Испытание на разрыв металла
Центр инженерных услуг имеет специализированную лабораторию для проведения испытаний металлов и других конструкционных материалов. Мы выполняем химический анализ испытательных образцов, динамические и статические испытания на разрыв, растяжение, сжатие и изгиб. Опытные специалисты определяют состав и механические свойства металлов и других материалов.
Выполняемые исследования
В процессе запуска нового изделия в производство всегда встает вопрос выбора материала изделия. Мы выполняем различные виды анализов материалов, для определения состава и свойств.
Основные направления отдела анализа материалов:
- Экспресс методы анализа физических свойств;
- Химический и спектральный анализ;
- Металлографический анализ и электрохимическая коррозия; ;
Основные направления отдела прочности материалов:
- Малоцикловые испытания;
- Многоцикловые испытания;
- Стандартные механические испытания материалов;
- Статистическая трещиностойкость;
- Циклическая трещиностойкость;
Необходимо узнать состав и свойства материала?
Многие производители держат в секрете точный химический состав металла своей продукции, но с современным оборудованием можно получить подробный состав любого материала.
Вам необходимо узнать материал образца или подобрать аналог для опытного изделия?
Специалисты нашей лаборатории анализируют материал методами разрушающего и неразрушающего контроля, определяют химический состав и марку материала.
По результатам выдаем протокол испытаний с заключением. Наш испытательный центр аккредитован в системе сертификации ГОСТ Р.
Виды испытаний
От выбора материала изделия зависят его прочностные и эксплуатационные свойства. В нашей лаборатории Вы можете заказать испытания опытных образцов по всем важным для данного изделия характеристикам. Для правильного назначения материала часто необходимы прочностные исследования.
Мы выполняем следующие виды испытаний материалов:
Испытательное оборудование
Все исследования мы проводом в специализированной лаборатории, оснащенной всем необходимым оборудованием:
- Разрывные машины на усилие до 100 тонн;
- Микрорентгеноспектральный анализатор;
- Электронный микроскоп;
- Газоанализатор;
- Копер маятниковый;
- Атомно-эмиссионный спектрометр;
- Дифрактометр рентгеновский;
- Высокочастотные пульсаторы;
- Профилограф-профилометр;
Теги статьи: Испытания на растяжение, Испытания на сжатие, Испытание на изгиб, Испытание на разрыв, Статические испытания, Определение прочности материалов при механических испытаниях, Испытания металлов на твердость, Испытания металлов и сплавов, Испытания металлов на ударную вязкость, Испытания на усталость металла, Испытания металла на ударный изгиб, Динамические испытания металлов, Химические испытания металлов, Циклические испытания металлов
Испытание на разрыв металла
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Методы испытаний на растяжение тонких листов и лент
Metals. Methods of tensile testing of thin sheets and strips
Дата введения 1986-01-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР
В.И.Маторин, Б.М.Овсянников, В.Д.Хромов, Н.А.Бирун, А.В.Минашин, Э.Д.Петренко, В.И.Чеботарев, М.Ф.Жембус, В.Г.Гешелин, А.В.Богачева
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 17.07.84 N 2514
3. Стандарт соответствует СТ СЭВ 471-88 в части испытаний листов и лент толщиной от 0,5 до 3,0 мм
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
Вводная часть; 1.1; 1.4; 2.2; 2.3; 4.1; 4.4
6. Срок действия продлен до 01.01.96* Постановлением Госстандарта СССР от 25.03.91 N 319
* Ограничение срока действия снято по протоколу N 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации. (ИУС N 11-12, 1994 год). - Примечание "КОДЕКС".
7. ПЕРЕИЗДАНИЕ (февраль 1993 г.) с Изменениями N 1, 2, утвержденными в октябре 1987 г., марте 1991 г. (ИУС 1-88, 6-91)
Настоящий стандарт устанавливает методы статических испытаний на растяжение тонких листов и лент из черных и цветных металлов толщиной до 3,0 мм для определения при температуре (20)°C характеристик механических свойств:
предела текучести физического;
предела текучести условного;
относительного равномерного удлинения;
относительного удлинения после разрыва.
Стандарт соответствует СТ СЭВ 471-88 в части испытаний листов и лент толщиной от 0,5 до 3,0 мм.
Термины, применяемые в настоящем стандарте, и пояснения к ним - по ГОСТ 1497-84.
(Измененная редакция, Изм. N 2).
1. МЕТОДЫ ОТБОРА ОБРАЗЦОВ
1.1. Вырезку заготовок для образцов и изготовление образцов проводят по ГОСТ 1497-84.
1.2. Для испытания применяют пропорциональные плоские образцы с начальной расчетной длиной , a для испытания листов и лент толщиной от 0,5 до 3,0 мм и сТип и размеры образцов должны указываться в нормативно-технической документации на правила отбора заготовок и образцов или на металлопродукцию.
При наличии указаний в нормативно-технической документации на металлопродукцию допускается испытывать ленту с учетом допусков на размеры, предусмотренные для испытываемой металлопродукции. При ширине испытываемой ленты менее 12,5 мм начальная расчетная длина должна быть не менее 50 мм.
Не допускается правка заготовок или образцов, деформирование их изгибом или местным перегибом.
1.3. Форма, размеры и предельные отклонения по ширине плоских пропорциональных образцов приведены в обязательном приложении 1.
При наличии указаний в нормативно-технической документации на металлопродукцию допускается применять пропорциональные плоские образцы других размеров.
1.4. Рабочая длина образцов должна составлять от .
При разногласиях в оценке качества металла рабочая длина образцов должна составлятьПримечание. При использовании тензометров или испытательной машины с автоматическим определением относительного удлинения после разрыва выбор рабочей и расчетной части длин образца должен соответствовать требованиям ГОСТ 1497-84.
2. АППАРАТУРА
2.1. Разрывные и универсальные испытательные машины - по ГОСТ 28840-90.
2.2. Штангенциркули, микрометры - по ГОСТ 1497-84.
Допускается применение других измерительных средств, обеспечивающих измерение с погрешностью, не превышающей указанную в п. 3.2.
2.3. Тензометры с относительной ценой деления - по ГОСТ 1497-84.
3. ПОДГОТОВКА К ИСПЫТАНИЮ
3.1. Установленную начальную расчетную длину ограничивают с погрешностью до 1% на рабочей части образца кернами, рисками или другими метками, исключающими повреждение поверхности образца.
Для пересчета относительного удлинения после разрыва с отнесением места разрыва к середине и для определения относительного равномерного удлинения по всей рабочей длине образца рекомендуется наносить риски, керны или иные метки через каждые 5 или 10 мм.
3.2. Погрешность определения начальной площади поперечного сечения не должна превышать ±2% (при предельной погрешности измерения ширины образца ±0,2%).
3.3. Измерение размеров образцов до испытания проводят не менее чем в трех местах - в средней части и на границах рабочей длины образца.
За начальную площадь поперечного сечения образца в его рабочей части принимают наименьшее из полученных значений на основании произведенных измерений с округлением по табл.2.
Методики испытаний механических свойств
Механические свойства характеризуют способность материала сопротивляться деформации и разрушению под действием приложенных нагрузок.
По характеру изменения во времени действующей нагрузки механические испытания могут быть статическими (на растяжение, сжатие, изгиб, кручение), динамическими (на ударный изгиб) и циклическими (на усталость).
По воздействию температуры на процесс их делят на испытания при комнатной температуре, низкотемпературные и высокотемпературные (на длительную прочность, ползучесть).
Статические испытания проводятся при воздействии на образец с определенной скоростью постоянно действующей нагрузки. Скорость деформации составляет от 10 - 4 до 10 - 1 с - 1 . Статические испытания на растяжение относятся к наиболее распространенным. Свойства, определяемые при этих испытаниях, приведены в многочисленных стандартах по техническим условиям на материалы. К статическим относятся испытания на растяжение, сжатие, изгиб, кручение.
Динамические испытания характеризуются приложением к образцу ударной нагрузки и значительной скоростью деформации. Длительность испытания не превышает сотен долей секунды. Скорость деформации составляет около 10 2 с - 1 . Динамические испытания чаще всего проводят по схеме ударного изгиба образцов с надрезом.
Циклические испытания характеризуются многократными изменениями нагрузки по величине и по направлению. Примером испытаний являются испытания на усталость, они длительны и по их результату определяют число циклов до разрушения при разных значениях напряжения. В конечном итоге находят предельные напряжения, который образец выдерживает без разрушения в течение определенного числа циклов нагружения.
Простейшим механическим свойством является твердость. Методы определения твердости в зависимости от скорости приложения нагрузки делятся на статические и динамические, а по способу ее приложения - на методы вдавливания и царапания. Методы определения твердости по Бринеллю, Роквеллу, Виккерсу относятся к статическим методам испытания.
Твердость - это способность материала сопротивляться вдавливанию в него более твердого тела (индентора) под действием внешних сил.
При испытании на твердость в поверхность материалов вдавливают пирамиду, конус или шарик (индентор), в связи с чем различают методы испытаний, соответственно, по Виккерсу, Роквеллу и Бринеллю. Кроме того, существуют менее распространенные методы испытания твердости: метод упругого отскока (по Шору), метод сравнительной твердости (Польди) и некоторые другие.
При испытании материалов на твердость не изготавливают стандартных специальных образцов, однако к размерам и поверхности образцов и изделий предъявляются определенные требования.
Твердость по Виккерсу (ГОСТ 2999-75) устанавливают путем вдавливания в металл индентора - алмазной пирамиды с углом при вершине 136° под действием постоянной нагрузки Р: 1; 2; 2,5; 3; 5; 10; 20; 30; 50 или 100 кгс и выдержки под нагрузкой в течение 10-15 с. Для определения твердости черных металлов и сплавов используют нагрузки от 5 до 100 кгс, медных сплавов - от 2,5 до 50 кгс, алюминиевых сплавов - от 1 до 100 кгс. После снятия нагрузки с помощью микроскопа прибора находят длину диагонали отпечатка, а твердость HVрассчитывают по формуле
Имеется таблица зависимости твердости от величины нагрузки и длины диагонали. Поэтому на практике вычислений не производят, а пользуются готовой расчетной таблицей. Твердость по Виккерсу HVизмеряется в кгс/мм 2 , Н/мм 2 или МПа. Значение твердости по Виккерсу может изменяться от HV2060 до HV5 при нагрузке 1 кгс.
По методу Бриннелля вдавливают в образец или изделие стальной закаленный шарик диаметром 10, 5 или 2,5 мм под действием нагрузок 3000, 1000, 750, 500, 250, 62,5 кгс и др. (ГОСТ 9012-59, рис. 1.). Полученный круглый отпечаток на образце измеряют под лупой и по таблицам находят величину твердости по Бринеллю, значение которой не превышает 450 НВ. Твердость по Бринеллю почти совпадает со значениями твердости по Виккерсу.
Твердость по Бринеллю НВ (по умолчанию) имеет размерность кгс/мм 2 , например, твердость алюминиевого сплава равна 70 НВ. При нагрузке, определяемой в ньютонах, твердость по Бринеллю измеряется в МПа. Например, твердость отожженной стали равна 207 НВ при нагрузке 3000 кгс, диаметре шарика 10 мм, диаметре отпечатка 4,2 мм или, учитывая коэффициент перевода: 1 Н = 9,8 кгс,
По методу Роквелла (ГОСТ 9013-59) вдавливают алмазный конус с углом при вершине 120° (шкалы А и С) или стальной шарик диаметром 1,5875 мм (шкала В).
При этом определяют твердость, соответственно, HRA, HRC и HRB. В настоящее время измерение твердости по методу Роквелла является наиболее распространенным методом, потому что при использовании твердомеров Роквелла не требуется измерять отпечаток, число твердости считывается со шкалы прибора сразу после снятия основной нагрузки.
Метод заключается во вдавливании в испытуемый образец индентора под действием двух последовательно прикладываемых нагрузок - предварительной Р0 и основной Р1 которая добавляется к предварительной, так что общая нагрузка Р = Р0 + Р1 После выдержки в течение нескольких секунд основную нагрузку снимают и измеряют остаточную глубину проникновения индентора, который при этом продолжает находиться под действием предварительной нагрузки. Перемещение основной стрелки индикатора на одно деление шкалы соответствует перемещению индентора на 0,002 мм, которое принимается за единицу твердости.
На рис. 2 представлена схема измерения твердости по методу Роквелла алмазным или твердосплавным конусом. При испытаниях измеряют глубину восстановленного отпечатка. Шкалы А и С между собой совпадают, поскольку испытания проводят одним и тем же индентором - алмазным конусом, но при разных нагрузках: 60 и 150 кгс соответственно. Твердость в этом случае определяется как
На практике значения твердости по Роквеллу не рассчитываются по формулам, а считываются с соответствующей (черной или красной) шкалы прибора. Шкалы HRC и HRA используются для высокой твердости, HRB -для низкой. Число твердости по Роквеллу измеряют в условных единицах, оно является мерой глубины вдавливания индентора под определенной нагрузкой.
Испытание на растяжение материалов проводят в соответствии с ГОСТ 1497-84 «Методы испытаний на растяжение». Стандарт устанавливает методы статических испытаний на растяжение черных и цветных металлов для определения при температуре 20 °С пределов пропорциональности, упругости, текучести, временного сопротивления разрыву, относительного удлинения и относительного сужения, модуля упругости.
Для испытаний применяют плоские и цилиндрические образцы, вырезанные из детали или специально изготовленные. Размеры образцов регламентированы указанным стандартом, они подчиняются геометрическому подобию и могут быть короткими и длинными. Для цилиндрического образца берется соотношение начальной рабочей длины l0 и исходного диаметра d0 : l0= 5d0- короткий образец, l0= 10d0 - длинный образец. Для плоского образцаберется соотношение рабочей длины l0 и площади поперечного сечения F0:
l0= 5,65√F0 - короткий образец, l0= 11,3√F0 - длинный образец. Цилиндрические образцы изготавливаются диаметром 3 мм и более. Образцы состоят из рабочей части длиной l0 и головок, форма и размер которых соответствуют захватам машины (рис. 3).
Растяжение образца проводят на специальных машинах, позволяющих фиксировать величину прилагаемой нагрузки и изменение длины образца при растяжении. Эти же машины дают возможность записывать изменение длины образца при увеличении нагрузки (рис. 4), т.е. первичную диаграмму испытания на растяжение в координатах: нагрузка Р, Н, кН; и абсолютное удлинение образца А, мм.
Измеряя величину нагрузки в характерных точках диаграммы испытаний на растяжение (рис.4), определяют следующие параметры механических свойств материалов:
Значения 0,05 и 0,2 в записи предела упругости и текучести соответствуют величине остаточной деформации ∆l в процентах от l0 при растяжении образца. Напряжения при испытании на растяжение вычисляют путем деления нагрузки Р, соответствующей характерной точке на диаграмме, на площадь первоначального поперечного сечения F0 рабочей части испытуемого образца:
Предел пропорциональности и предел упругости определяют с помощью тензометра (прибор для определения величины деформации). Предел текучести физический и условный рассчитывают, находя нагрузку по диаграмме растяжения. Если на диаграмме нет площадки текучести, то для вычисления условного предела текучести необходимо провести графические построения на диаграмме (рис. 1.5). Вначале находят величину остаточной деформации, равную 0,2 % от l0, далее отмечают отрезок на оси деформации, равный 0,2 % от l0, и проводят линию, параллельную пропорциональному участку диаграммы растяжения, до пересечения с кривой растяжения.
Нагрузка P0,2 соответствует точке их пересечения. Физический и условный предел текучести характеризуют способность материала к началу пластической деформации, т.е. сопротивление малой пластической деформации.
Предел прочности можно подсчитать, используя показания силоизмерителя, по максимальной нагрузке Рmax при разрыве либо найти Рmax (Рв) по первичной диаграмме растяжения. Характер деформации при растяжении вязких и хрупких материалов существенно различается.
Хрупкие материалы после достижения максимальной нагрузки быстро разрушаются без значительной пластической деформации, поэтому σв для
хрупких материалов является характеристикой сопротивления разрушению, а для пластичных - характеристикой сопротивления деформации.
Напряжение разрушения определяют как истинное. При этом нагрузку разрушения делят на конечную площадь поперечного сечения образца после разрушения FK:
Пластичность, т.е. способность деформироваться без разрушения, характеризуется изменениями размеров образца. При испытании на разрыв определяют следующие характеристики пластичности:
где lк, Fк — соответственно, длина рабочей части и площадь поперечного сечения образца после разрыва.
Ударная вязкость характеризует удельную работу, затрачиваемую на разрушение при ударе образца с надрезом. Ударная вязкость испытывается на маятниковом копре с постоянным запасом работы маятника по ГОСТ 9454-78 «Металлы. Метод испытания на ударный изгиб при пониженной, комнатной и повышенной температурах». Стандарт распространяется на черные и цветные металлы и сплавы и устанавливает метод испытания при температурах от -100 до +1000 °С. Метод основан на разрушении ударом маятникового копра образца с концентратором напряжений. В результате испытания определяют полную работу, затраченную при ударе К, или ударную вязкость КС.
Используют образцы прямоугольной формы с концентратором типа U, V, Т (усталостная трещина). Наиболее распространенными образцами являются образцы размерами 55x10x10 мм с U-концентратом 2x2 мм (рис. 6).
На разрушение ударом образца затрачивается только часть энергии маятника, в связи с чем маятник после разрушения образца продолжает двигаться, отклоняясь на определенный угол. Чем больше величина работы, затрачиваемой на разрушение образца, тем на меньший угол он отклоняется от вертикали после разрушения. По величине этого угла и определяют работу удара К или работу, затраченную на разрушение образца. Работу разрушения К относят к площади поперечного сечения образца Soв месте излома и тем самым находят КС - ударную вязкость:
Методы испытания механических свойств при нормальных, высоких и низких температурах
Методом статических испытаний на растяжение при комнатной (20±5°) температуре по ГОСТ 1497—84 определяют: пределы пропорциональности σпц, упругости σуп, условный σ0,2и физический σт пределы текучести, временное сопротивление разрыву σв, относительное удлинение б и сужение Ψпосле разрыва. Основной тип образца — цилиндрический с рабочим диаметром 10 мм, применяют также образцы других диаметров — d0 (часто диаметром 5 мм), плоские образцы толщиной 0,5 мм и более. Начальная расчетная длина l0 должна составлять 5,65√F0 или 11,3√F0 , где F0— площадь поперечного сечения рабочей части образца до разрыва. Рабочая длина цилиндрических образцов должна быть в пределах от l0 + 0,5d0 до l0 + 2d0, плоских образцов толщиной 4 мм и более — от l0 + 1,5√F0 до l0 + 2,5√F0.
При арбитражных испытаниях рабочая длина образцов должна соответствовать верхним из указанных пределов. Основные требования, предъявляемые к установке образцов: способ крепления не должен допускать проскальзывания образцов в захватах, смятия опорных поверхностей, деформацию головок и разрушение образца в местах перехода от рабочей части к головкам и в головках. Разметку расчетной длины образца следует выполнять с точностью до 1%.,
Измерение образцов до испытания проводят не менее чем в трех местах (в середине образца и по краям рабочей части), площадь поперечного сечения вычисляют по наименьшим из полученных размеров. При проведении испытаний необходимо соблюдать надежное центрирование образца в захватах испытательной машины плавность нагружения. Скорость перемещения подвижного захвата не должна превышать 0,1 при испытании до предела текучести и за пределом текучести быть не менее 0,4 длины расчетной части образца при выражении ее в миллиметрах в минуту. Могут быть предложены и другие скорости. При определении пределов упругости и текучести с помощью тензометров цена деления шкалы приборов не должна превышать 0,002 и 0,02 мм соответственно. Точность отсчета нагрузки при испытании — одно наименьшее деление шкалы силоизмерителя. Порядок проведения испытаний и расчет показателей механических свойств регламентированы в ГОСТ 1497—84.
Кратковременные статические испытания на растяжение при повышенных температурах (до 1200 °С) проводят в соответствии с ГОСТ 9651—84. Определяют: предел текучести (σ t 0,2) временное сопротивление разрыву (σв),относительное удлинение (δ t ) и сужение (Ψ t )- Методика испытаний аналогична испытаниям при нормальной температуре. Отличие состоит в форме и размерах образца, наличии соответствующего нагревательного устройства и оборудования для контроля и поддержания заданного температурного режима испытаний. Для «горячих» испытаний применяются пропорциональные цилиндрические образцы с резьбовыми головками и с расчетной длиной рабочей части l0 = 5,65√F0 (короткий) и l0 = 11,3√F0 (длинный).
Нагревательное устройство (печь) должно обеспечивать равномерный нагрев до заданной температуры по всей рабочей длине образца и сохранять температуру в установленных пределах на протяжении всего испытания. Температуру измеряют одной термопарой, установленной в средней части образца, и приборами класса точности не ниже 0,5%. Приборы подлежат систематической поверке в соответствии с инструкциями Госстандарта СССР. Допустимые отклонения от заданной температуры приведены ниже:
Продолжительность нагрева до температуры испытания не должна превышать 1 ч, а время выдержки 20—30 мин, если нет других указаний в НТД. Запись диаграмм выполняют в масштабе по оси деформации 12 : 1 или более подробном. Испытания на растяжение при отрицательных температурах проводятся сравнительно редко.
осуществляют на стандартных образцах пяти типов (рис. 1), в основном применяют тип 1. Образцы клеймят номером плавки и порядковым номером на боковых сторонах или на стороне,противоположной надрезу. Расстояние клейма от торца—не более 15 мм. К испытаниям не допускают образцы с дефектами изготовления (размеры, следы обработки на поверхности надреза в виде поперечных рисок, трещины, заусенцы на ребрах, клеймо на опорной поверхности) и металла. В термически обработанных образцах канавки прорезают после термообработки. Образец помещают на опоры станины маятникового копра надрезом внутрь, правильность установки проверяют специальным шаблоном. Расстояние между опорами должно составлять 404:0,5 мм, а между осями ножа и надреза образца — не превышать 0,2 мм. Перед каждой серией испытаний копер проверяется на свободном полете маятника от верхнего и нижнего положений. Показатель работы в обоих случаях должен соответствовать нулю с точностью до 1 Дж (точность определения работы удара). Скорость ножа маятника в момент удара должна быть в пределах 4—7 м/с, что соответствует его подъему на высоту 0,8—2,5 м (для копров с максимальной энергией в 300 Дж). После испытаний оценивают структуру излома.
Для испытаний при повышенных (до 1200 °С) температурах используют трубчатые печи, которые устанавливают так, чтобы направляющий желоб трубки вплотную подходил к опорам копра и находился на одном уровне с ними. Горизонтальное положение ограничителя должно фиксировать такое положение образца, при котором он после нагрева в печи надежно встанет в установленное до испытания положения. После проверки установки ограничителя образец помещают в нагретую до заданной температуры печь, а ограничитель продвигают вплотную к направляющему желобу опоры копра. По истечении 10-мин выдержки образец с помощью металлического стержня выталкивается из печи на опоры копра до упора задней стенки ограничителя в фиксатор. Время от извлечения образца до удара маятника практически не превышает 5 с. Испытание образцов из сильно окисляющихся сталей проводят в нейтральных средах.
Для испытания при пониженных (до кипения жидкого азота) температурах вблизи копра устанавливают термостат для охлаждения образцов. Вся партия образцов, испытываемых при одной и той же температуре, должна подаваться на копер в одинаковых условиях. Перед испытанием один образец из партии с заточенным торцом устанавливают к фиксатору так, чтобы ось надреза образца и ось ножа маятника совпадали. Ограничитель фиксируется в положении образца, при котором последний после охлаждения в термостате встанет в установленное для испытаний положение.
После установки ограничителя на копре эталонный образец и всю сверенную с ним партию (2—10 шт.) помещают в термостат заточенными торцами в одну сторону, а ограничитель вплотную придвигают к направляющему желобу опоры копра. Хладоагентом в термостате является смесь спирта с жидким азотом или один жидкий азот. В связи с некоторым повышением температуры смеси после закладки образцов в термостат необходимо небольшими порциями при непрерывном помешивании доливать жидкий азот, пока температура не достигнет заданной. Отрицательные температуры измеряют платиновым пирометром сопротивления, работающим в паре с электронным мостом. После достижейия температуры термостата образец выдерживают 15 мин и затем быстро переносят в направляющий желоб заточенным торцом вперед. С помощью металлического стержня образец выталкивается на опоры до упора задней стенки органичителя в фиксатор, время от извлечения образца из термостата до удара маятника не должно превышать 5 с. Все испытания на ударную вязкость должны проводиться в течение од-го удара маятника.
Сопряжение головки и рабочей части образца должно быть плавным. Допустимое отклонение в величине площади поперечного сечения по всей расчетной длине образца ±0,5%; допустимое биение рабочей части поверхности образцов при проверке в центрах, а также отклонение от номинального диаметра — не более 0,03 мм. При испытаниях должны обеспечиваться постоянство нагрузки в течение всего времени испытания, плавность нагружения и разгружения, надежное центрирование и равномерный нагрев образца до заданной температуры и ее сохранение на протяжении всего испытания. Отклонение от заданной нагрузки на образец не должно превышать ±1%.
Контроль температуры образца осуществляется тремя термопарами, две из которых прикрепляют к концам рабочей части образца, а третью (регулирующую) — к верхнему захвату машины. В процессе испытаний температура непрерывно записывается электронными потенциометрами класса точности 0,5%; кроме того, ежечасно замеряют температуру с помощью переносного потенциометра того же класса точности и не реже одного раза в 15 мин контролируют работу каждой группы машин. Результаты измерений и наблюдений заносят в операционные карты, составляемые на каждый образец, и в операционный журнал. Контрольные термопары систематически проверяются с помощью образцовой термопары II разряда, их заменяют через каждые 500 ч работы при температурах испытания 500—800 °С; при испытаниях до 850—1000 °С термопары заменяются через каждые 100 ч.
Отклонения от заданной температуры не должны превышать ±3 °С при температуре испытания до 600 и ±4 °С при испытании в диапазоне 600—900 °С. Для лучшей организации работы по измерению температуры в ЛКИ должен быть участок КИП. Время испытания, проведенного при температурах с отклонениями более допустимых, исключают из общей продолжительности испытания. При вынужденном перерыве испытания образец необходимо разгрузить, устранить причину перерыва, снова нагреть до заданной температуры, выдержать при ней и плавно нагрузить. В этом случае результаты испытаний считаются действительными, если суммарная продолжительность их под нагрузкой при заданной температуре не ниже требований НТД. Результаты считаются недействительными при разрыве образца в галтели (за исключением случая, когда продолжительность испытания достигла значений, соответствующих требованиям НТД) и при разрыве образца по дефектам металлургического происхождения.
Испытание металла на ползучесть — это разновидность испытаний на длительную прочность. Оно служит для определения нарастания деформации образца во времени при постоянных нагрузке и температуре. Применяют образцы: цилиндрические d0 = 10,/ = 100 и 200 мм с резьбой М16; плоские — шириной 15, /о = 100 мм и толщиной, соответствующей толщине листа. Требования к качеству образцов, аппаратуре и машинам, порядку проведения испытания на ползучесть и точности измерений температуры в целом аналогичны рассмотренным. Отличие состоит в том, что после нагрева и выдержки в течение 1 ч к образцу плавно прилагают нагрузку в размере 10% общей нагрузки и снимают показания для измерения деформации (приборы для измерения деформации должны обеспечивать точность отсчета не менее 0,002 мм). Если температура и деформация остаются в течение 5 мин постоянными, прилагают остальную нагрузку и ступенями — через каждые 5, 10, 15 (чаще — через 60) мин ведут отсчет деформации. Продолжительность, температуру и степень деформации устанавливают НТД. По окончании испытания образец разгружают до величины предварительной нагрузки и определяют абсолютную величину остаточного удлинения.
предназначено для оценки технологической пластичности металла при температурах до 1200 °С (иногда — выше) по двум показателям — числу скручиваний образца до его разрушения и максимальному крутящему моменту, выраженному в ньютонах, умноженных на метр. Применяются цилиндрические образцы do=10 мм и /0 = 40 мм. Головки образца имеют резьбу Ml6. Испытательные машины снабжают потенциометрами, обеспечивающими контроль температуры образца (класс точности — 0,5%), замер крутящего момента и числа скручиваний. Во время испытания недопустимо продольное перемещение образца и его биение. Частота вращения активного захвата — не менее 60 об/мин. Обмеренный с точностью до 0,1 мм образец монтируют в удлинителях, помещают в нагретую печь, закрепляют в захватах машины и нагревают (прогрев 30, выдержка 10—15 мин). Машину включают после окончания нагрева. По диаграмме на шлейфе потенциометра определяют величину крутящего момента с точностью до 10 Нм и число скручиваний с точностью до 0,5 оборота. Для обеспечения правильной работы испытательной машины и надежности результатов по специальной методике для различных марок или групп марок стали строятся тарировочные графики: крутящий момент — в ньютонах, умноженных на метр (он же — в единицах шкалы потенциометра).
Основные требования к условиям проведения этих испытаний изложены в ГОСТ 2860—65. Определяют предел усталости путем воздействия на вращаемый образец одной или двух изгибающих сил, вызывающих в образце напряжения (растяжение, сжатие), изменяющиеся по симметричному циклу. Для испытаний используют машины типа НУ с частотой вращения образца 3000 об/мин. База испытания — 10 млн. циклов. Предел усталости новых марок стали, а также любых сталей, для которых необходимо установить действительный предел выносливости, определяют на шести образцах и более. Для испытания первого образца подсчитывают постоянное напряжение, равное 0,6% предела прочности при растяжении. Для второго и последующих образцов напряжение каждый раз повышается или понижается на 20 или 40 МПа в зависимости от числа циклов, разрушивших первый образец. Если первый образец не разрушился, на последующих образцах делается прирост напряжения на одну и ту же величину (20 или 40 МПа) до разрыва образца. Разность между напряжениями для двух последних образцов (разрушившегося и неразрушившегося) не должна превышать 20 МПа. Испытывают образцы с do, равными 7,5 и 10 мм, с надрезом или без него (рис. 19), последнее определяется НТД. Размеры образцов проверяют с помощью инструментального микроскопа с коническими щупами с точностью 0,01 мм. Конусность цилиндрического образца не должна превышать 0,005 мм, биение в центрах 0,03 мм. Если в процессе испытания машина отключалась, то это испытание считается несостоявшимся. Повторно образец не испытывают.
Испытание на изгиб хрупких материалов проводят с целью определения склонности стали и других материалов к хрупкому разрушению. Дисковые образцы диаметром 60 и высотой 10 мм или образцы прямоугольного сечения (10х10х60 мм) испытывают на гидравлической машине (например, типа «Амслер») со шкалами нагрузок 100 или 200 кН. Образцы устанавливаются на две опоры, расстояние между которыми равно 40 мм, и подвергают действию медленно возрастающей нагрузки (~2 мм/мин). Определяют наибольшую нагрузку в момент разрушения образца (Р) и подсчитывают сопротивление изгибу по следующим формулам:
где l — расстояние между опорами; В — ширина прямоугольного образца; h— высота прямоугольного образца; d— диаметр дискового образца. С помощью прогибомера измеряют стрелу прогиба (точность 0,5 мм), по внешнему виду образцов определяют характер разрушения.
В соответствии с ГОСТ 7268—67 чувствительность стали к механическому старению определяют сравнением ударной вязкости образцов стали в исходном состоянии и подвергнутых деформации и последующему нагреву по специальным режимам. Из отобранных по ГОСТ 7564—73 заготовок вырезают две полосы, одна из которых предназначена для деформирования, другая — для изготовления ударных образцов в исходном состоянии. Полосу с нанесенной на нее расчетной длиной 120 или 160 мм деформируют растяжением для получения 10±0,5% остаточного удлинения. Расстояние от захватов до расчетной длины должно быть не менее 10 мм. Из деформированной полосы вырезают заготовки для ударных образцов так, чтобы место вырезки не выходило за пределы расчетной длины полосы. Форма и размеры ударных образцов соответствуют ГОСТ 9454—78. Готовые деформированные образцы подвергают равномерному нагреву при 250±10 °С с выдержкой 1 ч и охлаждению на воздухе. Нормативно-технической документацией на металлопродукцию может предусматриваться другой режим старения и количество испытуемых образцов. Если такое указание отсутствует, то испытывают шесть образцов: три — в состоянии поставки металла и три — после старения. Показатель чувствительности определяют по формуле, %:
где (ан)исх — среднее арифметическое значение ударной вязкости в исходном состоянии; (ан)ст — то же, после старения.
Испытание на изгиб полосовой и другой стали служит для определения способности металла выдерживать заданную пластическую деформацию, характеризуемую изломом изгиба, или для оценки предельной пластичности при изгибе. В соответствии с ГОСТ 14019—80 испытанию на изгиб подвергают ленты полосового, широкополосного, листового, сортового фасонного и периодического профилей, прокат из металлов и сплавов, а также поковки и отливки. Места вырезки заготовок для изготовления образцов определяются
ГОСТ 7564—73. При испытании сортовой стали толщиной до 35 мм поперечное сечение образцов должно быть равно поперечному сечению проката. При испытании стали более крупных профилей изготавливают цилиндрические образцы диаметром 25 мм с сохранением полоски поверхности проката или простроганные с одной стороны образцы толщиной 20 и шириной не менее 30 мм. Качество поверхности образца должно соответстовать классу 4 по ГОСТ 2789—73. Испытание полосовой, широкополосной и листовой стали проводят на плоских образцах. При толщине проката до 30 мм образцы изготавливают с сохранением поверхностных слоев проката. Ширина образцов должна быть не менее двух толщин проката. Из проката толщиной более 30 мм изготавливают простроганные образцы толщиной 20 и шириной не менее 30 мм также с сохранением на одной стороне поверхности проката, которая при изгибе должна находиться снаружи. Общая длина образца для испытания на изгиб должна составлять 160—170 мм.
изгиб на двух горизонтальных параллельных опорах до заданного угла между одной стороной образца и продолжением другой (рис. 20, а);
изгиб на двух горизонтальных параллельных опорах до появления первой трещины, видимой невооруженным глазом (рис. 20, б). Угол измеряют после снятия нагрузки;
изгиб до параллельности сторон, предварительно образец загибают на угол не менее 150°, затем устанавливают прокладку и образец догибают до соприкоснования с ней (рис. 20, в);
изгиб до соприкосновения сторон образца с образованием петли, предварительный загиб — на угол не менее 150° (рис. 20, г).
Результаты испытаний определяют по НТД. Если специальных указаний нет, годными признаются образцы, не имеющие излома, расслоений, надрывов и трещин, видимых невооруженным глазом.
Перечисленные методы испытаний являются традиционными и наиболее распространенными при определении механических показателей качества металлопродукции [44]. На металлургических и машиностроительных предприятиях применяют также ряд других испытаний, вт. ч. испытание сварных соединений на растяжение и загиб (ГОСТ 6996—66), определение предела прочности огнеупорных изделий сжатием (ГОСТ 4071—89), испытание металла на кручение (ГОСТ 3565—80), на срез (по отраслевым нормам), сжатие (ГОСТ 1497—84), устойчивость при высоких температурах (ГОСТ 9651—84), твердость (ГОСТ 9012—59, ГОСТ 9013—59, ГОСТ 2999—75). Развитие машиностроения вызвало необходимость разработки новых методов испытания механических свойств по целому ряду нетрадиционных характеристик, связанных с оценкой прочности деталей и конструкций, работающих в весьма широком диапазоне температур, деформаций и в агрессивных средах. Методы испытаний в этих и других условиях приводят в НТД и специальных руководствах. Получают распространение комплексные синергетические методы.
Читайте также: