Ионы какого металла необходимы для нормальной работы сердечной мышцы
Для цитирования: Шилов А.М., Князева Л.В. Дефицит калия и магния как фактор риска развития сердечно–сосудистых заболеваний. РМЖ. 2013;5:278.
В странах Европейского союза и Северной Америки сердечно–сосудистые заболевания (ССЗ) являются основной причиной каждого второго летального исхода во взрослой популяции населения и составляют около 2 млн смертей в год. Согласно данным экспертов ВОЗ, ССЗ в 2010 г. занимали лидирующее место в структуре летальности среди социально значимой группы населения в большинстве экономически развитых стран мира: от этой патологии умерли около 18,5 млн, а уже в 2015 г. эта цифра достигнет 20 млн человек. По данным Фремингемского исследования, проходившего в течение 20 лет, 12% всех случаев естественной смерти приходится на внезапную смерть. В 70% случаев причиной внезапной сердечной смерти являются тяжелые гемодинамические нарушения насосной деятельности сердца, вызванные развившимися электрофизиологическими изменениями ритма сердечной деятельности, – аритмогенная смерть вследствие нарушения внутриклеточного электролитного баланса [1–4,8,12].
Литература
1. Аритмии сердца. Механизмы, диагностика, лечение. Т. 1. М.: Медицина, 1996. С. 346–379.
2. Громова О.А. Магний и пиридоксин: основы знаний. Новые технологии диагностики и коррекции дефицита магния. Обучающие программы ЮНЕСКО. М.: РСЦ Института микроэлементов, 2006. С 3–176.
3. Метелица В.И. Справочник по клинической фармакологии сердечно–сосудистых лекарственных средств. М., 2002. С. 509–513.
4. Нечаева Г.М., Яковлев В.М., Друк И.В., Тихонова О.В. Нарушения ритма сердца при недифференцированной дисплазии соединительной ткани // Лечащий врач. 2008. № 6. С. 2–7.
5. Томов Л., Томов И. Нарушения ритма сердца. Клиническая картина и лечение. София, 1976. С. 62–81.
6. Фонякин А.В., Машин В.В., Гераскина Л.А., Машин В.Вл. Кардиогенная энцефалопатия. Факторы риска и подходы к терапии // Consilium Medicum. 2012. Т. 14. |№ 2. С. 4–7.
7. Шевченко О.П., Праскурничий Е.А., Шевченко А.О. Артериальная гипертония и ожирение. М.: Реофарм, 2006.
8. Шилов А.М. Инфаркт миокарда. М.: Миклош, 2009. С. 7–163.
9. Шилов А.М., Мельник М.В., Осия А.О. Лечение сердечно–сосудистых заболеваний в практике врача первичного звена здравоохранения: место препаратов калия и магния (Панангин) // РМЖ. 2012. № 3. С. 102–107.
10. Barbato J.E., Zuckerbraun B.S., Overbaus M. and al. Nitric oxide modulates vascular inflammation and intimal hyperplasia in insulin resistance and metabolic syndrome // J. Physiol. Heart. Circ. 2005. Vol. 289. Р. 228–236.
11. Caballero A.E. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease // Obes. Res. 2003. Vol. 11. Р. 1278–1289.
12. Kannel W. Fifty years of Framingham Study contributions to understanding hypertension // J Hum Hypertens. 2000. Vol. 14 (2). Р. 83–90.
13. Jellinek H., Takacs E. Morphological aspects of the effects of orotic acid and magnesium // Arzneimittelforschung. 1995. Aug. Vol. 45 (8). Р. 836–842.
14. Seelig M.S. Metabolic Sindrom–X. A complex of common diseases – diabetes, hypertension, heart disease, dyslipidemia and obesity – marked by insulin resistance and low magnesium/high calcium // Mineral Res. Intern. Tech. Prod. Infor. 2003. Р. 1–11.
Контент доступен под лицензией Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Ионы какого металла необходимы для нормальной работы сердечной мышцы
Связь между возбуждением и сокращением сердца. Роль ионов кальция в сокращении сердца
Термин «электромеханическое сопряжение» относится к механизму, благодаря которому потенциал действия приводит к сокращению миофибрилл в мышечных волокнах. Однако существенные отличия механизма электромеханического сопряжения в сердечной мышце, имеют для функции миокарда особое значение. Так же, как и в скелетных мышцах, потенциал действия распространяется вдоль клеточной мембраны, проходя в глубь сердечных волокон по поперечным Т-трубочкам. Возбуждение мембраны в области Т-трубочек, в свою очередь, приводит к выходу ионов кальция из продольных трубочек саркоплазматического ретикулума в саркоплазму. В тысячные доли секунды ионы кальция достигают миофибрилл и активируют химические реакции, лежащие в основе мышечного сокращения.
Особенностью электромеханического сопряжения в сердечной мышце является то, что при возбуждении миокарда ионы кальция поступают в саркоплазму не только из цистерн саркоплазматического ретикулума, но также из Т-трубочек. Без этого дополнительного источника ионов кальция сокращение сердечной мышцы было бы недостаточно сильным. Дело в том, что в отличие от скелетной мышцы саркоплазматический ретикулум в кардиомиоцитах развит слабее. Что касается системы Т-трубочек, то они являются мощным депо кальция. Их диаметр в 5 раз, а объем жидкости в них в 25 раз больше, чем в волокнах скелетных мышц. Кроме того, в Т-трубочках имеется большое количество мукополисахаридов, несущих на поверхности отрицательный заряд. Связываясь с ионами кальция, они создают значительный запас этих ионов, способных немедленно диффундировать в саркоплазму при возбуждении.
В отличие от скелетных мышц сила сокращения миокарда в значительной степени зависит от концентрации кальция во внеклеточной жидкости. Дело в том, что хорошо развитая система Т-трубочек, открываясь в окружающее внеклеточное пространство, заполнена внеклеточной (интерстициальной) жидкостью с высоким содержанием кальция. Таким образом, внеклеточная жидкость проникает глубоко внутрь волокон по системе Т-трубочек и служит необходимым источником ионов кальция для развития мышечного сокращения. (Сила сокращения скелетных мышц практически не зависит от изменений концентрации кальция во внеклеточной жидкости. Сокращение скелетных мышц полностью обеспечивается ионами кальция, поступающими в саркоплазму из цистерн саркоплазматического ретикулума, т.е. из внутриклеточных источников.)
В конце фазы плато потенциала действия вход ионов кальция в кардиомиоцит прекращается. Из саркоплазмы ионы кальция быстро удаляются как обратно в саркоплазматический ретикулум, так и во внеклеточную жидкость Т-трубочек. В результате цикл сокращения в миокарде завершается вплоть до поступления нового потенциала действия.
Длительность сокращения. Сокращение сердечной мышцы начинается через несколько миллисекунд после начала потенциала действия и заканчивается через несколько миллисекунд после завершения потенциала действия. Таким образом, длительность сокращения миокарда зависит от длительности потенциала действия, включая фазу плато, и составляет 0,2 сек в миокарде предсердий и 0,3 сек в миокарде желудочков.
Электрофизиология сердца: мембранный (монофазный) потенциал действия
• В покое каждое волокно сердечной мышцы находится в поляризованном состоянии. Мембранный потенциал покоя при этом равен примерно -90 мВ. При возбуждении сердечной мышцы возникает потенциал действия, равный примерно 120 мВ и связанный с обменным током ионов натрия и калия.
• При помощи биполярного электрода можно зарегистрировать на полоске миокарда деполяризацию (возбуждение) и реполяризацию (исчезновение возбуждения).
• В фазу абсолютной рефрактерности, наступающей после потенциала действия, сердце утрачивает способность реагировать на раздражения.
Каждое волокно сердечной мышцы в покое находится в поляризованном состоянии. В этом состоянии между внутриклеточным (отрицательно заряженным) и внеклеточным (положительно заряженным) пространством поддерживается разность потенциалов. Этот так называемый мембранный потенциал составляет -90 мВ.
Во внутриклеточном пространстве находятся преимущественно ионы калия, а во внеклеточном - ионы натрия. В покое на клеточной мембране в результате селективной ионной проницаемости между натриевым и калиевым током устанавливается динамическое равновесие.
При возбуждении волокон сердечной мышцы возникает потенциал действия, обусловленный обменным током ионов натрия и калия через клеточную мембрану. В этом монофазном потенциале действия условно выделяют 5 фаз: от нулевой до четвертой (0—4).
С началом возбуждения (деполяризации) происходит быстрый массивный ток ионов натрия из внеклеточного пространства в клетку. На кривой потенциала действия при этом появляется почти вертикальная линия. Деполяризация длится совсем недолго, только несколько миллисекунд, и соответствует фазе 0.
Массивный входящий натриевый ток вызывает не только деполяризацию клеточной мембраны, но и приводит к ее гиперполяризации (овершут) примерно на 30 мВ. Потенциал покоя и потенциал гиперполяризации в сумме по абсолютному значению составляют примерно 120 мВ. Эта нулевая фаза (фаза 0) соответствует примерно комплексу QRS на ЭКГ. При быстром и очень массированном натриевом токе комплекс QRS бывает узким и высоким.
После фазы гиперполяризации следует фаза восстановления возбудимости (фаза реполяризации). Она начинается с крутого спуска, соответствующего быстрой реполяризации (фаза 1), и следующего за ним пологого спуска кривой, соответствующего медленной реполяризации (фаза 2). В фазе 2 на кривой появляется плато, соответствующее нулевому мембранному потенциалу (0 мВ).
Фаза 1 соответствует точке J на ЭКГ, а фаза 2 - примерно сегменту ST.
За быстрым и мощным входящим натриевым током следует медленный и слабый входящий кальциевый ток, который играет важную роль в сокращении мышечного волокна, так как только с его помощью макроэргические фосфаты способны вызвать сокращение мышечного волокна. Этот процесс известен как электромеханическое сопряжение.
Выходящий калиевый ток
В фазу быстрой реполяризации (фаза 2) во внеклеточное пространство из клетки начинают выходить все больше ионов калия. Фаза 3 соответствует зубцу Т ЭКГ.
Выходящий калиевый ток достигает максимума в конце сокращения мышечного волокна. Таким образом, электрическая систола состоит из деполяризации и реполяризации. Она обычно длится примерно 300 мс, но ее длительность зависит от частоты сердечных сокращений (ЧСС).
Во время диастолы ионы калия подвергаются активному обратному транспорту во внутриклеточное пространство, в то время как ионы натрия выводятся во внеклеточное пространство. Эту активную систему транспорта ионов можно представить как вращающуюся дверь, благодаря которой во время диастолы вновь восстанавливается поляризация клеточной мембраны покоящегося мышечного волокна.
Фаза 4 соответствует изоэлектри-ческой линии ЭКГ, т.е. состоянию покоя.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.
Потенциал действия сердечной мышцы. Скорость проведения импульса в сердечной мышце
Что является причиной большой длительности потенциала действия и фазы плато? Мы вправе задать вопрос: почему потенциал действия сердечной мышцы такой продолжительный и почему он имеет фазу плато в отличие от скелетной мышцы? В основе длительного потенциала действия и фазы плато кардиомиоцитов лежат два главных различия в свойствах мембраны волокон сердечной и скелетной мышц. Во-первых, потенциал действия скелетной мышцы вызван активацией так называемых быстрых натриевых каналов, по которым огромное количество ионов натрия входит из внеклеточной жидкости внутрь мышечного волокна. Эти каналы называют быстрыми, т.к. они остаются открытыми лишь несколько тысячных долей секунды, а потом мгновенно закрываются. С этого момента развивается реполяризация, и в следующую тысячную долю секунды потенциал действия завершается.
Потенциал действия сердечной мышцы вызван активацией двух типов ионных каналов: (1) быстрых натриевых каналов, как и в скелетных мышцах; (2) медленных кальциевых каналов^ которые также называют кальций-натриевыми каналами. Второй тип каналов отличается тем, что они медленно открываются и, что особенно важно, долго остаются открытыми (в течение несколько десятых долей секунды). Все это время ионы кальция и натрия диффундируют внутрь сердечных волокон и поддерживают длительную деполяризацию мембраны, или фазу плато потенциала действия. Более того, ионы кальция, входящие в сердечные волокна во время фазы плато, участвуют в процессе мышечного сокращения, в то время как ионы кальция, необходимые для сокращения скелетных мышц, поступают в саркоплазму только из внутриклеточного саркоплазматического ретикулума.
Второе важное функциональное различие между волокнами сердечной и скелетной мышц: сразу после начала потенциала действия проницаемость мембраны кардиомиоцитов для ионов калия уменьшается примерно в 5 раз (такое явление в волокнах скелетных мышц отсутствует). Уменьшение калиевой проницаемости, возможно, происходит за счет избыточного притока в клетку ионов кальция через кальциевые каналы. В любом случае снижение проницаемости мембраны для калия существенно уменьшает выход этих положительных ионов из клетки во время фазы плато и, следовательно, препятствует слишком быстрому возвращению мембранного потенциала к уровню покоя. Когда же к концу 0,2-0,3 сек медленные кальциевые каналы закрываются и входящий ток ионов кальция и натрия прекращается, проницаемость мембраны для ионов калия быстро возрастает, поэтому выходящий калиевый ток немедленно возвращает мембранный потенциал к уровню покоя, и потенциал действия завершается.
Скорость проведения импульса в сердечной мышце. Скорость проведения потенциала действия по мышечным волокнам как предсердий, так и желудочков составляет 0,3-0,5 м/сек (что в 250 раз меньше скорости проведения в толстых нервных волокнах и в 10 раз меньше скорости проведения в волокнах скелетных мышц). С другой стороны, скорость проведения возбуждения в волокнах проводящей системы сердца (волокнах Пуркинье) достигает 4 м/сек, что обеспечивает быстрый охват возбуждением миокарда желудочков.
Сила сокращения, продолжительность рефрактерного и относительного рефрактерного периодов, внеочередное сокращение, отсутствие суммации при раннем внеочередном сокращении.
Рефрактерный период сердечной мышцы. Сердечная мышца, как и все возбудимые ткани, невосприимчива к действию повторных стимулов, поступающих к ней во время потенциала действия (т.е. обладает рефрактерностью). Рефрактерный период сердца — это интервал времени, в течение которого новый сердечный импульс не может вызвать повторную генерацию потенциала действия во все еще возбужденных мышечных волокнах. В норме рефрактерный период желудочков продолжается 0,25-0,30 сек и почти полностью совпадает с длительностью фазы плато потенциала действия. За ним следует относительный рефрактерный период продолжительностью около 0,05 сек. Во время относительной рефрактерности миокард может возбуждаться, но только под действием очень сильного раздражителя. Это приводит к развитию раннего внеочередного сокращения. Рефрактерный период миокарда предсердий значительно короче и продолжается примерно 0,15 сек.
Видео физиология сердечной мышцы (миокарда) - профессор, д.м.н. П.Е. Умрюхин
К чему приводит дефицит и избыток калия в организме
Дефицит калия, или гипокалиемия, – это очень серьезное состояние, которое может повлиять на нормальную работу сердца и кровеносной системы.
Однако, хотя калий считается одним из самых главных элементов в организме человека, его избыток может быть так же опасен, как и дефицит.
Поэтому полезно знать, какова правильная концентрация калия в крови, и продукты, насыщенные калием.
Роль калия
Калий в организме является очень важным электролитом. Помимо прочего, он отвечает за правильное функционирование всех мышц, включая
самую важную – сердечную мышцу, и всей нервной системы. Если говорить максимально просто, то ионы калия вместе с ионами натрия и хлора
являются генератором и идеальным проводником электрических импульсов, которые заставляют сердце биться, а другие мышцы реагировать
на всю информацию, передаваемую из мозга.
Он также играет немаловажную роль в синтезе мышечного белка, который необходим для правильного развития, адаптации и восстановления мышц.
Он также отвечает за регулирование водного режима во всем организме. Поэтому всем людям с повышенной физической активностью следует позаботиться
о том, чтобы обеспечить правильную концентрацию калия в организме.
Кроме того, в ходе многочисленных научных исследований было доказано, что хороший уровень калия способствует нормализации кровяного давления,
а также снижает риск инсульта. Поэтому людям, страдающим гипертонией, аритмией, сердечной недостаточностью, диабетом и другими заболеваниями
кровеносной системы, следует особенно тщательно следить за его уровнем и включать в свое питание продукты, содержащие калий.
Симптомы, последствия дефицита калия
Нормальная концентрация калия в организме составляет от 3,5 до 5 ммоль/л. Поддержание его значения на практике никогда не происходит, поскольку
калий постоянно выводится с мочой и потом. Однако, когда его уровень падает ниже 3,5 ммоль/л, возникает гипокалиемия, к которой особенно склонны пожилые люди.
Каковы его симптомы?
• мышечная слабость и общий упадок физических сил
• мышечные судороги и тремор
• сонливость, проблемы с концентрацией внимания
• нарушения сердечного ритма
• повышенное давление
• запор
• отек конечностей
• сгущение мочи
Конечно, важно помнить, что вышеперечисленные жалобы не обязательно должны вызываться недостатком калия в организме. Однако в тех случаях,
когда они сохраняются в течение длительного времени, следует немедленно проконсультироваться с врачом, который назначит соответствующие анализы для диагностики причины.
Избыток калия (гиперкалиемия) – симптомы
Повышенное содержание калия также приводит ко многим проблемам со здоровьем. Когда его концентрация превышает 5 ммоль/л, возникает гиперкалиемия,
которая может протекать бессимптомно, но может также вызывать такие жалобы, как:
• общая слабость
• конвульсии
• сенсорные нарушения
• нарушения сознания
• дефицит инсулина в крови
• почечная недостаточность
Каковы причины дефицита калия в организме?
Поддерживать уровень калия в норме, конечно, можно с помощью здорового и сбалансированного питания, но это не всегда связано с недостатком
этого элемента. Проблема может заключаться в неправильном всасывании калия тонким кишечником или его повышенном выведении из-за
нарушений работы почек. Наиболее распространенные причины дефицита калия включают:
• диета с низким содержанием калия, недоедание
• заболевание почек
• заболевания и инфекции органов пищеварения
• понос и рвота
• обширные ожоги
• прием некоторых лекарств
• хронический стресс
• чрезмерное употребление кофе, алкоголя, соли
Что нужно есть при дефиците калия?
Продукты, насыщенные калием, должны быть неотъемлемой частью рациона каждого человека. Мода на здоровое питание, пропагандируемая
социальными сетями, – это не беспочвенная маркетинговая выдумка, а повышение осведомленности общества в контексте заботы о собственном здоровье.
Здоровое питание – важный фактор поддержания тела и духа в наилучшей форме на долгие годы.
Лучшие источники калия:
• бананы, картофель, сушеные абрикосы
• соя, помидоры, авокадо
• фисташки, сушеный инжир, чечевица
• кишмиш, фундук, финики
• тыквенные семечки, яблоки, петрушка
• грецкие орехи, мясо грудки индейки, зеленый горошек
• спаржа, красный перец, квашеная капуста
• клубника, вишня, апельсины
Читайте также: