

    Все расчеты производятся при помощи специальных формул. Тут мы их указывать не будем, так как таких формул достаточно много, а статья сайта не является учебником.

    В ГОСТах прописаны показатели, которым должны соответствовать измеряемые металлы, как раз на них лаборатория и опирается при вычислениях. Если говорить о единицах измерения, то это, как правило, ньютоны и паскали. Это логично, ведь мы измеряем прилагаемую силу и давление, которые выдерживает металл. Для каждого испытания показатели разные.

    Заключение

    В этой статье мы рассказали вам об исследовании износостойкости металлов и стали, ведь это один из показателей, который сопряжен с прочностью. Это лишь малая часть того, о чем мы будем говорить с вами в нашем блоге. Очень надеемся, что этот материал был вам полезен.

    Если вы хотите проконсультироваться с нашими специалистами относительно исследования металла на износостойкость, просто оставьте заявку в форме ниже.

    Подробнее про предоставляемые услуги исследования металлов и сварных швов вы можете узнать на наших страницах:

    Строительная лаборатория ООО "Бюро "Строительные исследования" занимается испытаниями конструкций и материалов в Санкт-Петербурге и Москве

    Основная специализация лаборатории:

    1. Заполнив форму на нашем сайте

    3. Написать нам на почту

    Подписывайтесь на наши социальные сети и YouTube канал, там много интересной информации и лайфхаков.

    Износостойкие стали и сплавы

    Износостойкость – свойство материала оказывать сопротивление процессу изнашивания, под которым подразумевается постепенное разрушение поверхностных слоев материала путем отделения его частиц под влиянием сил трения. Под действием этих сил происходит многократное деформирование участков контактной поверхности, их упрочнение и разупрочнение, выделение теплоты, изменение структуры, развитие процессов усталости, окисления и др. Различают абразивный, окислительный, адгезионный, усталостный и другие виды изнашивания.

    Высокая твердость поверхности – необходимое условие обеспечения износостойкости при большинстве видов изнашивания. При абразивном, окислительном, усталостных видах изнашивания наиболее износостойкими являются стали с высокой исходной твердостью поверхности, структура которых состоит из частиц твердой карбидной фазы и удерживающей их высокопрочной матрицы.

    Цементуемые низкоуглеродистые и среднеуглеродистые стали, упрочненные азотированием или поверхностной закалкой, а также белые чугуны обеспечивают необходимую работоспособность узлов трения, в которых материал должен хорошо противостоять истиранию частицами, являющимися продуктами изнашивания или попадающими в смазочный материал извне.

    В условиях ударного износа в абразивной струе (например, работа основных рабочих узлов мельниц для измельчения песка) наиболее износостойкими материалами являются твердые сплавы, структура которых состоит из карбидов вольфрама, титана и тантала, связанных кобальтом, а также высокоуглеродистые стали типа Х12, Х12М, Р18, Р6М5 с мартенситной матрицей и карбидами.

    Карбидные сплавы применяют при наиболее тяжелых условиях работы в виде литых и наплавочных материалов. Они представляют собой сплавы с высоким содержанием углерода (до 4%) и карбидообразующих элементов (Cr, W, Ti). Для наплавки используются прутки из этих сплавов, которые расплавляются кислородно-ацетиленовым пламенем или электрической дугой и в жидком состоянии наносят на поверхность детали. Широкое распространение получили сплавы «сормайт» (1,7…3% С, 15…30% Сr, 2…5% Ni, 2…3% Si) с твердостью до 50 НRС и «сталинит» (» 10% С, » 20% Сr, » 15% Мn, » 3% Si) с твердостью до 65 НRС.

    Для работы в условиях износа, который сопровождается большими ударными нагрузками, широко используется высокомарганцевая сталь 110Г13Л (сталь Гадфильда), содержащая 0,9…1,4% С, 11,5…15,0% Mn, 0,5…1,0% Si.

    Сталь плохо обрабатывается резанием, поэтому детали получают литьем или ковкой. После литья структура состоит из аустенита и избыточных карбидов марганца в железе (FeMn)3C. При нагревании карбиды растворяются в аустените и после закалки в воде с 1100 о С сталь имеет аустенитную структуру и низкую твердость 200..250 НВ.

    В условиях только абразивного износа такая сталь оказывается неизносостойкой, но при воздействии на деталь больших ударных нагрузок, которые вызывают в материале напряжения выше предела текучести, проходит интенсивный наклеп стали 110Г13Л и рост ее твердости и износостойкости. При этом сталь приобретает высокую твердость до 600 HВ. Сталь 110Г13Л широко используется для изготовления корпусов шаровых мельниц, железнодорожных крестовин, гусеничных траков, козырьков землечерпалок и др.

    Механические, физические, химические и технологические свойства металлов

    Механические свойства характеризуют способность материа­лов сопротивляться действию внешних сил. К основным механичес­ким свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

    Прочность — это способность материала сопротивляться раз­рушающему воздействию внешних сил.

    Твердость — это способность материала сопротивляться вне­дрению в него другого, более твердого тела под действием нагрузки.

    Вязкостью называется свойство материала сопротивляться раз­рушению под действием динамических нагрузок.

    Упругость — это свойство материалов восстанавливать свои раз­меры и форму после прекращения действия нагрузки.

    Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.

    Хрупкость — это свойство материалов разрушаться под дей­ствием внешних сил без остаточных деформаций.

    При статических испытаниях на растяжение определяют вели­чины, характеризующие прочность, пластичность и упругость мате­риала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диа­метром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:

    Деформация характеризует изменение размеров образца под дей­ствием нагрузки, %:

    где l1 — длина растянутого образца.

    Деформация может быть упру­гой (исчезающей после снятия нагрузки) и пластической (остаю­щейся после снятия нагрузки).

    При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения ис­пытаний определяются следующие характеристики механических свойств.

    Предел упругости σу — это максимальное напряжение при кото­ром в образце не возникают пластические деформации.

    Предел текучести σт — это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1). Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2 — напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв — это на­пряжение, отвечающее максимальной нагрузке, которую выдержи­вает образец при испытании.

    Относительное удлинение после разрыва δ — отношение при­ращения длины образца при растяжении к начальной длине l0, %:

    где lк — длина образца после разрыва.


    Рис. 1. Статические испытания на растяжение: а – схема испытания;

    б – диаграмма растяжения

    Относительным сужением после разрыва ψ называется умень­шение площади поперечного сечения образца, отнесенное к началь­ному сечению образца, %:

    где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.

    Твердость металлов измеряется путем вдавливания в испытуе­мый образец твердого наконечника различной формы.

    Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердо­сти по Бринеллю НВ определяется отношением нагрузки, действую­щей на шарик, к площади поверхности полученного отпечатка.

    Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавли­вание производится под действием двух нагрузок — предваритель­ной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.

    В методе Виккерса применяют вдавливание алмазной четырех­гранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

    Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сече­ния F; Дж/м 2 :

    Испытания проводятся ударом специального маятникового коп­ра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.

    К физическим свойствам материалов относится плотность, тем­пература плавления, электропроводность, теплопроводность, магнит­ные свойства, коэффициент температурного расширения и др.

    Плотностью называется отношение массы однородного матери­ала к единице его объема.

    Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые кон­струкции должны быть легкими и прочными.

    Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плав­ления, сварки и тем они дешевле.

    Электропроводностью называется способность материала хоро­шо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, осо­бенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важ­ным свойством, используемом в электроизоляционных материалах.

    Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

    Магнитными свойствами т.е. способностью хорошо намагничи­ваться обладают только железо, никель, кобальт и их сплавы.

    Коэффициенты линейного и объемного расширения характеризу­ют способность материала расширяться при нагревании. Это свой­ство важно учитывать при строительстве мостов, прокладке желез­нодорожных и трамвайных путей и т.д.

    Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способнос­тью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различ­ных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.

    К эксплуатационным (служебным) свойствам относятся жаро­стойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.

    Жаростойкость характеризует способность металлического ма­териала сопротивляться окислению в газовой среде при высокой температуре.

    Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.

    Износостойкость — это способность материала сопротивлять­ся разрушению его поверхностных слоев при трении.

    Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.

    Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства харак­теризуются способностью металлов и сплавов в расплавленном состоя­нии хорошо заполнять полость литейной формы и точно воспроизво­дить ее очертания (жидкотекучестъю), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии. Ковкость — это способность металлов и сплавов подвергаться различ­ным видам обработки давлением без разрушения. Свариваемость опре­деляется способностью материалов образовывать прочные сварные сое­динения. Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.

    Теория сплавов

    Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обла­дающий металлическими свойствами. Вещества, которые образуют сплав называются компонентами.

    Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела. Под структурой понимают форму размер и характер взаимного распо­ложения фаз в металлах и сплавах. Структурными составляющими называют обособленные части сплава, имеющие одинаковое строе­ние с присущими им характерными особенностями.

    Виды сплавов по структуре. По характеру взаимодействия ком­понентов все сплавы подразделяются на три основных типа: механи­ческие смеси, химические соединения и твердые растворы.

    Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристалличес­кую решетку. Структура механических смесей неоднородная, состо­ящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения ком­понентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.

    Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом при этом соотношение чисел атомов в соединении соответствует его химичес­кой формуле АmВn . Химическое соединение имеет свою кристалли­ческую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структу­ру, состоящую из одинаковых по составу и свойствам зерен.

    При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы заме­щения образуются в результате частичного замещения атомов крис­таллической решетки одного компонента атомами второго (рис. 6, б).

    Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6, в). Твердый раствор имеет однородную струк­туру, одну кристаллическую решетку. В отличие от химического соединения твердый раствор существует не при строго определен­ном соотношении компонентов, а в интервале концентраций. Обо­значают твердые растворы строчными буквами греческого алфавита: α, β, γ, δ и т. д.

    Диаграмма состояния

    Диаграмма состояния показывает строе­ние сплава в зависимости от соотношения компонентов и от темпера­туры. Она строится экспериментально по кривым охлаждения спла­вов (рис. 8). В отличие от чистых металлов сплавы кристаллизуются не при постоянной температуре, а в интервале температур. Поэтому на кривых охлаждения сплавов имеется две критические точки. В верхней критической точке, называемой точкой ликвидус (tл), начина­ется кристаллизация. В нижней критической точке, которая называ­ется точкой солидус (tc), кристаллизация завершается. Кривая охлаж­дения механической смеси (рис. 8, а) отличается от кривой охлаждения твердого раствора (рис. 8, б) наличием горизонтального участка. На этом участке происходит кристаллизация эвтектики.

    Эвтектикой на­зывают механическую смесь двух фаз, одновременно кристаллизовав­шихся из жидкого сплава. Эвтектика имеет определенный химичес­кий состав и образуется при постоянной температуре.


    Диаграмму состояния строят в координатах температура-концен­трация. Линии диаграммы разграничивают области одинаковых фазо­вых состояний. Вид диаграммы зависит от того, как взаимодейству­ют между собой компоненты. Для построения диаграммы состояния используют большое количество кривых охлаждения для сплавов раз­личных концентраций. При построении диаграммы критические точ­ки переносятся с кривых охлаждения на диаграмму и соединяются линией. В получившихся на диаграмме областях записывают фазы или структурные составляющие. Линия диаграммы состояния на ко­торой при охлаждении начинается кристаллизация сплава называется линией ликвидус, а линия на которой кристаллизация завершается — линией солидус.

    Виды диаграмм состояния

    Диаграмма состояния сплавов, обра­зующих механические смеси (рис. 9), характеризуется отсутствием растворения компонентов в твердом состоянии. Поэтому в этом спла­ве возможно образование трех фаз: жидкого сплава Ж, кристаллов А и кристаллов В. Линия АСВ диаграммы является линией ликвидус: на участке АС при охлаждении начинается кристаллизация компонента А, а на участке СD — компонента В. Линия DСВ является линией солидус, на ней завершается кристаллизация А или В и при постоян­ной температуре происходит кристаллизация эвтектики Э. Сплавы концентрация которых соответствует точке С диаграммы называются эвтектическими, их структура представляет собой чистую эвтектику.

    Сплавы, расположенные на диаграмме левее эвтектического, называ­ются доэвтектическими, их структура состоит из зерен А и эвтекти­ки. Те сплавы которые на диаграмме расположены правее эвтектичес­кого, называются заэвтектическими, их структура представляет собой зерна В, окруженные эвтектикой.


    Диаграмма состояния сплавов с неограниченной растворимос­тью компонентов в твердом состоянии изображена на рис. 10. Для этого сплава возможно образование двух фаз: жидкого сплава и твер­дого раствора а. На диаграмме имеется всего две линии, верхняя является линией ликвидус, а нижняя — линией солидус.

    Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии показана на рис 11. В этом сплаве могут существовать три фазы — жидкий сплав, твердый раствор α компонента В в компоненте А и твердый раствор β компонента А в компоненте В. Данная диаграмма содержит в себе элементы двух пре­дыдущих. Линия АСВ является линией ликвидус, линия АDСЕВ — линией солидус. Здесь также образуется эвтектика, имеются эвтек­тический, доэвтектический и заэвтектический сплавы. По линиям FD и EG происходит выделение вторичных кристаллов αIIи βII(вслед­ствие уменьшения растворимости с понижением температуры). Про­цесс выделения вторичных кристаллов из твердой фазы называется вторичной кристаллизацией.


    Диаграмма состояния сплавов, образующих химическое соеди­нение (рис. 12) характеризуется наличием вертикальной линии, соот­ветствующей соотношением компонентов в химическом соединении АmВn. Эта линия делит диаграмму на две части, которые можно рас­сматривать как самостоятельные диаграммы сплавов, образуемых одним из компонентов с химическим соединением. На рис. 12 изоб­ражена диаграмма для случая, когда каждый из компонентов образу­ет с химическим соединением механическую смесь.

    Механические свойства металлов

    Изменение нагрузки потребителей в сети может быть различным . При малом изменении нагрузки требуется небольшой резерв мощности. В этих случаях автоматическое регулирование частоты одной так называемой частотно-регулируемой станцией.

    При больших изменениях нагрузки, автоматическое регулирование частоты должно быть предусмотрено на значительном числе станций. Для этого составляются графики изменения нагрузок электростанций.

    При отключении мощных линий электропередач в послеаварийных режимах, система может оказаться разделенной на отдельно не синхронно работающие части.

    На электростанциях, на которых мощности может оказаться не достаточно, произойдет снижение производительности оборудования собственных нужд (питательных и циркуляционных насосов), следовательно вызовет значительное снижение мощности станции , вплоть до выхода ее из строя.

    В подобных случаях для предотвращения аварий предусматриваются устройства АЧР, отключающие в таких случаях часть менее ответственных потребителей, а после включения резервных источников питания, устройства ЧАПВ включают отключенных потребителей.

    Механические свойства характеризуют способность материала сопротивляться деформации (упругой и пластической) и разрушению. Для металлов и сплавов, работающих как конструкционные материалы, эти свойства являются определяющими. Выявляют их испытаниями при воздействии внешних нагрузок.

    Количественные характеристики механических свойств: упругость, пластичность, прочность, твердость, вязкость, усталость, трещиностойкость, хладостойкость, жаропрочность. Эти характеристики необходимы для выбора материалов и режимов их технологической обработки, расчетов на прочность деталей и конструкций, контроля и диагностики их прочностного состояния в процессе эксплуатации.

    Под действием внешней нагрузки в твердом теле возникают напряжение и деформация.

    Напряжение - это нагрузка (сила) P, отнесенная к первоначальной площади поперечного сечения F0 образца:

    Деформация - это изменение формы и размеров твердого тела под действием внешних сил или в результате физических процессов, возникающих в теле при фазовых превращениях, усадке и т.п. Деформация может быть упругая (исходные размеры образца восстанавливаются после снятия нагрузки) и пластическая (сохраняется после снятия нагрузки).

    Напряжение s измеряют в паскалях (Па), деформацию e - в процентах (%) относительного удлинения (Dl/l)×100 или сужения площади сечения (DS/S)×100.

    При все возрастающей нагрузке упругая деформация, как правило, переходит в пластическую, и далее образец разрушается (рис.1). В зависимости от способа приложения нагрузки методы испытания механических свойств металлов, сплавов и других материалов делятся на статические, динамические и знакопеременные.

    Прочность - способность металлов оказывать сопротивление деформации или разрушению статическим, динамическим или знакопеременным нагрузкам. Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение. Испытание на разрыв является обязательным. Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках - усталостной прочностью.

    Прочность при испытании на растяжение оценивают следующими характеристиками (рис.1).

    Предел прочности на разрыв (предел прочности или временное сопротивление разрыву) sв - это напряжение, отвечающее наибольшей нагрузке Рmax, предшествующей разрушению образца:

    Эта характеристика является обязательной для металлов.

    Предел пропорциональности sпц - это условное напряжение Рпц, при котором начинается отклонение от пропорциональной зависимости между деформацией и нагрузкой:

    Предел текучести sт - это наименьшее напряжение Рт, при котором образец деформируется (течет) без заметного увеличения нагрузки:

    Условный предел текучести s0,2 - напряжение, после снятия которого остаточная деформация достигает величины 0,2 %.

    Если же на кривой напряжение - деформация за пределом упругости образуется площадка текучести (рис.1), то за предел текучести sт принимают напряжение, отвечающее площадке текучести.

    Если после того, как напряжение превысило sт, его снять, то деформация уменьшится по пунктирной линии. Отрезок ОО ¢ показывает остаточную пластическую деформацию.

    Величина sт чрезвычайно чувствительна к скорости деформации (продолжительности действия нагрузки) и к температуре. Если прикладывать к материалу напряжение меньше sт в течение длительного времени, то оно может вызвать пластическую (остаточную) деформацию. Это медленное и непрерывное пластическое деформирование воздействием постоянной нагрузки называют ползучестью (криппом).

    Пластичность - свойство металлов деформироваться без разрушения под действием внешних сил и сохранять измененную форму после снятия этих сил. Пластичность - одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Ее характеристиками являются относительное удлинение перед разрывом d и относительное сужение перед разрывом y. Эти характеристики определяют при испытании металлов на растяжение, а их численные значения вычисляют по формулам (в процентах):

    где l0 и lр - длина образца до и после разрушения соответственно;

    F0и Fр - площадь поперечного сечения образца до и после разрушения.

    Упругость - свойство металлов восстанавливать свою прежнюю форму после снятия внешних сил, вызывающих деформацию. Упругость - свойство, обратное пластичности.

    Твердость - способность металлов оказывать сопротивление проникновению в них более твердого тела. Испытания на твердость - самый доступный и распространенный вид механических испытаний. Наибольшее применение в технике получили статические методы испытания на твердость при вдавливании индентора: метод Бринелля, метод Виккерса и метод Роквелла. Твердость, согласно этим методам, определяют следующим образом.

    По Бринеллю - в испытуемый образец с определенной силой вдавливается закаленный стальной шарик диаметром D под действием нагрузки P, и после снятия нагрузки измеряется диаметр отпечатка d (рис.2,а). Число твердости по Бринеллю - НВ, характеризуется отношением нагрузки P, действующей на шарик, к площади поверхности сферического отпечатка M:

    Чем меньше диаметр отпечатка d, тем больше твердость образца. Диаметр шарика D и нагрузку P выбирают в зависимости от материала и толщины образца. Метод Бринелля не рекомендуется применять для материалов с твердостью более 450 HB, так как стальной шарик может заметно деформироваться, что внесет погрешность в результаты испытаний.

    При испытании на твердость по методу Виккерса в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине a = 136° (рис.2,б). После снятия нагрузки вдавливания измеряется диагональ отпечатка d1. Число твердости по Виккерсу HV подсчитывается как отношение нагрузки Р к площади поверхности пирамидального отпечатка М:

    Число твердости по Виккерсу обозначается символом HV с указанием нагрузки Р и времени выдержки под нагрузкой, причем размерность числа твердости (кгс/мм 2 ) не ставится. Продолжительность выдержки индентора под нагрузкой принимают для сталей 10-15 с, а для цветных металлов - 30 с. Например, 450 HV10/15 означает, что число твердости по Виккерсу 450 получено при Р = 10 кгс (98,1 Н), приложенной к алмазной пирамиде в течение 15 с.

    Преимущество метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материалы более высокой твердости из-за применения алмазной пирамиды.

    При испытании на твердость по методу Роквелла в поверхность материала вдавливается алмазный конус с углом при вершине 120° или стальной шарик диаметром 1,588 мм. Однако, согласно этому методу, за условную меру твердости принимается глубина отпечатка. Схема испытания по методу Роквелла показана на рис.2,в. Вначале прикладывается предварительная нагрузка Р0,под действием которой индентор вдавливается на глубину h0. Затем прикладывается основная нагрузка Р1, под действием которой индентор вдавливается на глубину h1. После этого снимают нагрузку Р1,но оставляют предварительную нагрузку Р0.

    При этом под действием упругой деформации индентор поднимается вверх, но не достигает уровня h0. Разность (hh0) зависит от твердости материала; чем тверже материал, тем меньше эта разность. Глубина отпечатка измеряется индикатором часового типа с ценой деления 0,002 мм. При испытании мягких металлов методом Роквелла в качестве индентора применяется стальной шарик. Последовательность операций такая же, как и при испытании алмазным конусом. Число твердости, определенное методом Роквелла, обозначается символом HR. Однако в зависимости от формы индентора и значений нагрузок вдавливания к этому символу добавляется буква А, С, или В, обозначающая соответствующую шкалу измерений.

    Числа твердости по Роквеллу определяют в условных единицах по формулам:

    где 100 и 130 - предельно заданное число делений индикатора часового типа с ценой деления 0,002 мм.

    Трещиностойкость - свойство материалов сопротивляться развитию трещин при механических и других воздействиях.

    Трещины в материалах могут быть металлургического и технологического происхождения, а также возникать и развиваться в процессе эксплуатации. В случае возможности хрупкого разрушения для безопасной работы элементов конструкций необходимо количественно оценивать размеры допустимых трещиноподобных дефектов.

    Количественной характеристикой трещиностойкости материала является критический коэффициент интенсивности напряжений в условиях плоской деформации в вершине трещины KIс.

    Многие конструкции при эксплуатации испытывают ударные нагрузки. Для решения вопроса об их долговечности и надежности в этих условиях очень важными являются результаты динамических испытаний (нагрузка прилагается ударом с большой силой).

    Переход от статических нагружений к динамическим вызывает изменение всех свойств металлов и сплавов, связанных с пластической деформацией.

    Для оценки склонности материала к хрупкому разрушению применяют испытания на ударный изгиб образцов с надрезом, в результате которых определяют ударную вязкость.

    Ударная вязкость - работа, затраченная при динамическом разрушении надрезанного образца, отнесенная к площади поперечного сечения в месте надреза.

    Вязкость - свойство, обратное хрупкости. Ударная вязкость ответственных деталей должна быть высокой.

    Кроме числовых значений, получаемых при испытании на удар, важным критерием является характер излома. Волокнистый матовый излом без характерного металлического блеска свидетельствует о вязком разрушении. Хрупкое разрушение дает кристаллический блестящий излом.

    Ударная вязкость зависит от многих факторов. Наличие в изделиях резких переходов в сечении, надрезов, вырезов и т. п. вызывает неравномерное распределение напряжений по сечению и их концентрацию. Ударная вязкость зависит также и от состояния поверхности образца. Риски, царапины, следы механической обработки и другие дефекты снижают ударную вязкость.

    Динамическое нагружение вызывает повышение предела упругости и предела текучести, не переводя материал в хрупкое состояние. Но при понижении температуры, сопротивление удару резко уменьшается. Это явление называется хладоломкостью.

    К хладоломким металлам относятся металлы с объемноцентрированной кубической решеткой (например, a-Fe, Mo, Cr). Для этой группы металлов при определенной минусовой температуре наблюдается резкое снижение ударной вязкости. К нехладоломким металлам можно отнести металлы с гранецентрированной кубической решеткой (g-Fe, Al, Ni и др.). Хладоломкость у крупнозернистого материала наступает при более высокой температуре, чем у мелкозернистого.

    Характер падения ударной вязкости напоминает порог, что привело к выражению «порог хладоломкости».

    Температура, при которой происходит определенное падение ударной вязкости, называется критической температурой хрупкости Tкр.

    Большинство разрушений деталей и конструкций при эксплуатации происходит в результате циклического нагружения. Причем в ряде случаев разрушение происходит при напряжениях, лежащих ниже предела упругости.

    Усталость - процесс постепенного накопления повреждений в материале при действии циклических нагрузок, приводящий к образованию трещин и разрушению.

    Термин «усталость» часто заменяют термином «выносливость», который показывает сколько перемен нагрузок может выдержать металл или сплав без разрушения. Сопротивление усталости характеризуется пределом выносливости s-1. Число циклов условно принято для сталей равным 10 7 , для цветных металлов - 10 -8 .

    Явление усталости наблюдается при изгибе, кручении, растяжении-сжатии и при других способах нагружения.

    Большое влияние на выносливость оказывают микроскопическая неоднородность, неметаллические включения, газовые пузыри, химические соединения, а также надрезы, риски, царапины, наличие обезуглероженного слоя и следов коррозии на поверхности изделий, которые приводят к неравномерному распределению напряжений и снижают сопротивление материала повторно-переменным нагрузкам.

    Износостойкость - сопротивление металлов изнашиванию вследствие процессов трения. Износ заключается в отрыве с трущейся поверхности отдельных ее частиц и определяется по изменению геометрических размеров или массы детали.

    Усталостная прочность и износостойкость дают наиболее полное представление о долговечности деталей в конструкциях, а ударная вязкость и трещиностойкость характеризует надежность этих деталей.

    Жаропрочность - способность металлов и сплавов длительно сопротивляться началу и развитию пластической деформации и разрушению под действием постоянных нагрузок при высоких температурах. Предел кратковременной прочности, предел ползучести и предел длительной прочности - численные характеристики жаропрочности.

    Читайте также: