Испытаниями на растяжение определяют свойства металлов
Поведение металла под нагрузкой определяется его механическими свойствами (прочностью, пластичностью, твердостью, упругостью, жесткостью, вязкостью). Методы испытаний механических свойств в зависимости от характера действия нагрузки делят на три группы: статические, когда нагрузка возрастает медленно (плавно); динамические – нагрузка возрастает с большой скоростью (мгновенно) – удар; циклические – при повторно-переменных нагрузках, когда нагрузка многократно изменяется по величине и знаку (испытания на усталость).
Механические свойства металлов при статическом нагружении.В результате испытаний определяют следующие характеристики металлов: прочность, пластичность, твердость, упругость, жесткость.
Прочность – свойство металла сопротивляться пластической деформации и разрушению под действием внешних сил. В зависимости от способа статического нагружения различают прочность при растяжении, сжатии и изгибе.
Испытания на растяжение. Для испытаний применяют специальные цилиндрические или плоские образцы. Расчетная длина образца равна десяти- или пятикратному диаметру. Образец закрепляют в испытательной машине и нагружают. Результаты испытаний отражают на диаграмме растяжения.
На диаграмме растяжения пластичных металлов (рис. 13, а) можно выделить три участка: ОА – прямолинейный, соответствующий упругой деформации; АВ – криволинейный, соответствующий упругопластической деформации при возрастании нагрузки; ВС – соответствующий упругопластической деформации при снижении нагрузки. В точке С происходит разрушение образца с разделением его на две части.
От начала деформации (точка О) до точки А образец деформируется пропорционально приложенной нагрузке. Участок ОА – прямая линия. Максимальное напряжение, не превышающее предела пропорциональности, практически вызывает только упругую деформацию, поэтому его часто называют пределом упругости металла.
|
Рис. 13. Диаграмма растяжения пластичных металлов:
а – с площадкой текучести; б – без площадки текучести
При испытании пластичных металлов на кривой растяжения образуется площадка текучести АА¢. В этом случае напряжение, отвечающее этой площадке, sт называют физическим пределом текучести. Физический предел текучести – это наименьшее напряжение, при котором металл деформируется (течет) без заметного изменения нагрузки.
Напряжение, вызывающее остаточную деформацию, равную 0,2 % от первоначальной длины образца, называют условным пределом текучести (σ0,2).
Участок А¢В (см. рис 13, а) соответствует дальнейшему повышению нагрузки и более значительной пластической деформации во всем объеме металла образца. Напряжение, соответствующее наибольшей нагрузке (точка В), предшествующей разрушению образца, называют временным сопротивлением, или пределом прочности при растяжении σв. Это характеристика статической прочности:
где Рmax – наибольшая нагрузка (напряжение), предшествующая разрушению образца, МПа;
F0 – начальная площадь поперечного сечения образца, м 2 .
У пластичных металлов, начиная с напряжения σв, деформация сосредоточивается (локализуется) в одном участке образца, где появляется сужение, так называемая шейка. В результате развития множественного скольжения в шейке образуется множество вакансий и дислокаций, возникают зародышевые несплошности. Сливаясь, они образуют трещину, которая распространяется в поперечном направлении растяжению, и образец разрушается (точка С). Кривая растяжения образца без площадки текучести показана на рис. 13, б.
Пластичность – свойство металла пластически деформироваться, не разрушаясь под действием внешних сил. Это одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Для определения пластичности не требуется образцов и оборудования. После испытания металла на растяжение эти же образцы измеряют и определяют характеристики пластичности. Показатели пластичности – относительное удлинение δ и относительное сужение ψ.
Относительным удлинением δ называется отношение абсолютного удлинения, т. е. приращения расчетной длины образца после разрыва (l – l0), к его первоначальной расчетной длине l0, выраженное в процентах:
где l0 – первоначальная длина образца, мм;
l – длина образца после разрыва, мм.
Относительным сужением y называется отношение абсолютного сужения, т. е. уменьшения площади поперечного сечения образца после разрыва (Fо – F), к первоначальной площади его поперечного сечения, выраженное в процентах:
где F0 – первоначальная площадь поперечного сечения образца, мм 2 ;
F – площадь поперечного сечения образца после разрыва, мм 2 .
Твердость – свойство металла сопротивляться внедрению в него другого более твердого тела. Для определения твердости часто не требуется изготовления специальных образцов, испытания проводятся без разрушения металла.
Твердость металла можно определять прямыми и косвенными методами: вдавливанием, царапаньем, упругой отдачей, магнитным методом. Прямые методы состоят в том, что в металл вдавливают твердый наконечник (индентор) различной формы из закаленной стали, алмаза или твердого сплава (шарик, конус, пирамида). После снятия нагрузки на индентор в металле остается отпечаток, размер которого характеризует твердость.
Существует множество методов определения твердости металлов. Но лишь некоторые из них нашли широкое применение в машиностроении. Все они названы в честь своих создателей.
Метод Бринелля. В плоскую поверхность металла вдавливается стальной закаленный шарик диаметром 10; 5 или 2,5 мм (рис. 14, а). После снятия нагрузки в металле остается отпечаток (лунка). Диаметр отпечатка d измеряют специальным микроскопом с точностью 0,05 мм. На практике пользуются специальной таблицей, в которой каждому диаметру отпечатка соответствует определенное число твердости НВ.
Метод Бринелля не рекомендуется применять для металлов с твердостью более НВ450, так как шарик может деформироваться и получится искаженный результат. Этот метод в основном используется для измерения твердости неупрочненного металла заготовок и полуфабрикатов.
Метод Роквелла. Твердость определяют по глубине отпечатка. Наконечником служит стальной закаленный шарик диаметром 1,58 мм для мягких металлов или алмазный конус с углом при вершине 120° – для твердых и сверхтвердых (более HRC70) металлов (рис. 14, б).
Шарик и конус вдавливаются в металл нагрузкой 60, 100 или 150 кг. Отсчет результатов измерений определяется по показанию стрелки на шкале индикатора твердомера (рис. 15, а). После включения нагрузки стрелка перемещается по шкале индикатора твердомера (рис. 15, б) и указывает значение твердости (рис. 15, в).
Рис. 15. Показания индикатора прибора ТК
При вдавливании стального шарика нагрузка – 100 кг (отсчет по внутренней (красной) шкале индикатора), твердость обозначают как НRВ. При вдавливании алмазного конуса отсчет твердости осуществляется по показанию стрелки на наружной (черной) шкале индикатора (см. рис. 15, в). Нагрузка 150 кг – для твердых металлов. Это основной метод измерения твердости закаленных сталей. Обозначение твердости – НRC. Для очень твердых металлов, а также мелких деталей нагрузка – 60 кг, обозначение твердости – НRА.
Определение твердости по Роквеллу дает возможность испытывать мягкие и твердые металлы, а отпечатки от шарика или конуса очень малы, поэтому можно измерять твердость готовых деталей. Измерения не требуют никаких вычислений – число твердости читается на шкале индикатора твердомера. Поверхность для испытания должна быть шлифованной.
Метод Виккерса. В испытуемую поверхность (шлифованную или полированную) вдавливается четырехгранная алмазная пирамида под нагрузкой 5, 10, 20, 30, 50, 100 кг. В металле остается квадратный отпечаток. Специальным микроскопом твердомера измеряют величину диагонали отпечатка (рис. 16). Зная нагрузку на пирамиду и величину диагонали отпечатка, по таблицам определяют твердость металла, обозначаемую как HV.
Этот метод универсальный. Его можно использовать для определения твердости деталей малой толщины и тонких поверхностных слоев большой твердости (после азотирования, нитроцементации и т. п.). Чем тоньше металл, тем меньше должна быть нагрузка на пирамиду, но чем больше нагрузка, тем точнее получаемый результат.
Прочность при динамическом нагружении(испытания на ударную вязкость – на удар).В процессе эксплуатации многие детали машин испытывают динамические (ударные) нагрузки. Для определения стойкости металла к удару и одновременной оценки его склонности к хрупкому разрушению проводят испытания на ударный изгиб. В результате определяют ударную вязкость – характеристику динамической прочности.
Для определения ударной вязкости применяют 20 типов образцов (обычно размером 10 ´ 10 ´ 55 мм) с U- или V-образным надрезом. Надрез посередине образца называется концентратором. Испытания проводят на маятниковом копре 1 (рис. 17, а). Маятник 2, падая с определенной высоты, разрушает образец 3, свободно установленный на двух опорах копра (рис. 17, б). Работа удара К (Дж или кгс×м), затраченная на излом (разрушение) образца, фиксируется стрелкой на шкале копра и определяется из разности энергии маятника в положении его до и после удара. Ее можно определить по формуле:
К = G (h1 – h2), (6)
где G – вес маятника, Н;
h1 – высота подъема маятника до разрушения образца, м;
h2 – высота подъема маятника после разрушения, м.
Ударная вязкость обозначается КС (прежнее обозначение – aн) и подсчитывается как отношение работы, затраченной на разрушение образца К, к площади поперечного сечения образца в месте надреза F, МДж/м 2 :
КС (aн) = К / F. (7)
Если образец имеет U-образный надрез, то в обозначение ударной вязкости добавляется буква U (КСU), а если V-образный, то добавляется буква V (КСV). Например, KCU = 1 кгс×м/см 2 = 98 кДж/м 2 .
|
Определение ударной вязкости является наиболее простым и показательным способом оценки способности металлов, имеющих объемно центрированную кубическую решетку, к хрупкости при работе в условиях низких температур, называемой хладноломкостью.
Практически хладноломкость определяют при испытании на удар серии образцов при нескольких понижающихся значениях температуры (от комнатной до минус 100°С). Результаты испытаний наносят на график в координатах «ударная вязкость – температура испытания». Температура, при которой происходит падение ударной вязкости, называется критической температурой хрупкости, или порогом хладноломкости. Порог хладноломкости – отрицательная температура, при которой металл переходит из вязкого состояния в хрупкое.
Прочность при циклическом нагружении(испытания на усталость). Многие детали (валы, рессоры, рельсы, шестерни) в процессе работы подвергаются повторно-переменным нагрузкам. Разрушение таких деталей при эксплуатации происходит в результате циклического нагружения при напряжении, значительно меньшем, чем временное сопротивление металла. Процесс постепенного накопления напряжения в металле при действии циклических нагрузок, приводящий к образованию трещин и разрушению, называется уста-лостью. Свойство металла выдерживать большое число циклов переменных напряжений, т. е. противостоять усталости, называется выносливостью, или циклической (усталостной) прочностью.
Усталостная прочность – способность металла сопротивляться упругим и пластическим деформациям при переменных нагрузках. Она характеризуется наибольшим напряжением s-1, которое выдерживает металл при бесконечно большом числе циклов нагружения не разрушаясь и называется пределом усталости, или пределом выносливости. Для углеродистой конструкционной стали предел усталости принимается равным (0,4 – 0,5) sв.
Значение предела выносливости зависит от целого ряда факторов: степени загрязненности металла неметаллическими включениями, макро- и микроструктуры металла, состояния поверхности, формы и размеров детали и др.
Разрушение металлов при усталости отличается от разрушения при однократных нагрузках особым видом излома. При знакопеременной нагрузке происходит постепенное накопление напряжения, обусловленное движением дислокаций. Поверхность детали, как наиболее нагруженная часть сечения, претерпевает микродеформацию, и в наклепанной (упрочненной деформацией) зоне возникают микротрещины. Из множества микротрещин развитие получает только та, которая имеет наиболее острую вершину и наиболее благоприятно расположена по отношению к действующему напряжению.
Пораженная трещиной часть сечения детали не несет нагрузки, и она перераспределяется на оставшуюся часть, которая непрерывно уменьшается, пока не произойдет мгновенное разрушение. Таким образом, для усталостного излома характерно, как минимум, наличие зоны прогрессивно растущей трещины 1 и зоны долома 2 (рис. 18).
Важной характеристикой конструктивной прочности (надежности) металла является живучесть при циклическом нагружении.
Живучесть – это способность металла работать в поврежденном состоянии после образования трещины. Она измеряется числом циклов нагружения до разрушения или скоростью развития трещины усталости при данном напряжении. Живучесть является самостоятельным свойством, которое не зависит от других свойств металла. Живучесть имеет важное значение для оценки работоспособности деталей, работа которых контролируется различными методами дефектоскопии. Чем меньше скорость развития трещины усталости, тем легче ее обнаружить.
Для повышения усталостной прочности деталей желательно в поверхностных слоях металла создавать напряжение сжатия методами поверхностного упрочнения (механическими, термическими или химико-термическими).
3. металлические сплавы
Чистые металлы в большинстве случаев не обеспечивают требуемого комплекса механических и технологических свойств, поэтому для изготовления деталей машин наибольшее распространение получили металлические сплавы – вещества, обладающие металлическими свойствами, представляющие собой сочетание какого-либо металла (основа сплава) с другими металлами или неметаллами. Например, латунь – сплав меди (металл) с цинком (металл), сталь – сплав железа (металл) с углеродом (неметалл). Большинство сплавов получают путем сплавления, т. е. соединения компонентов сплава в жидком состоянии. Есть и другие способы образования сплавов. Так, металлокерамические сплавы образуются путем спекания из порошков.
Испытание на растяжение
Испытание на растяжение металла заключаются в растяжении образца с построением графика зависимости удлинения образца (Δl) от прилагаемой нагрузки (P), с последующим перестроением этой диаграммы в диаграмму условных напряжений (σ - ε)
Испытания на растяжение проводятся по ГОСТ 1497, по этому же ГОСТу определяются и образцы на которых проводятся испытания.
Как уже говорилось выше, при испытаниях строится диаграмма растяжения металла. На ней есть несколько характерных участков:
- Участок ОА - участок пропорциональности между нагрузкой Р и удлинением ∆l. Это участок, на котором сохраняется закон Гука. Данная пропорциональность была открыта Робертом Гуком в 1670 г. и в дальнейшем получила название закона Гука.
- Участок ОВ - участок упругой деформации. Т.е., если к образцу приложить нагрузку, не превышающую Ру, а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по которому они увеличивались при нагружении
Выше точки В диаграмма растяжения отходит от прямой - деформация начинает расти быстрее нагрузки, и диаграмма принимает криволинейный вид. При нагрузке, соответствующей Рт (точка С ), диаграмма переходит в горизонтальный участок. В этой стадии образец получает значительное остаточное удлинение практически без увеличения нагрузки. Получение такого участка на диаграмме растяжения объясняется свойством материала деформироваться при постоянной нагрузке. Это свойство называется текучестью материала, а участок диаграммы растяжения, параллельный оси абсцисс, называется площадкой текучести.
Иногда площадка текучести носит волнообразный характер. Это чаще касается растяжения пластичных материалов и объясняется тем, что вначале образуется местное утонение сечения, затем это утонение переходит на соседний объем материала и этот процесс развивается до тех пор, пока в результате распространения такой волны не возникает общее равномерное удлинение, отвечающее площадке текучести. Когда имеется зуб текучести, при определении механических свойств материала, вводят понятия о верхнем и нижнем пределах текучести.
После появления площадки текучести, материал снова приобретает способность сопротивляться растяжению и диаграмма поднимается вверх. В точке D усилие достигает максимального значения Pmax. При достижении усилия Pmax на образце появляется резкое местное сужение - шейка. Уменьшение площади сечения шейки вызывает падение нагрузки и в момент, соответствующий точке K диаграммы, происходит разрыв образца.
Прилагаемая нагрузка для растяжения образца зависит от геометрии этого образца. Чем больше площадь сечения, тем более высокая нагрузка необходима для растяжения образца. По этой причине, получаемая машинная диаграмма не дает качественной оценки механических свойств материала. Чтобы исключить влияние геометрии образца, машинную диаграмму перестраивают в координатах σ − ε путем деления ординат P на первоначальную площадь сечения образца A0 и абсцисс ∆l на lо. Перестроенная таким образом диаграмма называется диаграммой условных напряжений. Уже по этой, новой диаграмме, определяют механические характеристики материала.
Определяются следующие механические характеристики:
Предел пропорциональности σпц – наибольшее напряжение, после которого нарушается справедливость закона Гука σ = Еε , где Е – модуль продольной упругости, или модуль упругости первого рода. При этом Е =σ/ε = tgα , т. е. модуль E это тангенс угла наклона прямолинейной части диаграммы к оси абсцисс
Предел упругости σу — условное напряжение, соответствующее появлению остаточных деформаций определенной заданной величины (0,05; 0,001; 0,003; 0,005%); допуск на остаточную деформацию указывается в индексе при σу
Предел текучести σт – напряжение, при котором происходит увеличение деформации без заметного увеличения растягивающей нагрузки
Также выделяют условный предел текучести — это условное напряжение, при котором остаточная деформация достигает определенной величины (обычно 0,2% от рабочей длины образца; тогда условный предел текучести обозначают как σ0,2). Величину σ0,2 определяют, как правило, для материалов, у которых на диаграмме отсутствует площадка или зуб текучести
Предел прочности (временное сопротивление разрыву) σв – напряжение, соответствующее наибольшей нагрузке Pmax , предшествующей разрыву образца
Кроме характеристик прочности материала, при испытании на растяжение определяют также характеристики пластичности - относительное удлинение δ и относительное сужение ψ
где lо – первоначальная расчетная длина образца, а lк – конечная расчетная длина образца
Методы испытания механических свойств металлов
Механические свойства металлов (прочность, упругость, пластичность, вязкость), как и другие свойства, являются исходными данными при проектировании и создании различных машин, механизмов и сооружений.
Методы определения механических свойств металлов делятся на следующие группы:
· статические, когда нагрузка возрастает медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);
· динамические, когда нагрузка возрастает с большой скоростью (испытания на ударный изгиб);
· циклические, когда нагрузка многократно изменяется (испытание на усталость);
· технологические — для оценки поведения металла при обработке давлением (испытания на изгиб, перегиб, выдавливание).
Испытания на растяжение (ГОСТ 1497-84) проводятся на стандартных образцах круглого или прямоугольного сечения. При растяжении под действием плавно возрастающей нагрузки образец деформируется до момента разрыва. Во время испытания образца снимают диаграмму растяжения (рис. 1.36, а), фиксирующую зависимость между действующей на образец силой Р, и вызванной ею деформацией Δl (Δl — абсолютное удлинение).
Рис. 1.36. Диаграмма растяжения низкоуглеродистой стали (а) и зависимость между напряжением и относительным удлинением (б)
Вязкость (внутреннее трение) — способность металла поглощать энергию внешних сил при пластической деформации и разрушении (определяется величиной касательной силы, приложенной к единице площади слоя металла, подлежащего сдвигу).
Пластичность — способность твердых тел необратимо деформироваться под действием внешних сил.
При испытании на растяжение определяют:
· σв — границу прочности, МН/м 2 (кг/мм 2 ):
где Рb — наибольшая нагрузка; F0 — начальная площадь сечения образца;
· σпц — границу пропорциональности, МН/м 2 (кг/мм 2 ):
где Pпц — нагрузка, соответствующая границе пропорциональности;
· σпр — границу упругости, МН/м 2 (кг/мм 2 ):
где Рпр — нагрузка, соответствующая границе упругости (при σпр остаточная деформация соответствует 0,05-0,005 % начальной длины);
· σт — границу текучести, МН/м 2 (кг/мм 2 ):
где Рт — нагрузка, соответствующая границе текучести, Н;
· δ — относительное удлинение, %:
где l0 — длина образца до разрыва, м; l1 — длина образца после разрыва, м;
· ψ — относительное сужение, %:
где F0 — площадь сечения до разрыва, м 2 ; F — площадь сечения после разрыва, м 2 .
Испытания на твердость
Твердость — это сопротивление материала проникновению в него другого, более твердого тела. Из всех видов механического испытания определение твердости является самым распространенным.
Испытания по Бринеллю (ГОСТ 9012-83) проводятся путем вдавливания в металл стального шарика. В результате на поверхности металла образуется сферический отпечаток (рис. 1.37, а).
Твердость по Бринеллю определяется по формуле:
где P — нагрузка на металл, Н; D — диаметр шарика, м; d — диаметр отпечатка, м.
Чем тверже металл, тем меньше площадь отпечатка.
Диаметр шарика и нагрузку устанавливают в зависимости от исследуемого металла, его твердости и толщины. При испытании стали и чугуна выбирают D = 10 мм и P = 30 кН (3000 кгс), при испытании меди и ее сплавов D = 10 мм и P = 10 кН (1000 кгс), а при испытании очень мягких металлов (алюминия, баббитов и др.) D = 10 мм и P = 2,5 кН (250 кгс). При испытании образцов толщиной менее 6 мм выбирают шарики с меньшим диаметром — 5 и 2,5 мм. На практике пользуются таблицей перевода площади отпечатка в число твердости.
Метод Бринелля не рекомендуется применять для металлов твердостью более НВ 450 (4500 МПа), поскольку шарик может деформироваться, что исказит результаты испытаний.
Испытания по Роквеллу (ГОСТ 9013-83). Проводятся путем вдавливания в металл алмазного конуса (α = 120°) или стального шарика (D = 1,588 мм или 1/16", рис. 1.37, б). Прибор Роквелла имеет три шкалы — В, С и А. Алмазный конус применяют для испытания твердых материалов (шкалы С и А), а шарик — для испытания мягких материалов (шкала В). Конус и шарик вдавливают двумя последовательными нагрузками: предварительной Р0 и общей Р:
где Р1 — основная нагрузка.
Предварительная нагрузка Р0 = 100 Н (10 кгс). Основная нагрузка составляет 900 Н (90 кгс) для шкалы В; 1400 Н (140 кгс) для шкалы С и 500 Н (50 кгс) для шкалы А.
Рис. 1.37. Схема определения твердости: а — по Бринеллю; б — по Рoквеллу; в — по Виккерсу
Твердость по Роквеллу измеряют в условных единицах. За единицу твердости принимают величину, которая соответствует осевому перемещению наконечника на расстояние 0,002 мм.
Твердость по Роквеллу вычисляют следующим способом:
НR = 100 – e (шкалы А и С); НR = 130 – e (шкала В).
Величину e определяют по формуле:
где h — глубина проникновения наконечника в металл под действием общей нагрузки Р (Р =Р0+ Р1); h0 — глубина проникновения наконечника под действием предварительной нагрузки Р0.
В зависимости от шкалы твердость по Роквеллу обозначают НRВ, НRС, НRА.
Испытания по Виккерсу (ГОСТ 2999-83). В основе метода — вдавливание в испытываемую поверхность (шлифованную или даже полированную) четырехгранной алмазной пирамиды (α = 136°) (рис. 1.37, в). Метод используется для определения твердости деталей малой толщины и тонких поверхностных слоев, имеющих высокую твердость.
Твердость по Виккерсу:
где Р — нагрузка на пирамиду, Н; d — среднее арифметическое двух диагоналей отпечатка, измеренных после снятия нагрузки, м.
Число твердости по Виккерсу определяют по специальным таблицам по диагонали отпечатка d. При измерении твердости применяют нагрузку от 10 до 500 Н.
Микротвердость (ГОСТ 9450-84). Принцип определения микротвердости такой же, как и по Виккерсу, согласно соотношению:
Метод применяется для определения микротвердости изделий мелких размеров и отдельных составляющих сплавов. Прибор для измерения микротвердости — это механизм вдавливания алмазной пирамиды и металлографический микроскоп. Образцы для измерений должны быть подготовлены так же тщательно, как микрошлифы.
Испытание на ударную вязкость
Для испытания на удар изготавливают специальные образцы с надрезом, которые затем разрушают на маятниковом копре (рис. 1.39). Общий запас энергии маятника будет расходоваться на разрушение образца и на подъем маятника после его разрушения. Поэтому если из общего запаса энергии маятника отнять часть, которая тратится на подъем (взлет) после разрушения образца, получим работу разрушения образца:
K = Рl(соs β – соs α), Дж (кг·м),
де P — масса маятника, Н (кг); h1 — высота подъема центра масс маятника до удара, м; h2 — высота взлета маятника после удара, м; l — длина маятника, м; α, β — углы подъема маятника соответственно до разрушения образца и после него.
Рис. 1.39. Испытание на ударную вязкость: 1 — маятник; 2 — нож маятника; 3 — опоры
Ударную вязкость, т. е. работу, затраченную на разрушение образца и отнесенную к поперечному сечению образца в месте надреза, определяют по формуле:
где F — площадь поперечного сечения в месте надреза образца, м 2 (см 2 ).
Для определения KС пользуются специальными таблицами, в которых для каждого угла β определена величина работы удара K. При этом F = 0,8 · 10 –4 м 2 .
Для обозначения ударной вязкости добавляют и третью букву, указывающую на вид надреза на образце: U, V, Т. Запись KСU означает ударную вязкость образца с U-образным надрезом, KСV — с V-образным надрезом, а KСТ — с трещиной (рис. 1.40).
Рис. 1.40. Виды надрезов на образцах для испытания на ударную вязкость:
а — U-образный надрез (KCU); б — V-образный надрез (KСV); в — надрез с трещиной (KСТ)
Испытание на усталость (ГОСТ 2860-84). Разрушение металла под действием повторных или знакопеременных напряжений называется усталостью металла. При разрушении металла вследствие усталости на воздухе излом состоит из двух зон: первая зона имеет гладкую притертую поверхность (зона усталости), вторая — зона долома, в хрупких металлах она имеет грубокристаллическое строение, а в вязких — волокнистое.
При испытании на усталость определяют границу усталости (выносливости), т. е. то наибольшее напряжение, которое может выдержать металл (образец) без разрушения заданное число циклов. Самым распространенным методом испытания на усталость является испытание на изгиб при вращении (рис. 1.41).
Рис. 1.41. Схема испытания на изгиб при вращении:
1 — образец; Р — нагрузка; Мвиг — изгибающий момент
Применяют следующие основные виды технологических испытаний (проб).
Проба на изгиб (рис. 1.42) в холодном и горячем состоянии — для определения способности металла выдерживать заданный изгиб; размеры образцов — длина l = 5а + 150 мм, ширина b = 2а (но не менее 10 мм), где а — толщина материала.
Рис. 1.42. Технологическая проба на изгиб: а — образец до испытания; б — загиб до определенного угла; в — загиб до параллельности сторон; г — загиб до соприкосновения сторон
Проба на перегиб предусматривает оценку способности металла выдерживать повторный изгиб и применяется для проволоки и прутков диаметром 0,8—7 мм из полосового и листового материала толщиной до 55 мм. Образцы сгибают попеременно направо и налево на 90° с равномерной — около 60 перегибов в минуту — скоростью до разрушения образца.
Проба на выдавливание (рис. 1.43) — для определения способности металла к холодной штамповке и вытягиванию тонкого листового материала. Состоит в продавливании пуансоном листового материала, зажатого между матрицей и зажимом. Характеристикой пластичности металла является глубина выдавливания ямки, что соответствует появлению первой трещины.
Рис. 1.43. Испытание на выдавливание: 1 — лист; h — мера способности материала к вытяжке
Проба на навивку проволоки диаметром d ≤ 6 мм. Испытание состоит в навивке 5—6 плотно прилегающих по винтовой линии витков на цилиндр заданного диаметра. Выполняется только в холодном состоянии. Проволока после навивки не должна иметь повреждений.
Проба на искру используется при необходимости определения марки стали при отсутствии специального оборудования и маркировки.
Как и зачем проводятся испытания материалов на растяжение
Опыт применения материалов в машиностроении показывает, что их поведение в конструкциях зависит от целого ряда факторов – скорости и способа приложения нагрузок, температуры, формы изделия, его структуры и т.д. Поэтому проведение механических испытаний материалов позволяет определить его поведение в условиях эксплуатации. Проводя такие испытания, стремятся имитировать условия, возможно более близкие к реальным. Испытание на растяжение – одно из важнейших, поскольку именно в условиях растягивающих усилий большинство материалов обладает наименьшей прочностью.
- Цель испытаний
- Предел прочности при растяжении
- Закон Гука
- Модуль упругости
- Предел текучести
- Метод смещения
- Альтернативные методы
- Деформация
Цель испытаний
Испытание на растяжение проводят для конструкционных сталей, цветных металлов и их сплавов. Стандартом установлена методика статических испытаний, целью которых является определение следующих механических характеристик:
- Предела пропорциональности;
- Константы упругости;
- Предела текучести – условного и физического;
- Временного сопротивления;
- Истинного сопротивления на разрыв;
- Относительного сужения и удлинения образца после его разрыва.
В ряде случаев исследуются и дополнительные показатели, например, длительная прочность (ползучесть) конструкции.
Указанные параметры исследуются на стандартных образцах круглого или призматического поперечного сечения, форма и размеры которых определяет ГОСТ 7564-97. Для хрупких материалов форма образцов исключает резкие перепады в сечениях. Образцы получают штамповкой, литьём или механической обработкой (последнее - для материалов повышенной хрупкости).
Предел прочности при растяжении
Данный параметр определяют на разрывных машинах и механическим или – чаще – гидравлическим приводом. Лабораторные установки снабжаются записывающим устройством, которое представляет зависимость «напряжение-деформация/перемещение» в виде графика.
Записанные диаграммы различаются характером перехода необратимых деформаций в деформации разрушения. Постепенный переход от одного участка к другому характерен для пластичных материалов, к которым относится большинство металлов и сплавов. При этом остаточные деформации сравнительно велики, и образуют перед разрывом образца так называемую площадку текучести, когда деформация увеличивается, а прикладываемое усилие практически не изменяется.
Хрупкие материалы разрушаются при малых остаточных деформациях, а площадка текучести отсутствует. К таким материалам относят закалённую и не отпущенную сталь, серый чугун, стекло, бетон и др.
Таким образом, пределом прочности (или временным сопротивлением) называют условное напряжение, которое рассчитывается относительно силы, действующей на образец к к изначальной площади его поперечного сечения. Предел прочности соответствует максимальной нагрузке, которая предшествовала разрушению и определяется в МПа. Визуальной мерой временного сопротивления считается появление местного сужения образца, называемого шейкой. Именно в области шейки растяжение образца происходит наиболее интенсивно.
Испытание на растяжение ГОСТ 1497-84 является обязательным для всех видов конструкционных материалов.
Закон Гука
Это – основной закон, устанавливающий зависимость между напряжениями и деформациями в упругом теле. Закон Гука справедлив для начальных деформаций, которые пропорциональны прикладываемым к телу напряжениям.
Для продольного растяжения критерием пропорциональности вышеуказанных физических величин является показатель упругости, который называется модулем Юнга. Для подавляющего большинства конструкционных материалов модуль Юнга – постоянная величина, характеризующая жёсткость.
В более точных расчётах иногда принимают во внимание температурную зависимость константы упругости, которая, однако, проявляет себя лишь при температурах от 88 К.
Закон Гука справедлив лишь при напряжениях и деформациях, которые не превышают пределов, свойственных данному материалу. На применении этого закона основаны все вычисления, принятые в сопротивлении материалов.
Модуль упругости
Модуль упругости – это характеристика сопротивления материала упругой деформации. Он равен отношению напряжения к вызванной им упругой деформации.
Различают модуль упругости при осевом растяжении (уже описанный ранее модуль Юнга) и модуль упругости при сдвиге, характеризующий касательные напряжения в материале. Иногда, в условиях всестороннего сжатия говрят о модуле объёмной упругости.
Модуль нормальной упругости и модуль сдвига зависят от материала образца. Они важны при расчётах на прочность, жёсткость, устойчивость, а также являются мерой силы межатомной связи. Чем больше модуль упругости, тем меньшую деформацию получает металл при одинаковой нагрузке. Рассматриваемая величина измеряется в МПа или ГПа. Для металлов значение модуля сдвига обычно выше, чем модуля продольной упругости.
Предел текучести
Метод испытания на растяжение не является единственной технологией экспериментального определения эксплуатационных показателей. Важным параметром считается также предел текучести – напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения.
Предел текучести является границей, которая разделяет зоны упругого и упруго-пластического деформирования, которые наблюдались в исследованном образце. Выше этого параметра даже незначительное увеличение напряжений или нагрузок вызывает значительные (и необратимые) деформации образца.
Для материалов, которые не имеют на диаграмме чётко выраженной площадки текучести, принимают так называемый условный предел текучести. Под ним понимают удельную нагрузку, когда необратимые изменения формы превышают установленный максимум. Этот максимум обычно устанавливается техническими условиями на материал и обязательно должен превышать те показатели, которые известны относительно предела упругости.
Критерием остаточной деформации считается удлинение образца на 0,2 %.
Метод смещения
Испытания на постоянное смещение - иногда также называемые испытаниями на постоянную деформацию, используются при оценке ползучести, когда режим нагружения определяет степень релаксации материала. Используются изогнутые в форме буквы U образцы, в которых релаксация менее значительна (только внешние волокна могут подвергаться значительному напряжению). Нижележащий упруго напряженный материал сопротивляется деформации только внешних волокон. Таким образом, ползучесть может быть ограничена, в отличие от испытания на растяжение, где постоянно наблюдается смещение зон образца.
Испытание со смещением на обратный U-образный изгиб в настоящее время разрабатывается как стандарт ISO. Оно используется преимущественно в ядерной промышленности.
Альтернативные методы
Альтернативные методы непрямых испытаний на растяжение включают:
- Тестирование на разрыв полых эластичных образцов;
- Испытание на изгиб балки;
- Модифицированные испытания на растяжение по методу Франклина-Дюссо.
Устройства для таких испытаний используют раздельные захваты, фиксирующие образец. Применяются для оценки прочности горных пород, а также в механике разрушения, при выяснении трещиностойкости конструкций.
Деформация
ГОСТ 1497-84 предусматривает установление двух деформационных характеристик – остаточного сужения образца и и его абсолютного удлинения. Оба показателя оцениваются в процентах или относительных единицах. Являются механическими характеристиками материала, и принимаются во внимание при оценке его способности выполнять поставленные эксплуатационные задачи.
Параметры деформации приводятся для комнатных температур испытывавшихся образцов.
Испытаниями на растяжение определяют свойства металлов
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно
ГОСТ 1497-84
(ИСО 6892-84)
Методы испытаний на растяжение
Metals. Methods of tension test
Дата введения 1986-01-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР
В.И.Маторин, Б.М.Овсянников, В.Д.Хромов, Н.А.Бирун, А.В.Минашин, Э.Д.Петренко, В.И.Чеботарев, М.Ф.Жембус, В.Г.Гешелин, А.В.Богачева
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета СССР по стандартам от 16.07.84 N 2515
4. Стандарт полностью соответствует СТ СЭВ 471-88 и соответствует ИСО 6892-84* по сущности метода, проведению испытаний и обработке результатов испытаний металлов и изделий из них наименьшим размером в поперечном сечении 3,0 мм и более
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
Номер пункта, приложения
6. Ограничение срока действия снято по протоколу N 5-94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС N 11-12-94)
ВНЕСЕНЫ поправки, опубликованные в ИУС N 7, 2014 год; ИУС N 11, 2014 год
Поправки внесены изготовителем базы данных
Настоящий стандарт устанавливает методы статических испытаний на растяжение черных и цветных металлов и изделий из них номинальным диаметром или наименьшим размером в поперечном сечении 3,0 мм и более для определения при температуре (20) °C характеристик механических свойств:
предела текучести физического;
предела текучести условного;
* Поправкой (ИУС 7-2014) по всему тексту стандарта заменены слова "временное сопротивление" на "предел прочности";
** Поправкой (ИУС 11-2014) по всему тексту стандарта заменены слова "предел прочности" на "временное сопротивление". - Примечание изготовителя базы данных.
относительного равномерного удлинения;
относительного удлинения после разрыва;
относительного сужения поперечного сечения после разрыва.
Стандарт не распространяется на испытания проволоки и труб.
Стандарт соответствует СТ СЭВ 471-88 и ИСО 6892-84 по сущности метода, проведению испытаний и обработке результатов испытаний металлов и изделий из них наименьшим размером в поперечном сечении 3,0 мм и более.
Термины, применяемые в настоящем стандарте, и пояснения к ним приведены в приложении 1.
(Измененная редакция, Изм. N 2, 3).
1. МЕТОДЫ ОТБОРА ОБРАЗЦОВ
1.1. Вырезку заготовок для образцов проводят на металлорежущих станках, ножницах, штампах путем применения кислородной и анодно-механической резки и другими способами, предусматривая припуски на зону металла с измененными свойствами при нагреве и наклепе.
Места вырезки заготовок для образцов, количество их, направление продольной оси образцов по отношению к заготовке, величины припусков при вырезке должны быть указаны в нормативно-технической документации на правила отбора проб, заготовок и образцов или на металлопродукцию.
1.2. Образцы рекомендуется изготовлять на металлорежущих станках.
При изготовлении образцов принимают меры (охлаждение, соответствующие режимы обработки), исключающие возможность изменения свойств металла при нагреве или наклепе, возникающих в результате механической обработки. Глубина резания при последнем проходе не должна превышать 0,3 мм.
1.3. Плоские образцы должны сохранять поверхностные слои проката, если не имеется иных указаний в нормативно-технической документации на правила отбора проб, заготовок и образцов или на металлопродукцию.
Для плоских образцов стрела прогиба на длине 200 мм не должна превышать 10% от толщины образца, но не более 4 мм. При наличии указаний в нормативно-технической документации на металлопродукцию допускается рихтовка или иной вид правки заготовок и образцов.
1.4. Заусенцы на гранях плоских образцов должны быть удалены механическим способом без повреждения поверхности образца. Кромки в рабочей части образцов допускается подвергать шлифовке и зачистке на шлифовальном круге или шлифовальной шкуркой.
1.5. При отсутствии других указаний в нормативно-технической документации на металлопродукцию значение параметров шероховатости обработанных поверхностей образцов должно быть не более 1,25 мкм - для поверхности рабочей части цилиндрического образца и не более 20 мкм - для боковых поверхностей в рабочей части плоского образца.
Требования к шероховатости поверхности литых образцов и готовых изделий должны соответствовать требованиям к шероховатости поверхности литых заготовок и металлопродукции, испытываемой без предварительной механической обработки.
(Измененная редакция, Изм. N 3).
1.6. При наличии указаний в нормативно-технической документации на правила отбора проб, заготовок и образцов или на металлопродукцию допускается испытывать сортовой прокат, литые образцы и готовые изделия без предварительной механической обработки с учетом допусков на размеры, предусмотренных для испытываемых изделий.
1.7. Испытания проводят на двух образцах, если иное количество не предусмотрено в нормативно-технической документации на металлопродукцию.
1.8. Для испытания на растяжение применяют пропорциональные цилиндрические или плоские образцы диаметром или толщиной в рабочей части 3,0 мм и более с начальной расчетной длиной . Применение коротких образцов предпочтительнее.
Литые образцы и образцы из хрупких материалов допускается изготовлять с начальной расчетной длинойПри наличии указаний в НТД на металлопродукцию допускается применять и другие типы образцов, в том числе и непропорциональные, для которых начальная расчетная длина устанавливается независимо от начальной площади поперечного сечения образца .
(Измененная редакция, Изм. N 2).
1.9. Типы и размеры пропорциональных цилиндрических и плоских образцов приведены в приложениях 2 и 3.
Тип и размеры образца должны указываться в нормативно-технической документации на правила отбора проб, заготовок и образцов или на металлопродукцию.
Допускается применение при испытании пропорциональных образцов других размеров.
Для плоских образцов соотношение между шириной и толщиной в рабочей части образца не должно превышать 8:1.
1.10. Форма и размеры головок и переходных частей цилиндрических и плоских образцов определяются способом крепления образцов в захватах испытательной машины. Способ крепления должен предупреждать проскальзывание образцов в захватах, смятие опорных поверхностей, деформацию головок и разрушение образца в местах перехода от рабочей части к головкам и в головках.
1.11. Предельные отклонения по размерам рабочей части цилиндрических и плоских образцов приведены в приложениях 2 и 3.
Для литых механически обработанных цилиндрических образцов предельные отклонения по диаметру удваиваются.
Предельные отклонения по толщине плоских образцов с механически не обработанными поверхностями должны соответствовать предельным отклонениям по толщине, установленным для металлопродукции.
Предельные отклонения по толщине плоских образцов с механически обработанными поверхностями - ±0,1 мм.
1.12. Рабочая длина образцов должна составлять:
от - для цилиндрических образцов,
от - для плоских образцов.
При разногласиях в оценке качества металла рабочая длина образцов должна составлять:
Примечание. При использовании тензометров допускается применение образцов с другими рабочими длинами , величина которых больше указанных.
1.13. Образцы маркируют вне рабочей длины образца.
2. АППАРАТУРА
2.1. Разрывные и универсальные испытательные машины должны соответствовать требованиям ГОСТ 28840.
2.2. Штангенциркули должны соответствовать требованиям ГОСТ 166.
Микрометры должны соответствовать требованиям ГОСТ 6507.
Допускается применение и других измерительных средств, обеспечивающих измерение с погрешностью, не превышающей указанную в п.3.1.
2.3. Тензометры должны соответствовать требованиям НТД.
При определении предела пропорциональности и пределов текучести условных с допусками на величину пластической или полной деформации при нагружении или остаточной деформации при разгружении до 0,1% относительная цена деления шкалы тензометра не должна превышать 0,005% от начальной расчетной длины по тензометру ; при определении предела текучести условного с допуском на величину деформации от 0,1 до 1% - не должна превышать 0,05% от начальной расчетной длины по тензометру .
Читайте также: