Иридий что это за металл

Обновлено: 22.01.2025

И снова о платиноидах, драгоценных и редких металлах. Сегодня наш герой иридий, один из самых тяжелых металлов группы. Сравниться с ним по весу может только осмий.

История открытия иридия проста и даже банальна. Его «поймали» в отходах исследования самородной платины.

Динозавры и «подарок» Вселенной

Где иридий, а где динозавры, какая связь… Как считают многие ученые, прямая.

По общепринятой теории при возникновении и формировании планет происходит стратификация — более тяжелые элементы «притягиваются» к ядру планеты, чем легче элемент — тем выше он к поверхности. Потому и очень тяжелого иридия на поверхности быть не должно. Откуда тяжелый платиноид взялся на поверхности Земли — из космоса.

иридий

Отчего вымерли динозавры — звено той же цепочки. Палеонтологи, геологи и другие ученые мужи считают, что причиной исчезновения динозавров было падение метеорита. Причем, называется время (65 миллионов лет назад) и место (полуостров Юкатан). Кратер от падения получился нехилый — 180 км в диаметре и 900 метров в глубину. Пылевые облака закрыли Солнце на несколько лет. Погибли растения, следом с голодухи вымерли травоядные животные, потом и плотоядные (питаться уже было нечем). Экологическая система рухнула.

Печально: вместе с динозаврами на суше вымерли летающие ящеры, в море — многие виды моллюсков и водоплавающие рептилии.

Подтверждают гипотезу иридиевые аномалии. Их нашли в морских отложениях, в глинистом слое, который образовался 65 миллионов лет назад.

А еще кости погибших динозавров содержат аномально много иридия, что косвенно подтверждает теорию о падении астероида.

При чем тут иридий, спросит настырный и любознательный читатель. При астероидах.

Юкатанский астероид (как многие другие) занес Землю из глубокого космоса большое количество редких металлов.

Всего на поверхности Земли разведано более 200 метеоритных кратеров.

Получается, происхождением драгоценный металл из космоса, это подарок Вселенной.

Познавательно: ученые подсчитали, что весь запас земных платиноидов уместился бы в 160 астероидах, каждый по 20 км в диаметре.

Радуга металла

Открыл металл и дал ему название англичанин С. Теннант, химик. Производя опыты с самородной платиной, химик исследовал и растворы, оставшиеся от опытов. И не зря — в них он обнаружил разноцветные соли неизвестного элемента.

Иридий назвали в честь радуги (по-гречески iris ) — многоцветного чуда.

Это не о цвете металла, это о разнообразии цветов иридиевых солей:

  • K3IrCl6, IrF6 — золотисто-желтые кристаллы;
  • KIrF6 — белые кристаллы;
  • Ir2O3 — синие, сине-черные кристаллы:
  • IrCl2 — зеленые кристаллы;
  • Na2IrBr6 — малиновый цвет.

Есть соединения иридия, окрашенные в оливковый, коричневый, розовый, золотистый цвета.

О Клаусе умном замолвите слово

Продолжил исследования иридия К. Клаус, русский химик. Работы проводились около двух лет, причем увлеченный Клаус все это время буквально жил в лаборатории, ел и спал там.

Ученый занимался и другими платиноидами, но именно металл радуги покорил его сердце. Были исправлены неточности в информации о металле. Клаус предположил, что они были допущены из-за исследования иридия в смеси с рутением (тоже платиноидом). Ученый дал рекомендации о технологии извлечения платиноидов (иридия в том числе).

Свойства химические и физические

Иридий — металл твердый и одновременно хрупкий.

Кристаллы иридия

Химические и физические свойства:

  1. Обладает высокой плотностью — до 22650 кг/м3.
  2. Степень окисления в соединениях чаще всего +3, +4, ред­ко +1, +2, +5 и +6.
  3. Температура плавления 2466 °C.
  4. Кипение иридия начинается при 4428 °C.
  5. Химически стойкий металл (при нормальных условиях); не реагирует со щелочами и кислотами, даже с «царской водкой».
  6. Цвет металла серебристо-белый.

При нагреве реагирует с галогенами (фтор, хлор, бром) и кислородом.

Кристаллическая решетка гранецентрированная, кубическая.

Где добывают иридий

  • Канада;
  • Калимантан;
  • США;
  • ЮАР;
  • Россия;
  • Новая Гвинея.

Встречается в природе в складчатых областях перидотовых серпентинитов. Находят россыпные месторождения. Часто встречается в виде твердых растворов в сочетании с осмием — осмистый иридий. По оценкам специалистов, в земной коре находится очень редко. Потому считают (в подтверждение астероидной теории), что высокое содержание металла в рудах сигнализирует об их метеоритном происхождении.

Самый редкий и богатый иридием минерал — родистый невьянскит. Иридия в нем более 11%. Содержится в сысертските, в ауросмириде.

Как добыть иридий

В год все добытчики на Земле получают от 3 до 10 тонн (по разным данным).

иридий металл

Проблемой добычи иридия являются большие потери металла при переработке руд. Ведь чисто иридиевых руд, позволяющих промышленную добычу иридия, почти нет. Основная часть металла добывается при переработке медно-никелевых руд, где спутники — металлы платиновой группы.

В основном металл получают из шламов медно-никелевых руд. В процессе их добычи платиноиды попадают в технологические растворы, отходы производства.

Технология добычи иридия (как других платиноидов) состоит из нескольких этапов извлечения этих металлов. Это концентрирование, обработка щелочами, очистка от примесей.

Использование, применение металла

Производство кристаллов не обходится без тиглей из драгоценного металла.

Он используется в деталях прецизионных приборов, в качестве покрытия для электрических контактов.

В долговечных свечах зажигания применяют в качестве электродов.

Преимущество таких свечей в молниеносном разгоне двигателя и его стабильной работе. Не грозит потеря искры, такие свечи обладают отменными антикоррозийными свойствами. Недостаток один — цена…

Металл используют для «вечных» кончиков перьев авторучек.

Экономно: в некоторых странах вместо дорогого иридия используют сплав ниобия с рением — он почти так же износостоек, но и внешне мало отличается от иридия.

Иридий прекрасный катализатор, как все его родственники-платиноиды. Однако высокая цена ограничивает его применение.

Органический синтез сейчас невозможен без иридиевых катализаторов. Работы по оргсинтезу получили Нобелевскую премию по химии. Чтобы было понятно — оргсинтез позволит перейти на «зеленую химию», отказаться от использования ископаемых ресурсов, перейти к ресурсам возобновляемым.

свойства иридия

Эталон килограмма создан из сплава платина-иридий и хранится во Франции.

Познавательно: не спорьте, если увидите в России, во ВНИИ метрологии, международный эталон килограмма. Таких копий того, французского эталона, было изготовлено 6 штук.

Сплав иридия с титаном используют в глубоководных трубопроводах.

Изотоп Ir-192 используют в дефектоскопах, в толщиномерах (переносных).

Сказочные перспективы иридия в медицине

В кардиостимуляторах применяется сплав иридий-платина.

Онкологи используют изотоп иридия Ir-192 как источник гамма-излучения. Его применяют для лечения рака груди и предстательной железы (на ранних стадиях болезни).

Разработаны методы лечения эпилепсии, болезни Паркинсона, шизофрении с помощью введения иридиевых электродов в мозг. Радужные перспективы для создания протезов глаза и слухового аппарата открывает метод вживления микроэлектродов.

Купить или не купить

Иридий — один из самых редких металлов на Земле. На цену влияет степень очистки и количество примесей в металле. Чем чище иридий, тем он дороже. Стоимость 1 грамма иридия на апрель 2020 года составляет около 50,1-50,2$ США.

admin

Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!

Иридий – радужное настоящее и будущее

На Земле это один из самых редких и дорогих металлов – глобальные объемы производства исчисляются несколькими тоннами за год. Геологи утверждают: если порода богата иридием, то без влияния Космоса не обошлось.

Металл иридий

Что представляет собой

Иридий – это серебристо-белый блестящий металл, платиноид.

Элемент таблицы Менделеева под номером 77, международное наименование – Iridium (Ir).

Очень твердый (6,5 по Моосу), тугоплавкий, плотный. Устойчив к коррозии даже при запредельных температурах.

Иридий – один из двух самых твердых и редких металлов. Его содержание в земной коре в 10 раз меньше платины, в 40 раз меньше золота. По массе это одна миллионная доля процента.

Ювелирами, финансистами причислен к благородным.

История открытия

История открытия иридия связана с именем британского химика Смитсона Теннанта. Исследуя платиновую руду с копей Южной Америки (1803 год), он пытался выделить чистый металл. Воздействуя на руду царской водкой, получил нерастворимый остаток. Здесь обнаружились неизвестные науке вещества. Это были иридий и осмий.

элемент иридий

Название пришло само собой. Теннанта впечатлила радужность оттенков солей нового металла, и он назвал его иридием.

Иридой звали древнегреческую богиню радуги.

Ученого избрали членом Лондонского королевского общества, в 1804 году за открытие осмия и иридия удостоили медали Копли – высшей награды общества.

Физико-химические характеристики

Иридий выглядит подобно любому металлу платинового семейства. Устойчив к коррозии больше золота и платины, до 100°C инертен к кислотам, кислотным сочетаниям.

Не токсичен, но шестивалентный фторид ядовит. Этот недостаток учитывают на предприятиях, которые используют иридиевое сырье.

Металл в природе

Чистый иридий не встречается в природе. Почти всегда это комбинация с осмием, поэтому у профессионалов в ходу термины «осмистый иридий», «осмиридиевые сплавы».

Коренные залежи осмистого иридия есть в нескольких регионах планеты: Россия, Канада, США, ЮАР, Папуа-Новая Гвинея.

иридий

Другие спутники металла иридия в руде – родий и рутений.

На местах добычи используется закрытый (шахтный) способ.

Совокупный мировой объем добычи металла за год – три – десять тонн.

Ученые полагают: происхождение металла таково, что главные залежи нужно искать глубже:

  1. Земное ядро. Туда металл увлекло железо при образовании планеты.
  2. Метеориты.
  3. Кости динозавров. Они насыщены иридием, что косвенно подтверждает гипотезу о гибели животных из-за метеорита, врезавшегося в Землю 65 млн. лет назад.

Спектроскопический анализ выявил следы иридия в короне Солнца.

Существуют природные изотопы металла. Синтезирован десяток аналогов с малым периодом полураспада. Самый востребованный под номером 192 (74 суток).

Добыча и переработка

Основные объемы иридия извлекают из сульфатных железистых, никелевых руд. Немного дает минералогическая экзотика – невьянскит, уросмирид, сысертскит.

Чистый иридий получают промышленным способом из продуктов переработки медно-никелевых сплавов.

Технология многоэтапная – выделение из концентрата платиноидов, выщелачивание остатка водой, перегонка, воздействие царской водкой. Осадочный иридий прокаливают, получая чистый металл.

Есть другие методы: ионный обмен, экстракция. Все технологии добычи сложны, затратны.

В России добычу иридия ведут предприятия Красноярска, Екатеринбурга, «Норильский Никель».

Сферы применения

Чистый иридий не применяется: слишком дорог и тверд. Но сплавы с ним востребованы от науки и высоких технологий до ювелирного дела.

кусок иридия

Промышленность

Свойства металла обусловили сферы применения промышленным комплексом:

  • Из иридия делают посуду, оборудование, катализаторы для предприятий химического комплекса.
  • В иридиевых тиглях выращивают монокристаллы.
  • У автопрома это материал электродов (с медью и платиной) свечей зажигания. Они служат дольше, используются для элитных автомобилей.
  • Сплавы иридия с рутением содержат электрогенераторы, термопары для измерения температур до 2000°C.
  • Это индикатор качества сварных швов изделий из стали и сплавов алюминия.

Из платиново-иридиевого сплава изготовлены эталоны килограмма и метра (находятся в Париже).

Космические перспективы открыло третье тысячелетие:

  • Компания American Elements создала технологию отливки бесшовных иридиевых колец для использования на спутниках, космических аппаратах (2006 год).
  • Металл присутствует в дисплеях компьютеров, телевизоров, айфонов, других гаджетов на основе органических светодиодов (технология OLED).

Как источник энергии рассматривается ядерный изомер иридия-192 со временем «жизни» более 240 лет.

Медицина

Из сплава платины с иридием изготовлен хирургический инструментарий, детали кардиостимуляторов.

Это базис для развития ядерной медицины. Радионуклидное сырье получают на ядерных реакторах, циклотронах. 90% уходит на экспорт.

Россия входит в мировую топ-пятерку производителей сырьевых медицинских изотопов.

Иридий-192 задействован при дефектоскопии и онкологами (гамма-нож).

Ювелирное дело

Ювелиры ценят металл за прочность, используя в сплаве с платиной.

Американская компания Smithson Tennant первой наладила производство ювелирных украшений из иридия. Иридиевые обручальные кольца позиционируются ею как вечные в буквальном смысле: бессильны даже концентрированная кислота и время. Им не требуется особый уход и условия хранения.

Украшения из сплавов с добавлением иридия и через десятилетия выглядят как купленные только что.

Драгоценности с иридием (даже обручальные кольца) не изнашиваются, всегда выглядят как новенькие. Это преимущество особо важно для изделий, испытывающих повышенные нагрузки (обручальные кольца, перстни, браслеты).

Другие сферы

Иридий почитают геологи и палеонтологи: это маркер возраста слоев земной коры и вымерших организмов.

Единственную в мире монету – проба иридия 999 – выпустил в 2013 году Национальный Банк Руанды (государство на востоке Африки). Номинал составил 10 местных франков.

До 1980-х годов шариком из иридиевых сплавов снабжали перья авторучек класса люкс, включая легендарный Parker 51. Это атрибут элиты и аксессуар фаната роскоши Джеймса Бонда.

Металл входит в десятку самых дорогих. Цена обусловлена редкостью иридия в природе и дороговизной способа получения чистого металла.

Все об иридии

Все об иридии



Особенности

Сразу стоит сказать, что иридий — это металл. Потому он имеет все те свойства, которые типичны и для иных металлов. Такой химический элемент обозначается сочетанием латинских символов Ir. В таблице Менделеева он занимает 77 клетку. Открытие иридия произошло в 1803 году, в рамках того же исследования, при котором английский ученый Теннант выделил и осмий.

Исходным сырьем для получения таких элементов послужила руда платины, доставленная из Южной Америки. Первоначально металлы выделили в виде осадка, который «не брала» «царская водка». Исследование показало наличие нескольких ранее неизвестных веществ. Свое словесное обозначение элемент получил потому, что его соли выглядят, как будто переливающиеся радугой.

Содержание иридия в природе исключительно мало, и это одно из самых редких веществ на Земле.



Химически чистый иридий не имеет никакого радужного окраса. Зато для него характерен довольно привлекательный серебристо-белый цвет. Токсические свойства не подтверждены. Однако отдельные соединения иридия могут представлять опасность для человека. Особенно ядовит фторид этого элемента.

Производством и аффинажем иридия занимается ряд российских и зарубежных предприятий. Почти весь выпуск этого металла — продукт побочной обработки платинового сырья. Хотя иридий и не пурпурный, он содержит в природном виде 2 изотопа. 191-й и 193-й элементы стабильны. Но выраженные радиоактивные свойства зато имеет ряд искусственно получаемых изотопов, их период полураспада невелик.



Свойства

Физические

Прочность и твердость иридия очень велики. Механически обрабатывать этот металл практически невозможно. Тугоплавкость этого элемента серебристо-белого цвета достаточно велика. Специалисты относят иридий к платиновой группе. Твердость по шкале Мооса составляет 6,5. Температура плавления в градусах достигает 2466 градусов. Кипеть иридий, однако, начинает только при 4428 градусах. Теплота плавления равна 27610 Дж/моль. Теплота кипения — 604000 Дж/моль. Молярный объем специалисты определили на уровне 8,54 куб. см. на моль.

Кристаллическая решетка этого элемента — кубическая, вершинами куба выступают грани кристаллов. На долю 191-го изотопа приходится 37,3% атомов иридия. Остальные 62,3% представлены 193-м изотопом. Плотность этого элемента (или иначе, удельный вес) достигает 22400 кг на 1 м3.

В чистом виде металл не магнитится, а степень окисления атомов в различных соединениях колеблется от 1 до 6.



Химические

Но сами атомы иридия редко вступают в какие-либо реакции. Этот элемент отличается выдающейся химической пассивностью. Он совершенно не растворяется в воде и не меняется каким-то образом даже при длительном контакте с воздухом. Если температура вещества менее 100 градусов, то оно не будет вступать в реакцию даже с «царской водкой», не говоря уже о других кислотах и их комбинациях. Реакция с фтором возможна при 400 градусах, для реакции с хлором или серой придется прогревать иридий до красного каления.

Известны 4 хлорида, в которых число атомов хлора варьируется от 1 до 4. Воздействие кислорода ощутимо при температуре не ниже 1000 градусов. Продуктом такого взаимодействия оказывается диоксид иридия — вещество, практически нерастворимое в воде. Повысить растворимость можно путем окисления с использованием комплексообразователя. Высшая степень окисления в нормальных условиях может быть достигнута лишь в гексафториде иридия.



При экстремально низких температурах появляются соединения с валентностью 7 и 8. Возможно образование комплексных солей (как катионового, так и анионового типа). Отмечают, что сильно разогретый металл может разъедать соляная кислота, насыщенная кислородом. Важную роль химики придают:

  • гидроксидам;
  • хлоридам;
  • галогенидам;
  • оксиду;
  • карбонилам иридия.



Как добывают?

Получение иридия в природе сильно затруднено его большой редкостью. В естественной среде этот металл всегда смешан с сопутствующими веществами. Если обнаруживают где-либо этот элемент, то поблизости обязательно находятся платина либо металлы из ее группы. Некоторые руды, содержащие никель и медь, включают иридий в рассеянной форме. Основная часть этого элемента извлекается из косной материи в:

  • ЮАР;
  • Канаде;
  • североамериканском штате Калифорния;
  • месторождениях на острове Тасмания (принадлежащем Австралийскому Союзу);
  • Индонезии (на острове Калимантан);
  • различных районах острова Новая Гвинея.


Перемешанный с осмием иридий добывают в старых горных складчатостях, находящихся в тех же странах. Главенствующую роль на мировом рынке занимают компании из ЮАР. Недаром именно выработка в этой стране прямо влияет на баланс спроса и предложения, чего нельзя сказать про продукцию из иных регионов планеты. По существующим научным представлениям, редкость иридия связана с тем, что он попадал на нашу планету только в метеоритах, и потому на его долю приходится миллионная доля процента от массы земной коры.

Однако часть экспертов с этим не согласна. Они настаивают, что лишь небольшая часть всех иридиевых залежей разведана и пригодна для освоения на уровне современных технологий. Отложения, появившиеся в глубокой геологической древности, содержат в отдельных слоях иридия в сотни раз больше, чем уже разрабатываемые породы.

Такие аномалии обнаружены на всем земном шаре. Однако извлечение материала из глубинных разрезов под материками и на дне океанов пока что экономически иррационально.



Сегодня иридий добывают только после окончания добычи главных ископаемых. Это золото, никель, платина или медь. Когда месторождение близко к исчерпанию, руду начинают обрабатывать специальными реактивами, которые высвобождают рутений, осмий, палладий. Лишь после них приходит очередь получения «радужного» элемента. Далее:

  • очищают руду;
  • дробят ее в порошок;
  • прессуют этот порошок;
  • переплавляют спрессованные заготовки в электрических печах, при непрерывном движении аргоновой струи.

Достаточно большое количество металла извлекают из анодных шламов, оставляемых медно-никелевым производством. Первоначально шламы обогащают. Перевод в раствор платины и других металлов, включая иридий, происходит под действием горячей царской водки. Осмий оказывается в нерастворенном осадке. Из раствора под действием хлорида аммония последовательно осаждаются комплексы платины, иридия и рутения



Применение

Около 66% добываемого иридия используется в химической отрасли. Все прочие сферы экономики делят остаток. В последние десятилетия неуклонно растет ювелирное значение «пурпурного металла». С конца 1990-х годов из него эпизодически начали вырабатывать кольца, инкрустацию золотых украшений. Важно: ювелирные изделия делают не столько из чистого иридия, сколько из его сплава с платиной. Достаточно 10% добавки, чтобы без существенного роста себестоимости повысить прочность заготовки и готового продукта до 3 раз.

В иных отраслях иридиевые сплавы также однозначно опережают чистый металл. Возможность повысить твердость и прочность изделий путем незначительной добавки очень ценится технологами. Так, иридиевые присадки используют для повышения износостойкости проволоки для электронных ламп. Твердый металл попросту накладывают поверх молибдена или вольфрама. Последующее спекание происходит под прессом, при высокой температуре.



И тут надо особо сказать об использовании иридия в химической отрасли. Там его сплавы нужны, чтобы получать стойкую к различным реактивам и высокой температуре посуду. Также иридий оказывается превосходным катализатором. Повышение реакционной способности особенно проявляется при производстве азотной кислоты. А если нужно растворять золото в царской водке, то технологи почти гарантированно выберут именно чаши, изготовленные из платино-иридиевого сплава.

Там, где готовят кристаллы для лазерных приборов, часто можно встретить платино-иридиевые тигли. Полностью чистый металл пригоден для деталей особо точных промышленных и лабораторных приборов. Мундштук из иридия применяют и стекольщики, когда им надо делать тугоплавкие сорта стекла. Но это только небольшая часть применений удивительного элемента.

Его довольно часто используют при изготовлении свечей зажигания для автомашин.



Эксперты давно отметили, что такие свечи служат дольше. В самом начале их использовали преимущественно для спортивных автомобилей. Сегодня они стали дешевле и оказались доступны практически всем автовладельцам. Иридиевые сплавы нужны также создателям хирургических инструментов. Все чаще их применяют и при производстве отдельных частей кардиостимулятора.

Любопытно, что монета «10 франков» производства Руанды делается из ювелирно чистого (999 проба) иридия. Находит этот металл применение и в автомобильных катализаторах. Как и платина, он помогает ускоренно очищать выхлопные газы. Но найти иридий можно и в самой обычной перьевой ручке. Там иногда можно увидеть шарик необычного цвета, находящийся на наконечнике пера или чернильного стержня.



В радиодеталях иридий применяли в основном несколько десятилетий назад. Из него делали чаще контактные группы, а также компоненты, которые могут сильно нагреваться. Такое решение позволяет обеспечить долговечность изделий. Изотоп иридий-192 относится к числу искусственных радионуклидов. Его производят для дефектоскопического использования, чтобы проверять характеристики сварных швов, стальных и алюминиевых сплавов.

Сплав осмия с иридием применяют, чтобы сделать компасные иглы. А термопары, в которых сочетаются иридиевые и обычные электроды, используются для физических исследований. Только они могут напрямую зарегистрировать температуру около 3000 градусов. Цена таких конструкций очень велика. Использовать их в обычной промышленности пока экономически нецелесообразно.



Иридиево-титановый электрод — одна из сравнительно новых разработок в области электролиза. Тугоплавкое вещество напыляют на основу из титановой фольги. В рабочей камере при этом находится только аргон. Электроды могут выглядеть и как сетка, и как пластина. Такие электроды:

  • устойчивы к высокой температуре;
  • устойчивы к значительному напряжению, плотности и силе тока;
  • не корродируют;
  • экономичнее электродов с добавкой платины (за счет существенно большего ресурса).


Малоразмерные контейнеры с радиоактивными изотопами иридия востребованы в металлургии. Гамма-лучи частично поглощаются шихтой. Потому можно определять, каков уровень шихты внутри печи.

Еще можно указать на такие применения 77-го элемента, как:

  • получение сплавов молибдена и вольфрама, более крепких при высокой температуре;
  • повышение стойкости титана и хрома к кислотам;
  • производство термоэлектрических генераторов;
  • изготовление термоэмиссионных катодов (вместе с лантаном и церием);
  • создание топливных баков для космических ракет (в сплаве с гафнием);
  • выработка пропилена на базе метана и ацетилена;
  • добавка к платиновым катализаторам для выработки окислов азота (предшественников азотной кислоты) — но этот технологический процесс уже не слишком актуален;
  • получение эталонных единиц измерения (точнее, для этого нужен платиново-иридиевый сплав).


Интересные факты

Соли иридия очень разнообразны по окраске. Так, в зависимости от числа присоединившихся атомов хлора, соединение может иметь медно-красный, темный зеленый, оливковый или коричневый цвета. Дифторид иридия окрашен в желтый тон. Соединения с озоном и бромом имеют синюю окраску. У чистого иридия коррозионная стойкость очень велика даже при нагреве до 2000 градусов.

В породах земного происхождения концентрация иридиевых соединений очень невелика. Серьезно повышается она только в породах метеоритного происхождения. Такой критерий позволяет исследователям установить важные факты о различных геологических структурах. Всего на земле производится лишь несколько тонн иридия.

Модуль Юнга (он же модуль продольной упругости) у этого металла — на втором месте среди известных веществ (больше — только у графена).



О других свойствах и сферах применения иридия смотрите в следующем видео.

ИРИДИЙ

261_280-37.jpg

ИРИДИЙ (от греч. iris, род. падеж Iridos - радуга; лат. Indium) Ir, хим. элемент VIII гр. периодич. системы; ат. н. 77, ат. м. 192,22; относится к платиновым металлам. Прир. И. состоит из смеси двух стабильных изотопов 193 Ir (62,7%) и 191 Ir (37,3%). Поперечное сечение захвата тепловых нейтронов 4,4.10 - 26 м. Конфигурации внеш. электронной оболочки 7 6s 2 ;> степени окисления +3, +4 (наиб. характерны), +1, +2, +5, +6; энергии ионизации при последоват. переходе от Ir 0 к Ir 5+ равны соотв. 9,1, 17,0, (27), (39), (57) эВ; электроотрицательность по Полингу 2,2; атомный радиус 0,135 нм; ионный радиус (координац. число 6) для Ir 3+ 0,082 нм, Ir 4+ 0,077 нм, Ir 5+ 0071 нм. Содержание в земной коре 1.10 - 7 % по массе. Минералы, содержащие И. и Os в разл. соотношении, - невьянскит (Ir, Os), или осмистый И., сысертскит, или иридистый осмий (Os, Ir), платиновый, родиевый и рутениевый невьянскиты, ауросмирид. Присутствует в рассеянной форме в разл. минералах (~ 10 - 4 % И.) сульфидных медно-никелевых железосодержащих руд.
Свойства. И. - серебристо-белый металл; кристаллич. решетка кубическая гранецентрированная, а =0,38387 нм, z = 4, пространств. группа Fm3m; т. пл. 2447 °С, т. кип. ок. 4380 °С; плотн. 22,65 г/см 3 (20 °С), жидкого И. - 19,39 г/см 3 (2443 °С); С 0 р 25,1 Дж/(моль. К); DH 0 пл 26 кДж/моль, DH 0 исп 612 кДж/моль; S 0 298 35,4 Дж/(моль. К); ур-ния температурной зависимости давления пара (в Па): для твердого И. lgp= 15,92 - 35070/T-0,77: для жидкого lgp = 11,23 -25740/T (2773-5273 К); температурный коэф. линейного расширения 6,45.10 - 6 К - 1 , объемного расширения ~ 19,35.10 - 6 K -1 . теплопроводность 1,47 Вт/(см. К) при 300 К, 1,03 Вт/(см. К) при 2000 К; т-ра перехода в сверхпроводящее состояние 0,1125 К; r 5,33 мкОм. см (300 К), 1,16 мкОм. см (100 К), 60,2 мкОм. см (2400 К), температурный коэф. r 3,925.10 - 3 К - 1 ; парамагнитен, магн. восприимчивость + 25,6.10 - 6 . И. тверд и хрупок; твердость по Виккерсу 2000 МПа, твердость по Бринеллю 1700-2200 МПа; модуль упругости 538 ГПа; модуль сдвига 214 ГПа; предел текучести s 0,2 90-120 МПа; s раст 500 МПа. И. устойчив на воздухе при обычной т-ре и нагревании, при прокаливании порошка И. в токе О 2 при 600-1000 °С образуется в незначит. кол-ве диоксид IrО 2 (см. табл.). Выше 1200°С в атмосфере О 2 И. частично испаряется в виде триоксида IrО 3 ( DH 0 обр газа 13 кДж/моль), существующего только в газовой фазе при 1200 °С. При спекании К 3 [IrСl 6 ] с содой получают сесквиоксид Ir 2 О 3 - сине-черные кристаллы; разлагается до металла при 400 °С. Оксиды И. не раств. в воде, к-тах, щелочах; применяются для изготовления резистивных паст в микроэлектронике. Гидроксиды И.: IrО 2 .2Н 2 О [или Ir(ОН) 4 ] - синие кристаллы; обезвоживается при 350°С, образуется при нейтрализации р-ров хлороиридатов(IV) в присут. окислителей; Ir 2 О 3 .xН 2 О - желто-зеленое в-во; легко окисляется на воздухе до IrO 2 ; образуется при нейтрализации р-ров хлороиридатов(III) щелочью в атмосфере инертного газа. Гидроксиды И. практически не раств. в воде. Компактный И. при т-рах до 100°С не реагирует со всеми известными к-тами и их смесями, в т. ч. и с царской водкой. Свежеосажденная иридиевая чернь частично раств. в царской водке, причем образуется смесь соед. Ir(Ш) и Ir(IV). Порошок Ir м. б. растворен хлорированием в присут. КСl, NaCl при 600-900 °С или спеканием с ВаО 2 , Na 2 O 2 при 500-900 °С с послед. взаимод. с к-тами.

После растворения плава в к-тах образуются гексахлороиридаты(IV). И. взаимод. с F 2 при 400-450 °С, с Сl 2 и S - при т-ре красного каления. Из простых галогенидов И. известны: IrХ (X = Cl, I), IrСl 2 , IrX 3 , IrX 4 , IrF 5 , IrF 6 . Трихлорид IrСl 3 существует в двух полиморфных модификациях - моноклинной a (а = 0,599 нм, в =1,037 нм, с =0,599 нм, b = 109,4°, z= 4, пространств. группа С2/т) и орторомбической b ( а =0,695 нм, в =0,981 нм, с =2,082 нм, пространств. группа Fddd); раств. в воде и к-тах; катализатор, напр., хлорирования бензола до n-дихлорбензола. Хлориды IrСl 2 и IrСl 4 - кристаллы соотв. черно-серого и темно-коричневого цвета; раств. в воде и к-тах, IrСl 4 - также в этаноле; разлагаются при нагревании. Гексафторид IrF 6 - кристаллы тетрагон. сингонии; с водой реагирует с выделением О 3 ; применяют для нанесения покрытий из И. или его сплавов. Пентафторид IrF 5 -желто-зеленые кристаллы; т. пл. 104°С. Тетрафторид IrF 4 - красно-коричневые кристаллы; т. пл. 106°С, т. возг. 180°С; получают при взаимод. IrF 3 с ВrF 3 . Дисульфид IrS 2 не раств. в воде, к-тах, смеси соляной и азотной к-т; получают при нагр. IrСl 3 с S. Сесквисульфид Ir 2 S 3 плохо раств. в воде, не раств. в соляной к-те, раств. с разложением в царской водке, HNO 3 , бромной воде; получают при действии H 2 S на кипящий р-р хлороиридатов(III). Сульфид IrS - синее, твердое в-во, не раств. в воде; получают при нагр. IrS 2 в токе СО 2 . Выделение в виде сульфидов используется в аналит. химии. В комплексных соед. координац. число И., как правило, 6. Наиб. важны гексахлороиридаты (III и IV). Хлороиридаты(III) плохо раств. в воде, но легко переходят в более р-римые аквакомплексы М 3 [Ir(Н 2 О)Сl 5 ]; хлороиридаты(IV) щелочных металлов (кроме Li и Na) мало раств. в воде. Гексахлороиридат (IV) К 2 [IrCl 6 ] - красновато-черные кристаллы с кубич. решеткой ( а =0,976 нм, z =4, пространств. группа Fm3m); разлагается ок. 600 °С; плотн. 3,549 г/см 3 ; р-римость в воде 1,0 г в 100 г при 20°С. Гексахлороиридат(III) К 3 [IrСl 6 ] - оливково-зеленые кристаллы; плохо раств. в воде; м. б. получен восстановлением К 2 [IrСl 6 ], напр., щавелевой к-той. Гексахлороиридаты К применяют для изготовления высококачеств. фотоэмульсии, в качестве катализаторов орг. р-ций и стандартов в аналит. химии; являются также промежут. продуктами при переработке иридийсодержащего сырья. Гексахлороиридат (IV) (NH 4 ) 2 [IrCl 6 ] - черные кристаллы; разлагается ок. 440 °С (в атмосфере Сl 2 ); промежут. продукт в произ-ве И. О комплексных соед. И. с орг. лигандами см. в ст. Иридийорганические соединения.
Получение. Осн. источник получения И. - анодные шламы медно-никелевого произ-ва. Из концентрата металлов платиновой группы отделяют Au, Pd, Pt и др. Остаток, содержащий Ru, Os и Ir, сплавляют с KNO 3 и КОН, плав выщелачивают водой, р-р окисляют Сl 2 , отгоняют OsO 4 и RuO 4 , а осадок, содержащий И., сплавляют с Na 2 O 2 и NaOH, плав обрабатывают царской водкой и р-ром NH 4 Cl, осаждая И. в виде (NH 4 ) 2 [IrCl 6 ], к-рый затем прокаливают, получая металлич. Ir. Перспективен метод извлечения И. из р-ров экстракцией гексахлороиридатов высшими алифатич. аминами. Для отделения И. от неблагородных металлов перспективно использование ионного обмена. Для извлечения И. из минералов группы осмистого И. минералы сплавляют с ВаО 2 , обрабатывают соляной к-той и царской водкой, отгоняют OsO 4 и осаждают И. в виде (NH 4 ) 2 [IrCl 6 ].
Применение. Из чистого И. изготовляют тигли для выращивания монокристаллов (лазерные материалы, полудрагоценные камни и др.), а также фольгу для неамальгамирующихся катодoв; его используют, кроме того, для иридирования пов-стей изделий. Сплавы И. с W и Th - материалы термоэлектрич. генераторов, с Hf - материалы для топливных баков в космич. аппаратах, с Rh, Re, W - материалы для термопар, эксплуатируемых выше 2000 °С, с La и Се -материалы термоэмиссионных катодов. Радиоактивный изотоп 192 Ir используют в качестве портативного источника g-излучения для радиографич. исследования трубопроводов, а также для радиотерапии злокачественных опухолей. Мировое произ-во И. (без СССР) ок. 1100 кг/год (1983). Осн. страны-производители - ЮАР, Канада, СССР. И. открыл С. Теннант в 1804. Лит.: Ливингстон С., Химия рутения, родия, палладия, осмия, иридия, платины, пер. с англ., М., 1978; Джалавян А. В., Раков Э. Г., Дудин А. С., "Успехи химии", 1983, т. 52, в. 10, с. 1676-97; Благородные металлы. Справочник, под ред. Е. М. Савицкого, М., 1984; Griffith W. P., The chemistry of the rares platinum metals (Os, Ru, Ir and Rh), ed. by A. Cotton, G. Wilkinson, L.-N.Y.-Sydney, 1967; Handley J.R., "Platinum Metals Review", 1986, v.30, № 1, p. 12-13. A. M. Орлов.

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Полезное

Смотреть что такое "ИРИДИЙ" в других словарях:

ИРИДИЙ — (от греч. iris радуга). Металл, из группы платины, соединения которого отличаются радужными цветами. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИРИДИЙ благородный металл серого цвета; уд. вес 22,5. Плавится… … Словарь иностранных слов русского языка

Иридий — м л, Ir. Куб. Белый. Тв. 7. Уд. в. 22,6. Наблюдался только при микроскопических исследованиях в виде продуктов распада в Pt. Возможно, содержит Pt и близок к. платинистому Ir. Не изучен. Геологический словарь: в 2 х томах. М.: Недра. Под… … Геологическая энциклопедия

ИРИДИЙ — ИРИДИЙ, ирид муж. весьма твердый, беловатый металл, находимый обычно в сплаве с осмием и вместе с платиной. Иридиевый, иридовый, к металлу иридию относящийся. Иридистый, содержащий примесь иридия. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

ИРИДИЙ — (Iridium), Ir, химический элемент VIII группы периодической системы, атомный номер 77, атомная масса 192,22; относится к платиновым металлам. Открыт английским химиком С. Теннантом в 1804 … Современная энциклопедия

ИРИДИЙ — (лат. Iridium) Ir, химический элемент VIII группы периодической системы, атомный номер 77, атомная масса 192,22, относится к платиновым металлам. Плотность 22,65 г/см³, tпл 2447 .С. Применяют для нанесения защитных покрытий. Компонент сплавов … Большой Энциклопедический словарь

ИРИДИЙ — ИРИДИЙ, иридия, мн. нет, муж. (иностр.) (хим.). Редко встречающийся химический элемент тяжелый металл, близкий к платине. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

ИРИДИЙ — (Iridium), Ir, хим. элемент VIII группы периодич. системы элементов, ат. номер 77, ат. масса 192,22, относится к платиновой группе благородных металлов. Природный И. состоит из изотопов с массовыми числами 191 (37,3%) и 193 (62,7%). Электронная… … Физическая энциклопедия

иридий — сущ., кол во синонимов: 4 • металл (86) • минерал (5627) • платиноид (8) • … Словарь синонимов

Иридий — (Iridium), Ir, химический элемент VIII группы периодической системы, атомный номер 77, атомная масса 192,22; относится к платиновым металлам. Открыт английским химиком С. Теннантом в 1804. … Иллюстрированный энциклопедический словарь

ИРИДИЙ — хим. элемент, символ Ir (лат. Iridium), ат. и. 77, ат. м. 192,22. Серебристо белый металл, плотность 22400 кг/м3, tпл = 2410°С. Из сплава платины (90%) и иридия (10%) изготовлены эталоны метра и килограмма … Большая политехническая энциклопедия

Iridium-2.jpg


Твёрдый, тугоплавкий, серебристо-белый металл

Иридий / Iridium (Ir), 77

[Xe] 4f 14 5d 7 6s 2

2,20 (шкала Полинга)

Ири́дий — химический элемент с атомным номером 77 в периодической системе, обозначается символом Ir (лат. Iridium ). Иридий — очень твёрдый, тугоплавкий, серебристо-белый переходный металл платиновой группы, обладающий высокой плотностью и сравнимый по этому параметру только с осмием (плотности Os и Ir практически равны с учётом расчетной погрешности) [4] . Имеет высокую коррозионную стойкость даже при температуре 2000 °C.

Содержание

История

Иридий был открыт в 1803 году английским химиком С. Теннантом одновременно с осмием [5] , которые в качестве примесей присутствовали в природной платине, доставленной из Южной Америки. Название (др.-греч. ἶρις — радуга) получил благодаря разнообразной окраске своих солей.

Нахождение в природе

Содержание иридия в земной коре ничтожно мало (10 −7 масс. %). Он встречается гораздо реже золота и платины. Встречается вместе с родием, рением и рутением. Относится к наименее распространённым элементам. Иридий относительно часто встречается в метеоритах. Не исключено, что реальное содержание металла на планете гораздо выше: его высокая плотность и высокое сродство к железу (сидерофильность) могли привести к смещению иридия вглубь Земли, в ядро планеты, в процессе её формирования из расплава.

Иридий содержится в таких минералах, как невьянскит, сысертскит и ауросмирид.

Месторождения

Коренные месторождения осмистого иридия расположены в основном в перидотитовых серпентинитах складчатых областей (в ЮАР, Канаде, США, на Новой Гвинее) [6] .

Получение

Основной источник получения иридия — анодные шламы медно-никелевого производства. Из концентрата металлов платиновой группы отделяют Au, Pd, Pt и др. Остаток, содержащий Ru, Os и иридий, сплавляют с KNO3 и КОН, сплав выщелачивают водой, раствор окисляют O2, отгоняют OsO4 и RuO4, а осадок, содержащий иридий, сплавляют с Na2O2 и NaOH, сплав обрабатывают царской водкой и раствором NH4Cl, осаждая иридий в виде комплексного соединения (NH4)2[IrCl6], который затем прокаливают, получая металл — иридий. Перспективен метод извлечения иридия из растворов экстракцией гексахлороиридатов высшими алифатическими аминами. Для отделения иридия от неблагородных металлов перспективно использование ионного обмена. Для извлечения иридия из минералов группы осмистого иридия минералы сплавляют с оксидом бария, обрабатывают соляной кислотой и царской водкой, отгоняют OsO4 и осаждают иридий в виде (NH4)2[IrCl6].

Физические свойства

Тяжёлый серебристо-белый металл, из-за своей твердости плохо поддающийся механической обработке. Кристаллическая структура — кубическая гранецентрированная с периодом а0=0,38387 нм; электрическое сопротивление — 5,3·10 −8 Ом·м (при 0 °C); коэффициент линейного расширения — 6,5·10 −6 град; модуль нормальной упругости — 52,029·10 6 кг/мм²; плотность — 22,65 г/см³.

Стабильными являются изотопы 191 Ir и 193 Ir. Период полураспада 192 Ir — 74 дня.

Химические свойства

Иридий устойчив на воздухе при обычной температуре и нагревании, при прокаливании порошка в токе кислорода при 600—1000 °C образует в незначительном количестве IrO2. Выше 1200 °C частично испаряется в виде IrO3. Компактный иридий при температурах до 100 °C не реагирует со всеми известными кислотами и их смесями. Свежеосажденная иридиевая чернь частично растворяется в царской водке с образованием смеси соединений Ir(III) и Ir(IV). Порошок иридия может быть растворён хлорированием в присутствии хлоридов щелочных металлов при 600—900 °C или спеканием с Na2O2 или BaO2 с последующим растворением в кислотах. Иридий взаимодействует с F2 при 400—450 °C, а c Cl2 и S при температуре красного каления.

Соединения двухвалентного иридия

    — блестящие тёмно-зелёные кристаллы. Плохо растворяется в кислотах и щёлочах. При нагревании до 773 °C разлагается на IrCl и хлор, а выше 798 °C — на составные элементы. Получают нагреванием металлического иридия или IrCl3 в токе хлора при 763 °C. — блестящее тёмно-синее твёрдое вещество. Мало растворим в воде и кислотах. Растворяется в сульфиде калия. Получают нагреванием металлического иридия в парах серы.

Соединения трёхвалентного иридия

    — твёрдое тёмно-синее вещество. Малорастворим в воде и этаноле. Растворяется в серной кислоте. Получают при лёгком прокаливании сульфида иридия (III). — летучее соединение оливково-зелёного цвета. Плотность — 5,30 г/см³. Малорастворим в воде, щелочах и кислотах. При 765 °C разлагается на IrCl2 и хлор, при 773 °C на IrCl и хлор, а выше 798 °C — на составные элементы. Получают действием хлора на нагретый до 600 °C иридий. — оливково-зелёные кристаллы. Растворяется в воде, мало растворим в спирте. Дегидратируется при нагревании до 105—120 °C. При сильном нагревании разлагается на элементы. Получают взаимодействием IrO2 с бромоводородной кислотой. — твёрдое коричневое вещество. Разлагается на элементы при нагревании выше 1050 °C. Мало растворим в воде. Растворяется в азотной кислоте и растворе сульфида калия. Получают действием сероводорода на хлорид иридия (III) или нагреванием порошкообразного металлического иридия с серой при температуре не выше 1050 °C в вакууме.

    Соединения четырёхвалентного иридия

      — жёлтые тетрагональные кристаллы. tпл 44 °C, tкип 53 °C, плотность — 6,0 г/см³. Под действием металлического иридия превращается в IrF4, восстанавливается водородом до металлического иридия. Получают нагреванием иридия в атмосфере фтора в трубке из флюорита. Сильный окислитель, реагирует с водой и монооксидом азота:
      — серый, малорастворимый в воде порошок. Получают нагреванием порошкообразного металлического иридия с избытком серы в вакууме. Строго говоря, не является соединением шестивалетного иридия, так как содержит связь S-S.

      Особый интерес в качестве источника электроэнергии вызывает его ядерный изомер иридий-192m2 (имеющий период полураспада 241 год).

      Сплавы с W и Th — материалы термоэлектрических генераторов, с Hf — материалы для топливных баков в космических аппаратах, с Rh, Re, W — материалы для термопар, эксплуатируемых выше 2000 °C, с La и Се — материалы термоэмиссионных катодов.

      Иридий используется также для изготовления перьев для ручек. Небольшой шарик из иридия можно встретить на кончиках перьев и чернильных стержней, особенно хорошо его видно на золотых перьях, где он отличается по цвету от самого пера.

      Иридий в палеонтологии и геологии является индикатором слоя, который сформировался сразу после падения метеоритов.

      Иридий, наряду с медью и платиной, применяется в свечах зажигания двигателей внутреннего сгорания (ДВС) в качестве материала для изготовления электродов, делая такие свечи наиболее долговечными (100—160 тыс. км пробега автомобиля) и снижая требования к напряжению искрообразования. Изначально использовался в авиации и гоночных автомобилях, затем, по мере снижения стоимости продукции, стал употребляться и на массовых автомобилях. В настоящее время такие свечи доступны для большинства двигателей, однако являясь наиболее дорогими.

      Иридий-192 является радионуклидом с периодом полураспада 74 сут, широко применяемым в дефектоскопии, особенно в условиях, когда генерирующие источники не могут быть использованы (взрывоопасные среды, отсутствие питающего напряжения нужной мощности) [7] .

      Биологическая роль

      Не играет никакой биологической роли. Металлический иридий нетоксичен, но некоторые соединения иридия, например, его гексафторид (IrF6), очень ядовиты.

      Стоимость

      Цена на иридий на мировом рынке в мае-июне 2012 — около 35 долларов США за 1 грамм (1085 долларов за тройскую унцию) [8] .

      Иридий — металл, который не взаимодействует с кислотами и их смесями (например, царской водкой) как при нормальной, так и при повышенной температурах [9] .

      См. также

      Примечания

      Литература

      • Большая советская энциклопедия
      • Химическая энциклопедия под ред. И. Л. Кнулянца. Т.2, стр.271.

      Ссылки

      • Химические элементы
      • Соединения иридия
      • Металлы платиновой группы

      Wikimedia Foundation . 2010 .

      Читайте также: