Индукционные печи для нагрева металла

Обновлено: 08.01.2025

На сегодняшний день современное производство металлических изделий требует повышенного качества изготавливаемых материалов без существенного повышения цены продукта. Мы предлагаем Вам купить промышленные индукционные тигельные плавильные печи для плавки металла по ценам от производителя, при помощи которых можно достичь таких требований.

В отличии от пламенных и дуговых индукционные плавильные установки сохраняют точность и однородность химического состава и имеют меньшую стоимость.

Компания Проминдуктор занимается производством и продажей промышленных индукционных тигельных плавильных печей, которые подходят для плавки любых видов металла: чугуна, стали, алюминия, меди, золота, платины и их сплавов.

Наше производство и лучшие инженеры находятся в Китае, оборудование всегда есть в наличии на складе, бесплатная доставка по России, возможна доставка в страны СНГ. Позвоните нам и мы дадим профессиональные консультации в подборе.

Принцип работы индукционных печей для плавки металла

По принципу работы все индукционные плавильные установки напоминают трансформатор, в котором есть первичная и вторичная обмотка. Индуктор из медной трубы выполняет роль первичной обмотки, который имеет свое собственное водяное охлаждение. Роль вторичной обмотки выполняет металл (сталь, чугун, медь, алюминий) во время нагрева, заложенный в тигель. Под действием токов высокой частоты катушка образует электромагнитное поле в тигле, под воздействием которого происходит нагрев металла до максимальных температур за короткий период времени.

Промышленные индукционные тигельные печи нашего производства имеют возможность задать необходимую мощность нагрева для плавки металла в зависимости от его типа. Эта функция является неоспоримым преимуществом данного оборудования.

Устройство индукционной плавильной печи

Условно индукционные тигельные печи можно разделить на 2 составляющие:

Плавильная установка представляет собой опорный каркас из двух сваренных стоек с гидравлическими плунжерами и узловую составляющую индуктора. Установочный механизм выполнен из прокатных листов нержавейки. Катушка индуктора изготовлена из медной трубы, через которую также происходит охлаждение посредством холодной воды. Электричество и вода подключены к катушке при помощи гибких кабелей, которые соединены последовательно. При помощи гидравлических плунжеров обеспечивается наклон установки до 95°.

Все оборудование индукционной печи для плавки металла питается от частотного преобразователя тиристорного типа, который преобразовывает трехфазный ток в однофазный. Фронтовая панель имеет датчики защиты и оборудование, контролирующее работу преобразователя.

Регулировка частоты происходит в автоматическом режиме по заданной программе. На воронке слива установлены системы оповещения и контроля охлаждения процессов, а также уровня конденсации рабочей зоны.

Промышленные индукционные тигельные плавильные печи для плавки металла от компании ПРОМИНДУКТОР изготовлены по всем мировым стандартам и с использованием самых последних технологий.

Принцип работы индукционных печей. Принцип индукционного нагрева

Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию.

В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле. Это — первое превращение энергии электромагнитного поля, описываемое первым уравнением Максвелла.

Нагреваемый объект помещают внутрь индуктора или рядом с ним. Изменяющийся (во времени) поток вектора магнитной индукции, созданной индуктором, пронизывает нагреваемый объект и индуктирует электрическое поле. Электрические линии этого поля расположены в плоскости, перпендикулярной направлению магнитного потока, и замкнуты, т. е. электрическое поле в нагреваемом объекте носит вихревой характер. Под действием электрического поля, согласно закону Ома, возникают токи проводимости (вихревые токи). Это — второе превращение энергии электромагнитного поля, описываемое вторым уравнением Максвелла.

В нагреваемом объекте энергия индуктированного переменного электрического поля необратимо переходит в тепловую. Такое тепловое рассеивание энергии, следствием чего является нагрев объекта, определяется существованием токов проводимости (вихревых токов). Это — третье превращение энергии электромагнитного поля, причем энергетическое соотношение этого превращения описывается законом Ленца—Джоуля.

Описанные превращения энергии электромагнитного поля дают возможность:
1) передать электрическую энергию индуктора в нагреваемый объект, не прибегая к контактам (в отличие от печей сопротивления)
2) выделить тепло непосредственно в нагреваемом объекте (так называемая «печь с внутренним источником нагрева» по терминологии проф. Н. В. Окорокова), в результате чего использование тепловой энергии оказывается наиболее совершенным и скорость нагрева значительно увеличивается (по сравнению с так называемыми «печами с внешним источником нагрева»).

На величину напряженности электрического поля в нагреваемом объекте оказывают влияние два фактора: величина магнитного потока, т. е. число магнитных силовых линий, пронизывающих объект (или сцепленных с нагреваемым объектом), и частота питающего тока, т. е. частота изменений (во времени) магнитного потока, сцепленного с нагреваемым объектом.

Это дает возможность выполнить два типа установок индукционного нагрева, которые различаются и по конструкции и по эксплуатационным свойствам: индукционные установки с сердечником и без сердечника.

По технологическому назначению установки индукционного нагрева подразделяют на плавильные печи для плавки металлов и нагревательные установки для термической обработки (закалки, отпуска), для сквозного нагрева заготовок перед пластической деформацией (ковкой, штамповкой), для сварки, пайки и наплавки, для химико-термической обработки изделий и т. д.

По частоте изменения тока, питающего установку индукционного нагрева, различают:
1) установки промышленной частоты (50 Гц), питающиеся от сети непосредственно или через понижающие трансформаторы;
2) установки повышенной частоты (500-10000 Гц), получающие питание от электромашинных или полупроводниковых преобразователей частоты;
3) высокочастотные установки (66 000-440 000 Гц и выше), питающиеся от ламповых электронных генераторов.

Установки индукционного нагрева с сердечником

В плавильной печи (рис. 1) цилиндрический многовитковый индуктор, изготовленный из медной профилированной трубки, насаживают на замкнутый сердечник, набранный из листовой электротехнической стали (толщина листов 0,5 мм). Вокруг индуктора размещают огнеупорную керамическую футеровку с узким кольцевым каналом (горизонтальным или вертикальным), где находится жидкий металл. Необходимым условием работы является замкнутое электропроводное кольцо. Поэтому невозможно расплавить отдельные куски твердого металла в такой печи. Для пуска печи приходится в канал заливать порцию жидкого металла из другой печи или оставлять часть жидкого металла от предыдущей плавки (остаточная емкость печи).


Рис.1. Схема устройства индукционной канальной печи: 1 — индикатор; 2 — металл; 3 — канал; 4 — магнитопровод; Ф — основной магнитный поток; Ф и Ф — магнитные потоки рассеяния; U1 и I1 — напряжение и ток в цепи индуктора; I2 — ток проводимости в металле

В стальном магнитопроводе индукционной канальной печи замыкается большой рабочий магнитный поток и лишь небольшая часть полного магнитного потока, создаваемого индуктором, замыкается через воздух в виде потока рассеяния. Поэтому такие печи успешно работают на промышленной частоте (50 Гц).

В настоящее время существует большое число типов и конструкций таких печей, разработанных во ВНИИЭТО (однофазные и многофазные с одним и несколькими каналами, с вертикальным и горизонтальным закрытым каналом разной формы). Эти печи применяют для плавки цветных металлов и сплавов со сравнительно низкой температурой плавления, а также для получения высококачественного чугуна. При плавке чугуна печь используют либо в качестве копильника (миксера), либо в качестве плавильного агрегата. Конструкции и технические характеристики современных индукционных канальных печей приведены в специальной литературе.

Установки индукционного нагрева без сердечника

В плавильной печи (рис. 2) расплавляемый металл находится в керамическом тигле, помещенном внутрь цилиндрического многовиткового индуктора. Индуктор изготовляют из медной профилированной трубки, через которую пропускают охлаждающую воду. Узнать подробнее о конструкции индуктора можно здесь.

Отсутствие стального сердечника приводит к резкому увеличению магнитного потока рассеяния; число магнитных силовых линий, сцепляемых с металлом в тигле, будет крайне мало. Это обстоятельство требует соответствующего увеличения частоты изменения (во времени) электромагнитного поля. Поэтому для эффективной работы индукционных тигельных печей приходится питать их токами повышенной, а в отдельных случаях и высокой частоты от соответствующих преобразователей тока. Подобные печи имеют очень низкий естественный коэффициент мощности (cos φ=0,03-0,10). Поэтому необходимо применять конденсаторы для компенсации реактивной (индуктивной) мощности.

В настоящее время имеется несколько типов индукционных тигельных печей, разработанных во ВНИИЭТО в виде соответствующих размерных рядов (по емкости) высокой, повышенной и промышленной частоты, для плавки стали (тип ИСТ).

Схема устройства индукционной тигельной печи


Рис. 2. Схема устройства индукционной тигельной печи: 1 — индуктор; 2 — металл; 3 — тигель (стрелками показана траектория циркуляции жидкого металла в результате электродинамических явлений)

Преимуществами тигельных печей являются следующие: выделяющееся непосредственно в металле тепло, высокая равномерность металла по химическому составу и температуре, отсутствие источников загрязнения металла (помимо футеровки тигля), удобство управления и регулирования процесса плавки, гигиеничность условий труда. Кроме этого, для индукционных тигельных печей характерны: более высокая производительность вследствие высоких удельных (на единицу емкости) мощностей нагрева; возможность плавить твердую шихту, не оставляя металл от предыдущей плавки (в отличие от канальных печей); малая масса футеровки по сравнению с массой металла, что уменьшает аккумуляцию тепловой энергии в футеровке тигля, снижает тепловую инерцию печи и делает плавильные печи этого типа исключительно удобными для периодической работы с перерывами между плавками, в частности для фасонно-литейных цехов машиностроительных заводов; компактность печи, что позволяет достаточно просто изолировать рабочее пространство от окружающей среды и осуществлять плавку в вакууме или в газовой среде заданного состава. Поэтому в металлургии широко применяют вакуумные индукционные тигельные печи (тип ИСВ).

Наряду с преимуществами у индукционных тигельных печей имеются следующие недостатки: наличие относительно холодных шлаков (температура шлака меньше температуры металла), затрудняющих проведение рафинировочных процессов при выплавке качественных сталей; сложное и дорогое электрооборудование; низкая стойкость футеровки при резких колебаниях температуры вследствие небольшой тепловой инерции футеровки тигля и размывающего действия жидкого металла при электродинамических явлениях. Поэтому такие печи применяют для переплава легированных отходов с целью снижения угара элементов.

Использованная литература:
1. Егоров А.В., Моржин А.Ф. Электрические печи (для производства сталей). М.: «Металлургия», 1975, 352 с.

НПП «ЭЛСИТ»

Для нагрева и плавки железной руды и металлов сталелитейная промышленность применяет различные типы печей для переработки металла. По виду применяемого топлива индукционные печи бывают – пламенные, к ним относятся мартеновские, доменные, шахтные, газовые тигельные, и печи для плавки металла с электрическим нагревом. Электропечи имеют классификацию, которая зависит от метода конвертации электрической энергии в тепловую. Одним из таких методов является плавка металлов в среде индуктивного магнитного поля.

Устройство и принцип работы индукционных печей

Впервые, свойство индуктивного нагрева было описано уравнением Максвелла, а затем разработано на практике английским физиком Майклом Фарадеем. Пионерами постройки индуктивных плавильных печей были англичане, в 1890 году была возведена ИП печь, но из-за отсутствия мощных источников электроэнергии не имели широкого распространения.
Вначале ΧΧ века происходит скачок индустрии, появляются мощные генераторы электроэнергии с токами высокой частоты, которые смогли полностью обеспечивать все параметры индукционных печей.
Конструкция индукционного нагревателя представляет собой многовитковую катушку цилиндрической формы, которая называется индуктором, через него пропускается электрическое напряжение переменного тока, вследствие чего возникают магнитные поля, возбуждающие вихревые токи.
Во внутреннее пространство индуктора помещается сосуд, или емкость, в которой находится металл или руда. Под воздействием магнитного поля и вихревых токов в металле повышается сопротивление, что по всем законам физики вызывает его нагрев и за счет этого происходит процесс плавки.
Мощность индукционных плавильных печей зависит от величины подаваемого напряжения и частоты электрического тока. Эта зависимость применяется в типах индукционных печей – нагревательные установки для термической обработки и плавильные печи.

Особенности применения индуктивных нагревателей

Конструктивная схема индуктивных печей имеет свои особенности, которых нет в других конструкциях печей.

  1. Передача электрической энергии к нагреваемому объекту происходит без контакта с электроустановкой.
  2. Выделение тепла происходит непосредственно в месте нагрева, что позволяет максимально использовать энергию образующегося тепла.
  3. Высокая скорость нагрева объекта, помещенного в индуктор.

Индукционные печи для плавки металлов значительно меньше потребляют электроэнергию. Так как этот метод нагрева происходит непосредственно в среде металла, это позволяет получать их сплавы различных марок и свойств фактически не имеющих примесей и получать отливки равномерные по химическому составу.
В индукционных печах можно плавить различные типы металлов, это стали различных марок, высококачественный чугун, цветные металлы.
Особенность конструкции ИП нагревателей, это малая масса футеровки индукционной печи по сравнению с массой металла, в связи, с чем снижается тепловая энергия печи, позволяет производить плавку периодически, что исключается в печах других конструкций.

К недостаткам индукционных печей можно отнести следующие факторы:

  • дорогое и сложное в изготовление электрическое оборудование;
  • наличие «холодных» шлаков, которые затрудняют процесс рафинации металла, этот метод термообработки используется при изготовлении высококачественных сталей.
  • от резкого перепада температур, низкая долговечность футеровки.

Применение индукционных нагревательных печей позволяет автоматизировать процессы плавки, получать высоко легирующие металлы, обеспечивать хорошие условия труда для обслуживающего персонала. К тому же максимально снижается загрязнение окружающей среды.

Индукционная печь для плавки и нагрева металла

Индукционная печь – это оборудование, которое под воздействием токов высокой частоты способно осуществлять плавку металла и другие виды высокотемпературной обработки. На сегодняшний день, наверное, единственным способным конкурентом индукционным печам остались мартеновские печи, которые могут осуществлять плавку огромного объема металла за один раз. Все остальные способы нагрева стали неконкурентоспособными, потому что индукционный нагрев является идеальным в плане обработки всех видов металлов.

Индукционная печь отлично справляется с плавкой черных, цветных и драгоценных металлов, осуществляя их обработку на высшем уровне.

Индукционная печь история производства

Изобретена индукционная печь была после того, как в 1831 году Фарадей открыл закон об электромагнитной индукции. Изучив работы Максвелла, которые перекликались с открытием Фарадея, и, взяв в основу их открытия, ученые смогли создать первую индукционную печь, которая могла плавить небольшое количество металла под воздействием токов высокой частоты.

Первая индукционная печь была запатентована в Великобритании, однако хоть изобретение было проработано, воссоздать его на практике не вышло.

Первая плавка стали была произведена в 1900 году в Швейцарии. Челлин в то время смастерил индукционную печь по собственным разработкам. Выполнена она была в роли однофазного трансформатора. Плавильной емкостью печи выступала кольцевая ванна, а расплавленный металл выполнял роль вторичной обмотки. В центре первой индукционной печи был размещен железный магнитопровод, окруженный обмоткой со специальной асбестовой изоляцией. Магнитопровод подавал переменный магнитный поток, который способен возбудить переменный ток.

Первую индукционную печь начали устанавливать на заводах Швейцарии, а впоследствии они стали появляться и в других странах.
Несмотря на то, что индукционные печи оказались довольно удобным устройством, они имели перечень недостатков:

  • Постоянно требовалось производить жидкую завалку.
  • Шлак нагревался не так хорошо, как это требовалось.
  • Эксплуатация футеровки ИП вызывала определенные трудности.

Именно в тот момент производители поняли, что что-то не так, и начало развиваться производство дуговых сталеплавильных печей.
С 1925 года в промышленности появились индукционные печи без сердечника, способные осуществлять качественную плавку металла.

На сегодняшний день популярность набрали тигельные индукционные печи. Первые тигельные печи выпустила компания «Алекс». В основном в производстве такие печи использовали для плавки драгоценных и цветных металлов, но тогда их использовали, проводя различные эксперименты, а сегодня тигельные индукционные печи стали популярными и активно применяются для обработки всех видов металлов.

Современные индукционные печи виды

На сегодняшний день в производстве применяют два типа индукционных печей, однако, несмотря на это, тигельные являются наиболее популярными.

1. Плавильные печи с сердечником.

Индукционные печи с сердечником имеют следующую комплектацию: многовитковой индуктор цилиндрической формы, изготовленный из медной трубки; замкнутый сердечник, на который насаживается индуктор, выполняется из листовой электротехнической стали; огнеупорная керамическая футеровка обладающая узким кольцевым каналом, для жидкого металла.

Плавильная печь с сердечником обязательно должна иметь замкнутое электропроводное кольцо, поэтому расплавлять в ней отдельные куски металла, обладающего повышенной прочностью, не получится. Для запуска печи с сердечником необходимо заливать в кольцевой канал небольшую порцию жидкого металла.

Такие печи на сегодняшний день работают на частоте 50 Гц. Существует немало видов и конструкций индукционной печи с сердечником, причем могут быть они как однофазными, так и многофазными.

Чаще всего, плавильные печи с сердечником используют для плавки цветных металлов, обладающих небольшой температурой плавления. Также могут применяться для получения чугуна высокого качества. При обработке чугуна данная печь может использоваться в роли плавильного устройства или же миксера (копильника).

2. Плавильные печи без сердечника

Индукционные плавильные печи без сердечника (тигельные) производят расплав металла в специальной емкости, изготовленной из материала, устойчивого к воздействию высоких температур (тигля). Тигель размещается внутри многовиткового индуктора. Как правило, индуктор изготавливают из толстой медной трубки, через которую будет пускаться специальная охлаждающая жидкость или техническая вода.

Так как сердечник в данном виде печей отсутствует, это влияет на резкое увеличение магнитного потока рассеивания. Число магнитных сил, которые будут сцепляться с металлом внутри тигля, существенно снижется. Из-за высокого уровня рассеивания токов высокой частоты, мощность индукционной тигельной печи должна быть несколько выше, чем у печи с сердечником.

Для индукционных тигельных печей характерна повышенная производительность, высокое качества нагрева за счет равномерного распределения тепла, а также возможность производить плавку металла безопасно для окружающих.

Индукционная печь достоинства и недостатки

У индукционных печей наряду с достоинствами есть определенный перечень минусов, которые не оказывают существенного влияния на качество выполняемой работы, но кому-то могут не понравиться.
Недостатков немного, поэтому сразу поговорим о них:

  • Температура шлаков в процессе плавки существенно ниже, чем температура металлов. Это затрудняет проведение рафинировочного процесса, если речь идет о выплавке высококачественной стали.
  • Футеровка обладает низким уровнем стойкости. Если будут резкие перепады температуры, то тигель довольно быстро выйдет из строя.

Преимуществ индукционная печь имеет гораздо больше, и мы поговорим о каждом, чтобы у вас могло сложиться мнение относительно полезности данного оборудования.

  1. Тепло выделяется непосредственно в металле, что позволяет начать выплавку металла практически сразу после запуска установки.
  2. Тепло равномерно распределяется по металлу, поэтому выплавка получается качественной и равномерной по химическому составу.
  3. Процесс управления рабочим процессом довольно прост, благодаря автоматизированному программному обеспечению, которое самостоятельно осуществляет контроль по заранее внесенной программе.
  4. Высокая гигиеничность условия труда: в воздух не выделяются вредные запахи, так же отсутствует задымление.
  5. Индукционная печь отличается высокой производительностью.
  6. В тигельной печи есть возможность выплавки твердой шихты, при этом не нужно оставлять жидкий металл с предыдущей выплавки, как того требуют печи с сердечником.
  7. Масса футеровки незначительна, что позволяет не задерживать тепло в ней.
  8. Индукционная печь обладает компактными размерами, а это дает возможность удобно изолировать рабочее пространство, а также воссоздать любую необходимую для металла среду (вакуум, газовая, окислительная).
  9. Для управления программным обеспечением индукционной печи совсем не обязательно иметь на предприятия высококвалифицированный персонал.
  10. Индукционная печь потребляет незначительное количество электрической энергии, этот фактор позволяет экономить производственные ресурсы, тем самым снижая себестоимость изделий.

Как видите, перечень преимуществ, которыми обладает индукционная печь, довольно внушителен. При выборе установки для плавки металла очень важно обратить внимание на плюсы и минусы того иного оборудования, чтобы определиться, какая плавильная печь подойдет конкретно для вашего предприятия.

Индукционный нагрев – применение в целях обработки металла

Индукционный нагрев – это способ бесконтактной тепловой обработки металлов, способных проводить электрическую энергию, под воздействием токов высокой частоты. Индукционный нагрев все активнее стал применяться на предприятиях для осуществления высокотемпературной обработки металлов. На сегодняшний день индукционное оборудование смогло занять лидирующие позиции, вытесняя альтернативные методы нагрева.

Индукционный нагрев как работает

Принцип действия индукционного нагрева предельно прост. Нагрев производится за счет трансформации электрической энергии в электромагнитное поле, обладающее высокой мощностью. Нагрев изделия осуществляется при проникновении магнитного поля индукторов в изделие, способное проводить электрическую энергию.

Заготовка (обязательно из материала, проводящего электрическую энергию) размещается в индукторе или в непосредственной близости с ним. Индуктор, как правило, выполняется в виде одного или нескольких витков провода. Чаще всего для изготовления индуктора используют толстые медные трубки (провода). Специальный генератор электрической энергии подает ее в индуктор, наводя токи высокой частоты, которые могут варьироваться от 10-и Гц до нескольких МГц. В результате наведения токов высокой частоты на индуктор, вокруг него образуется мощное электромагнитное поле. Вихревые токи образовавшегося электромагнитного поля проникают в изделие и преобразуются внутри его в тепловую энергию, осуществляя нагрев.

Во время работы индуктор довольно сильно нагревается за счет поглощения собственного излучения, поэтому он непременно должен охлаждаться во время рабочего процесса за счет проточной технической воды. Вода для охлаждения подается в установку при помощи отсасывания, такой метод позволяет обезопасить установку, если вдруг произойдет прожог или разгерметизация индуктора.

Индукционный нагрев применение в производстве

Как уже можно было понять из описанного выше, применяется индукционный нагрев в производстве довольно активно. На сегодняшний день индукционное оборудование успело занять лидирующее позиции, вытеснив конкурирующие способы обработки металлов на второй план.

Индукционная плавка металлов

Применяется индукционный нагрев для осуществления плавильных работ. Активное использование индукционных печей началось благодаря тому, что нагрев ТВЧ способен уникально обрабатывать все виды металлов, существующие на сегодняшний день.
Плавильная индукционная печь быстро осуществляет плавку металла. Температуры нагрева установки достаточно даже для плавки самых притязательных металлов. Главное преимущество индукционных плавильных печей заключается в том, что они способны производить чистую плавку металла с минимальным шлакообразованием. Работа выполняется за короткий промежуток времени. Как правило, время выплавки 100 килограмм металла равняется 45-и минутам.

Закалка ТВЧ (токами высокой частоты)

Закалка производится чаще всего в отношении изделий из стали, но может быть применена и к медным и другим металлическим изделиям. Принято различать два вида закалки ТВЧ поверхностная и глубокая, или объемная закалка.
Главное достоинство, которым обладает индукционный нагрев по отношению к закалочным работам – это возможность проникновения тепла на глубину (глубокая закалка). На сегодняшний день закалка ТВЧ стала довольно часто производиться именно в индукционном оборудовании.
Индукционный нагрев позволяет не просто произвести закалку ТВЧ, но дает в конечном результате изделие, которое будет обладать отменным качеством. При использовании индукционного нагрева в целях осуществления закалочных работ количество брака в производстве существенно снижается.

Пайка ТВЧ

Индукционный нагрев полезен не только для обработки металла, но и для соединения одной части изделия с другой. На сегодняшний день пайка ТВЧ стала довольно популярной и смогла вытеснить сварку на второй план. Где только появляется возможность заменить сварку пайкой, производители делают это. Чем именно вызвано такое желание? Все предельно просто. Пайка ТВЧ дает возможность получить целостное изделие, которое будет обладать высокой прочностью.
Пайка ТВЧ получается целостной за счет прямого (бесконтактного) проникновения тепла в изделие. Для нагрева металла не требуется стороннее вмешательства в его структуру, что положительно сказывается на качестве готового изделия и на его сроке эксплуатации.

Термообработка сварных швов

Термообработка сварных швов – это еще один важный технологичный процесс, с которым отлично справится индукционный нагреватель. Термообработка осуществляется для того, чтобы придать изделию повышенную прочность и разгладить напряжение металла, которое, как правило, образуется в местах соединений.
Термообработка при помощи индукционного нагрева производится в три этапа. Каждый из них очень важен, ведь если упустить что-то, то впоследствии качество изделия станет другим и его срок эксплуатации снизится.
Индукционный нагрев положительно сказывается на металле, позволяя равномерно проникать на заданную глубину и разглаживать напряжение, образовавшееся во время произведения сварочных работ.

Ковка, пластика, деформация

Индукционный нагрев преимущества и недостатки

У каждой вещи есть преимущества и недостатки, хорошие и плохие стороны. Индукционный нагрев имеет как плюсы, так и минусы. Однако минусы индукционного нагрева настолько ничтожны, что не видны за огромным количеством преимуществ.
Так как недостатков у индукционного нагрева меньше, сразу же перечислим их:

  1. Некоторые установки являются довольно сложными и для их программирования необходимо квалифицированный персонал, который сможет обслуживать установку (осуществлять ремонт, чистку, программировать).
  2. Если индуктор и заготовка плохо согласованы между собой, то потребуется куда больше мощности нагрева, чем если выполнять похожую задачу в электрической установке.

Как видите, недостатков действительно немного и они не оказывают сильное влияние на принятие решение в пользу использования индукционного нагрева.
Достоинств индукционный нагрев имеет гораздо больше, но мы укажем только главные:

  • Скорость нагрева изделия очень высокая. Индукционный нагрев практически сразу приступает к обработке металлического изделия, никаких промежуточных этапов прогрева оборудования не требуется.
  • Нагрев изделия может производиться в любой воссозданной среде: в атмосфере защитного газа, в окислительной, в восстановительной, в вакуумной и в непроводящей жидкости.
  • Индукционная установка обладает сравнительно небольшими размерами, благодаря чему довольно удобна в эксплуатации. Если возникает необходимость, то индукционное оборудование можно перевезти на место проведения работ.
  • Нагрев металла производится через стенки защитной камеры, которая изготавливается из материалов способных пропускать вихревые токи, поглощая незначительное количество. Во время работы индукционное оборудование не нагревается, поэтому оно признано пожаробезопасным.
  • Так как нагрев металла производится при помощи электромагнитного излучения, загрязнение самой заготовки и окружающей атмосферы отсутствует. Индукционный нагрев был по праву признан экологически безопасным. Он не причиняет абсолютно никакого вреда сотрудникам предприятия, которые будут находиться в цеху во время работы установки.
  • Индуктор может быть изготовлен практически любой сложной формы, что позволит подогнать его под габариты и форму изделия, чтобы нагрев получился более качественным.
  • Индукционный нагрев позволяет просто производить избирательный нагрев. Если нужно прогреть какую-то конкретную область, а не все изделие, то достаточно будет разместить в индукторе только ее.
  • Качество обработки при помощи индукционного нагрева получается отменным. Количество брака в производстве существенно снижается.
  • Индукционный нагрев позволяет экономить электрическую энергию и другие производственные ресурсы.

Как видите, достоинств у индукционного нагрева очень много. Выше были указаны лишь основные, которые оказали серьезное воздействие на решение многих владельцев приобрести индукционные установки для термообработки металла.

Читайте также: